环糊精与季铵盐表面活性剂的相互作用及其在碳纳米管分散和碳酸钙制备中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环糊精—表面活性剂复配体系不仅在药物、化妆品、生物及食品等领域中有着广泛的应用,而且还可用于模拟生物体系,对加快生物技术向化工、医药等传统领域的渗透和应用具有重要的意义。所以环糊精和表面活性剂相互作用的研究是多年来人们一直十分感兴趣的研究课题。
     关于环糊精与表面活性剂相互作用的研究报道有很多,如烷基三甲基溴化铵(CnTAB)、SDS和Triton X-100等与环糊精的相互作用。表面活性剂特别是离子型表面活性剂在溶液中的性质受添加剂如无机盐和极性有机物的影响。CnTAB是一类传统阳离子型表面活性剂,无机盐的加入对其水溶液的性质有较大的影响,也必将影响到其与环糊精的相互作用。改性环糊精具有较为独特的性质,修饰基团的链长、取代位置、取代度对它们与表面活性剂的相互作用也有影响。本文主要研究了NaBr对CTAB和TTAB与β-CD的相互作用的影响,并与NaCl的作用进行了比较;研究了四种改性环糊精与TTAB、CTAB的相互作用;考查了烷基三甲基溴化铵通过化学修饰接到环糊精上的改性环糊精2-O-(羟丙基-N,N-二甲基-N-十二烷基铵)-β-环糊精水溶液的性质;研究了改性环糊精对碳纳米管(CNTs)的分散作用以及CnTAB与β-CD的相互作用对CnTAB分散CNTs作用的影响,环糊精对碳酸钙在体相和界面上的结晶过程的影响,研究内容共分为五部分:
     论文的第一部分概述了表面活性剂和环糊精相互作用的重要意义,综述了表面活性剂和环糊精相互作用的研究进展。
     论文的第二部分可分为三小节。第一节用表面张力法和界面扩张流变法研究了CTAB和β-CD的相互作用,发现其表面张力等温线有两个拐点,比较了NaBr和NaCl对其相互作用的影响。共同点有:体系中都存在1:1和1:2两种CTAB/β-CD复合物,1:1型复合物参与界面吸附;可以降低复合体系的cmc~*,增大复合体系的吸附效率,并且NaBr的效率更高;包结计量比R随加入的盐浓度的增大,先降低后升高,说明1:2型复合物的含量先降低后升高。CTAB的扩张模量随频率的增加而增加,加入电解质,扩张模量有所降低;扩张模量随β-CD浓度的增大,先增大后降低,并且在β-CD浓度较高时,扩张模量随频率的升高而降低,与纯CTAB体系的规律相反。NaBr和NaCl可以降低CTAB、CTAB/β-CD复合体系的扩张模量,但要降低到相同的程度所需的NaCl的浓度大于NaBr的浓度。
     第二节通过对表面张力等温线的分析,可得到NaBr对TTAB、CTAB与β-CD相互作用的影响,从而得到表面活性剂疏水链长的影响。β-CD的存在时,CTAB的吸附效率依然高于TTAB,同时cmc~*和cmc/c_(20)的数值小于TTAB,这表明CTAB的表面活性大于TTAB,且更容易形成胶束。NaBr对CnTAB/β-CD体系的γ_(cmc)的影响主要是两个因素竞争的结果:第一,加入NaBr压缩离子头基双电层,因头基与β-CD间的离子—偶极作用,CnTAB离子头基与环糊精大环之间的CnTAB的主链上原来不在空腔中的亚甲基被缩进空腔中,但空腔能容纳的亚甲基数目一定,所以相应数目的亚甲基被挤出β-CD另一端,复合物的有效疏水链长增长,有利于复合物在界面上的吸附;第二,加入NaBr降低CnTAB的电离度,压缩头基双电层,CnTAB在界面上的排列更为紧密,复合物在界面上吸附的量降低,对γ_(cmc)的影响减小。
     第三节通过表面张力法研究了四种短链改性环糊精(2-HP-β-CD、6-HP-β-CD、2-HB-β-CD、6-HB-β-CD)和TTAB、CTAB在水溶液中的相互作用。比较了取代基链长、取代度、取代位置的差异;并与TX-100与改性环糊精的作用进行了对比。改性环糊精本身有一定的表面活性,其水溶液的表面张力随浓度的增大而降低。CnTAB/CD混合溶液的表面张力等温线在第一个拐点前的表面张力随改性环糊精浓度的增大而降低,随CTAB浓度的增大而缓慢下降,说明这时CTAB/2-HP-β-CD复合物也吸附在界面上,且表面活性与2-HP-β-CD相似。改性环糊精本身具有表面活性,取代基链长的作用最大,其次是取代度和取代位置:链长越长,取代度越大,表面活性越大,并且6位取代的环糊精的表面活性大于2位取代的环糊精的表面活性。对于改性环糊精和CnTAB混合体系而言,包结计量比R与取代位置有关:2位取代CD与β-CD相同,都是1:1型复合物为主;而在6位取代的CD的复合物则是2:1型复合物为主。2位取代CD的cmc~*大于6位取代CD的cmc~*;6位取代CD以及β-CD与CnTAB形成的1:1型复合物降低γ_(cmc)的能力大于2位取代的CD。CTAB体系比TTAB体系更容易与CD形成2:1型复合物;在CD/CnTAB混合体系中,CTAB降低表面张力的效率优于TTAB。在β-CD和6-HP-β-CD中,CTAB降低表面张力的能力不如TTAB,而在2-HP-β-CD、6-HB-β-CD、2-HB-β-CD中,CTAB降低表面张力的能力与TTAB一样。CTAB/2-HP-β-CD的γ_(cmc)随CD浓度的增大缓慢下降到平台,而TX-100/2-HP-β-CD体系的γ_(cmc)与CD浓度无关,证实了CTAB/CD的γ_(cmc)降低是因为复合物参与到表面活性剂的界面吸附层中。圆二色光谱研究TX-100与CD的混合溶液,发现混合体系的诱导手性源于苯环与CD空腔中的氢键环的作用,氢键环越强,诱导手性越强,β-CD以及氢键环破坏较小的6位取代CD有诱导手性,而2位取代CD的氢键环破坏严重,没有诱导手性出现。
     论文的第三部分共分为两节来讨论。第一节主要通过UV-vis-NIR吸收光谱、拉曼光谱、FTIR、XRD和TGA等方法研究了β-CD及其四种衍生物分散CNTs的能力,比较了分子结构对CNTs分散能力的影响。CD对CNTs的分散性可能是取代基类型、链长、位置以及取代度综合作用的结果,2-HB-β-CD的分散效果最好。CD浓度较高时,出现不利于CNTs分散的聚集体导致CNTs的聚沉,分散能力下降。CD对CNTs的分散作用主要靠CD和CNTs间的弱范德华力以及吸附在CNTs表面的CD的分子间氢键。
     第二节通过UV-vis-NIR吸收光谱、拉曼光谱等方法研究了CnTAB与β-CD相互作用对CnTAB分散CNTs的能力的影响,谈论了表面活性剂烷基链长、浓度和β-CD浓度的影响。对CnTAB/CNTs体系来说,烷基链长对分散CNTs的影响很大,DTAB分散的CNTs量最小,TTAB和CTAB分散的量大幅度增大,且两者的最大分散量相似,但达到相同分散量所需CTAB浓度较TTAB小。在cmc之前,DTAB溶液没有分散CNTs的能力,而TTAB和CTAB则可以分散CNTs。体系中加入β-CD后,三种CnTAB都在cmc~*之前具有了分散CNTs的能力,疏水链越长,分散能力越大。β-CD聚集体的形态对复合体系分散CNTs的影响很大,β-CD单体与CnTAB形成的复合物的分散能力最好,其它聚集体因为桥连作用反而降低了CNTs的分散量。β-CD复合物能吸附在CnTAB分散开的CNTs上,增强分散体系的稳定性;β-CD较大的聚集体与少量CnTAB作用后,具有一定分散CNTs的能力。CnTAB/β-CD/CNTs分散的体系的稳定性主要靠离子头基的静电斥力和β-CD单体及聚集体的空间位阻作用。
     论文的第四部分采用表面张力、电导、界面膨胀流变等方法研究了新型两性环糊精——2-O-(羟丙基-N,N-二甲基-N-十二烷基铵)-β-环糊精(HPDMA-C_(12)-CD)在水溶液中的聚集行为并考察了温度的影响。HPDMA-C_(12)-CD及其自包结复合物都可以在界面上吸附并有效降低水的表面张力,而在DTAB/β-CD、DTAB/2-HP-β-CD体系中,主要是靠DTAB的吸附来降低表面张力,复合物的作用较小;从HPDMA-C_(12)-CD表面张力等温线上可以得到明显的cmc拐点。在15-50℃之间,温度对HPDMA-C_(12)-CD的胶束尺寸没有影响。HPDMA-C_(12)-CD的胶束化过程在低温时为熵驱动过程,在高温时则为焓驱动过程。扩张频率越大,体系的扩张模量越高,而相角则随频率的增加不断降低。扩张模量和扩张弹性随浓度升高出现一个最大值,并且最大值出现的位置随频率的降低向低浓度移动,说明低浓度时HPDMA-C_(12)-CD在界面层上累积。温度的变化改变界面浓度和构象,从而改变界面膜的粘弹性。
     第五章研究了β-CD在水溶液中对碳酸钙在空气—水界面和体相中的结晶和生长的调控,考察了CD浓度、反应时间、CD类型的影响。不加入CD时,观察到碳酸钙在界面上从ACC逐步生长到半球形颗粒的的过程,这个过程包括纳米颗粒的层层自组装过程,半球形颗粒在空气一侧的形貌呈现出“年轮”图样。加入β-CD后,颗粒为圆锥和半球的组合体或七面体、八面体等形貌,由于纳米颗粒的层层自组装,还可以观察到贝壳状的形貌;而增大β-CD的浓度,得到的碳酸钙颗粒的形状与不加β-CD时类似;CD类型对界面上生成碳酸钙形貌的的影响主要与界面上的羟基密度有关,改性CD在界面上的羟基密度较低,对形貌的影响较小。由于采用敞开扩散的方法,ACC向晶体的转变非常快。反应时间越长,碳酸铵的加量越大,颗粒的尺寸越大;CaCl_2浓度增大,颗粒的尺寸降低。XRD和FTIR研究都表明界面上得到的碳酸钙主要是方解石,有少量球霰石。在体相中,加入β-CD后对碳酸钙颗粒的影响不大,仍为纳米颗粒聚集而成的中心突出的圆盘形,但β-CD浓度大于1 mmol·dm~(-3)后,颗粒的尺寸骤降。方解石与球霰石共存:反应时间较短时,得到的主要是方解石型碳酸钙,随着反应时间的延长,球霰石的比例升高,并最终成为主要组分。在6-HP-β-CD和6-HB-β-CD溶液中形成的碳酸钙颗粒的表面出现类似毛线团的层状堆积结构。
Cyclodextrin/surfactants mixtures have not only wide applications in cosmetic, pharmaceutics,and food products,etc.but also have the ability to simulate biological systems, which expedites the penetration of biological technology into chemical industry and medicine field.Therefore,the interest in the interaction between cyclodextrin and surfactant is very high for many years.
     The interaction between cyclodextrin and surfactant has been widely reported in literature, such as the interaction between CTAB,SDS,TX-100 and cyclodextrin,but less attention has been paid to the effect of additives on the interaction.The property of the surfactant solution, especially ionic surfactant,is affected greatly by the presence of additives,such as electrolyte and polar organic compounds.The addition of electrolyte must have some function on the interaction between alkyltrimethylammonium bromide(CnTAB),which is a kind of traditional cationic surfactant,and cyclodextrin.The interaction between modified cyclodextrin,which have improvements in the binding and selectivity,and CnTAB would be affected by the chain length of the substituent,the exact positions of the substituent,and the degree of substituent.In this dessertation,the influence of NaBr upon the interaction between TTAB/β-CD and CTAB/β-CD has been studied systematically.The effect of NaCl on the interaction between CTAB andβ-CD was studied as well to show the influence of counterion of the electrolyte.The interaction between modified cyclodextrin(2-HP-β-CD,6-HP-β-CD, 2-HB-β-CD,and 6-HB-β-CD) and CnTAB(TTAB and CTAB) was presented.The interfacial behavior of an amphiphilic cyclodextrin 2-O-(hydroxypropyl-N,N-dimethyl-N-dodecylammonio) -β-cyclodextrin(HPDMA-C_(12)-CD) was investigated using oscillating bubble rheometer and electrical conductivity method at different temperatures.The dispersion effect of naturalβ-CD and modified cyclodextrin to the CNTs was studied.The influence of dispersion effect of CnTAB to the CNTs by the presence ofβ-CD was investigated.This dissertation comprises of five parts.
     Chapter 1 gives an introduction to the interaction between surfactant and cyclodextrin.
     Chapter 2 involves three parts.The first part involves an examination of the effect of NaBr and NaCl on the interaction between CTAB andβ-CD.The stoichiometry,R,has been determined by the surface tension method.The ability to form complexes with CTAB:CD ratios of 1:1 and 1:2 are shown to depend on the concentration and counterion of electrolyte. It is found that R first decreases then increases as a function of electrolyte and NaBr increases R more efficiently.The results obtained from the oscillating barrier measurements at low dilational frequencies(0.005-0.1 Hz) reveal that the dilational modulus passes through a maxium value and a minimum value as the concentration ofβ-CD increses at a given concentration of CTAB.The addition of NaBr decreases the dilational modulus of CTAB/β-CD solution at a given concentration of both CTAB andβ-CD.
     The second part of Chapter 2 deal with the effects on the interaction between CnTAB (n=14 and 16) andβ-CD of NaBr to get an appreciation of the effect of hydrophobic chain length of surfactant.It is concluded from the surface tension data that the adsorption efficiency(pc_(20)) of CTAB are higher than those of TTAB,while the values of cmc~*,cmc/c_(20) ratio and△G°_(mic) are somewhat lower.These results demonstrate that the surface activity of CTAB is still higher than TTAB in the presence ofβ-CD.Although the hydrophobic chain of TTAB is shorter than that of CTAB,the TTAB/β-CD complexes can adsorb on the air/water interface as well.The presence of NaBr elongated the effective hydrophobic chain of CnTAB which increases the adsorption of the complexes at the air/water interface,thereforeγ_(cmc) decreases.As the concentration of NaBr increasing,the effect of the concentration ofβ-CD on theγ_(cmc) decreases.The adsorption of TTAB/β-CD complexes at the air/water interface decreases the effect of the consumption of TTAB forming complexes to the efficiency of adsorption.The increase in theγ_(cmc) of CTAB/β-CD in the presence of NaBr could be attributed to the close pack of CTAB at the air/water interface.
     The third part of Chapter 2 describes the interaction between CnTAB and modified cyclodextrin(6-HP-β-CD,6-HB-β-CD,2-HP-β-CD,and 2-HB-β-CD) using surface tension method.Modified cyclodextrin(MCD) can decrease the surface tension of water itself,and the surface tension of MCD decreases as the concentration of MCD increases.The surface tension isotherm of CnTAB/CD solution has two breaks for a given CD concentration.The surface tension value decreases before the first break,which means that the surface activity of CnTAB/CD complexes is comparable to the one of MCD.The surface activity of MCD varies according to the structure:long substituent,high degree of substituent and substitute on the secondary side of CD result in a high surface activity.The positions of the substituent on MCD affect the interaction between CnTAB and MCD,result in different influences on R, cmc~*,andγ_(cmc).When the CnTAB interact withβ-CD and MCD which is modified at the C2-position,R in most complexes is 1:1,result in a higher cmc~*;and for the MCD modified at the C6-position,R in most complexes is 2:1.Theγ_(cmc) at the CnTAB/C6-position modified MCD and CnTAB/β-CD is lower than that of CnTAB/C2-position modified MCD at lower CD concentration.The interaction between TX-100 and MCD conform that it is the adsorption of complexes,due to the loose pack of CnTAB at the air/water interface,which decrease theγ_(cmc) of CnTAB/CD solution.The induced circular dichroism spectrum(ICD) shows that it is the interaction between the benzene ring of TX-100 and the hydrogen bond ring in the cavity of CD which produces the induced chirality.A high degree of substituent results in a weak induced chirality in the TX-100/C6-position modified MCD solution.
     Chapter 3 involves two parts.The first part involves the examination of the dispersion effect of five cyclodextrins,including 2-HP-β-CD,6-HP-β-CD,2-HB-β-CD,6-HB-β-CD, andβ-CD,on carbon nanotubes(CNTs).2-HB-β-CD is the most efficient dispersing agent.It is found that both the substituted position and the chain length of the substituted group were important for the dispersion of CNTs.The dispersing ability of CDs on the dispersion of CNTs was 2-HB-β-CD>>6-HP-β-CD>β-CD>6-HB-β-CD>2-HP-β-CD.The interaction between the CDs and CNTs was studied by Fourier transform infrared spectroscopy(FTIR), Raman spectrum,and X-ray powder diffraction.The movement in the FTIR spectra of the asymmetric and symmetric stretching vibrations of O-H of the composites means that hydrogen bonding is an important factor on the dispersing ability of CDs.These results indicate that the type of interaction might be the combination of a weak interaction similar to the van der Waals and a hydrogen bonding mechanism.
     The second part of Chapter 3 deal with the effect of the interaction between CnTAB(n=12, 14,16) andβ-CD on the ability of dispersing CNTs of CnTAB by UV-vis-NIR and Raman spectra observations.Of the three surfactants,the ability of dispersing CNTs of DTAB is the smallest,while it is greatly enhanced in the TTAB and CTAB aqueous solution.The maximum amount of CNTs in TTAB and DTAB solution is similar to each other,but the concentration of CTAB solution to this amount is much lower than that in the TTAB solution. The DTAB solution does not have the ability to disperse CNTs,while the TTAB and CTAB solution could disperse CNTs when the concentration of surfactant is lower than the cmc.The presence ofβ-CD enables the DTAB solution to disperse CNTs even when the concentration is lower than the cmc.The type ofβ-CD self-aggregates affect the ability of dispersing CNTs of CnTAB,and the complexes of the monomer ofβ-CD and CnTAB result in the best dispersing ability before cmc~*.The stability of CnTAB/β-CD/CNTs suspended systems has an improvement probably due to the electrostatic repulsion between the ionic hydrophilic groups of CnTAB and steric hindrance ofβ-CD.
     Chapter 4 describes the interfacial behavior of HPDMA-C_(12)-CD by oscillating bubble rheometer and electrical conductivity method at different temperatures.The surface tension and interracial dilational viscoelasticiy of HPDMA-C_(12)-CD are provided.The results showed that HPDMA-C_(12)-CD could adsorb on the air/water interface which efficiently decreases the surface tension of water,cmc can be clearly defined from the surface tension isotherm,pc_(20) andπ_(cmc) are derived from the surface tension isotherms as well.The thermodynamic parameters(△G°_m,△H°_m,-T△S°_m) derived from electrical conductivity indicate that the micellization of HPDMA-C_(12)-CD varies from entropy driven process to enthalpy driven process.The dilational modulus appeares to have a maximum value while the phase angle have two maximums as a function of the concentration of HPDMA-C_(12)-CD.
     Chapter 5 involves the effects on the crystallization of calcium carbonate ofβ-CD,which is conducted by an open vapor diffusion method(decomposition of(NH_4)_2CO_3),including the effect of the concentration ofβ-CD,diffusion time,and the type of CD.Flat concentric circles morphology was observed at the air side of the CaCO_3 particles in the absence ofβ-CD,which gives evidence to the layer-by-layer assembly mechanism.Circular cone morphology was obtained at the air side of the CaCO_3 particles in the presence ofβ-CD, while the morphology is similar to the one withoutβ-CD if the concentration ofβ-CD increases.β-CD accelerats the growth of"circle" particles.Both the prolonged diffusion time and the increasing of the mass of(NH_4)_2CO_3 increase the size of the particles.The time-dependent evolution was studied by SEM.The bulk side of the particles is composed of nanoparticles about 50 nm,and these nanoparticles aggregate to be thin layers which cover the inside particle.FTIR and XRD analysis show that the particles are calcite with only a little vaterite.However,β-CD might just transport Ca~(2+) to the interface rather than form inorganic-organic hybrid with CaCO_3,because the weight loss is not observed in the TG analysis.The particles observed in the bulk are nano-particles assembled center pop out disks. It dramatically decreases the size of the particles when the concentration ofβ-CD increases to 1 mmol·dm~(-3).It is a mixture of calcite and vaterite.Calcite is the main component at short diffusion time,while vaterite is the main component at long diffusion time.Layer packed dlipsoid was Observed in the presence of 6-HP-β-CD and 6-HB-β-CD.
引文
[1]Ryhanen,S.J.;Pakkanen,A.L.;Saily,M.J.;Bello,C.;Mancini,G.;Kinnunen,P.K.J.Impact of the Stereochemical Structure on the Thermal Phase Behavior of a Cationic Gemini Surfactant,J.Phys.Chem.B 2002,106,11694-11697.
    [2]Jennings,K.H.;Marshall,I.C.B.;Wilkinson,M.J.;Kremer,A.;Kirby,A.J.;Camilleri,P.Aggregation Properties of a Novel Class of Cationic Gemini Surfactants Correlate with Their Efficiency as Gene Transfection Agents,Langmuir 2002,18,2426-2429.
    [3]Erhardt,R.;Boker,A.;Zettl,H.;Kaya,H.;Pyckhout-Hintzen,W.;Krausch,G.;Abetz,V.;Muller,A.H.E.Janus Micelles,Macromolecules 2001,34,1069-1075.
    [4]Bai,G.Y.;Yan,H.K.;Thomas,R.K.Microcalorimetric Studies on the Thermodynamic Properties of Cationic Gemini Surfactants,Langmuir 2001,17,4501-4504.
    [5]zu Putlitz,B.;Hentze,H.P.;Landfester,K.;Antonietti,M.New Cationic Surfactants with Sulfonium Headgroups,Langmuir 2000,16,3214-3220.
    [6]Zhao,G.X.;Zhu,B.Y.Principles of Surfactant Action,China Light Industry Press,Beijing,2003.
    [7]童林荟 环糊精化学——基础与应用,科学出版社,2001.
    [8]Rekharsky,M.V.;Inoue,Y.Complexation Thermodynamics of Cyclodextrins,Chem.Rev.1998,98,1875-1918.
    [9]Wenz,G.;Han,B.H.;Muller,A.Cyclodextrin Rotaxanes and Polyrotaxanes,Chem.Rev.2006,106,782-817.
    [10]Szejtli,J.Introduction and General Overview of Cyclodextrin Chemistry,Chem.Rev.1998,98,1743-1754.
    [11]Nepogodiev,S.A.;Stoddart,J.F.Cyclodextrin-Based Catenanes and Rotaxanes,Chem.Rev.1998,98,1959-1976.
    [12]Schneider,H.J.;Hacket,F.;Rudiger,V.;Ikeda,H.NMR Studies of Cyclodextrins and Cyclodextrin Complexes,Chem.Rev.1998,98,1755-1786.
    [13]Dodziuk,H.Cyclodextrins and Their Complexes:chemistry,analytical methods,applications,WILEY-VCH Verlag GmbH & Co.KGaA,Weinheim,2006.
    [14]Chaplin,M.Water Structure and Science,< http://www.lsbu.ac.uk/water/cyclodextrin.html>
    [15]Gonzalez-Gaitano,G.;Rodriguez,P.;Isasi,J.R.;Fuentes,M.;Tardajos,G.;Sanchez,M.The Aggregation of Cyclodextrins as Studied by Photon Correlation Spectroscopy,J.Inclusion Phenom.Macrocyclic Chem.2002,44,101-105.
    [16]Bonini,M.;Rossi,S.;Karlsson,G.;Almgren,M.;LoNostro,P.;Baglioni,P.Self-Assembly of β-Cyclodextrin in Water.Part 1:Cryo-TEM and Dynamic and Static Light Scattering,Langmuir 2006,22,1478-1484.
    [17]Rossi,S.;Bonini,M.;LoNostro,P.;Baglioni,P.Self-Assembly of β-Cyclodextrin in Water.2.Electron Spin Resonance,Langmuir 2007,23,10959-10967.
    [18]Douhal,A.Ultrafast Guest Dynamics in Cyclodextrin Nanocavities,Chem.Rev.2004,104,1955-1976.
    [19]Uekama,K.;Hirayama,F.;Irie,T.Cyclodextrin Drug Carrier Systems,Chem.Rev.1998,98,2045-2076.
    [20]Connors,K.A.The Stability of Cyclodextrin Complexes in Solution,Chem.Rev.1997,97,1325-1358.
    [21]Hapiot,F.;Tilloy,S.;Monflier,E.Cyclodextrins as Supramolecular Hosts for Organometallic Complexes,Chem.Rev.2006,106,767-781.
    [22]赵明刚 功能性β-环糊精衍生物的合成及应用,山东大学,博士学位论文,济南,2004.
    [23]Suzuki,I.;Chen,Q.;Ueno,A.;Osa,T.Ferrocene-Appended Cyclodextrins.The Effects of Temperature,Organic Solvent,Length of Spacer,and Cavity Size on the Complexation Behavior,Bull.Chem.Soc.Jpn.1993,66,1472-1481.
    [24]申键 新型β—环糊精衍生物的合成及应用,山东大学,博士学位论文,济南,2008.
    [25]鲁润华;石硕;汪汉卿 表面活性剂与环糊精的相互作用及在日化工业中的应用,日用化学工业 1999,28-31.
    [26]Tominaga,T.;Hachisu,D.;Kamado,M.Interactions between the Tetradecyltrimethylammonium Ion and α,β,γ,-Cyclodextrin in Water As Studied by a Surfactant-Selective Electrode,Langmuir 1994,10,4676-4680.
    [27]Bakshi,M.S.Cationic Mixed Micelles in the Presence of β-Cyclodextrin:A Host-Guest Study,J.Colloid Interface Sci.2000,227,78-83.
    [28]Mwakibete,H.;Cristantino,R.;Bloor,D.M.;Wyn-Jones,E.;Holzwarth,J.F.Reliability of the Experimental Methods To Determine Equilibrium Constants for Surfactant/Cyclodextrin Inclusion Complexes,Langmuir 1995,11,57-60.
    [29]Junquera,E.;Pena,L.;Aicart,E.Micellar Behavior of the Aqueous Solutions of Dodecylethyldimethylammonium Bromide.A Characterization Study in the Presence and Absence of Hydroxypropyl-β-cyclodextrin,Langmuir 1997,13,219-224.
    [30]Buchwald,P.Complexation Thermodynamics of Cyclodextrins in the Framework of a Molecular Size-Based Model for Nonassociative Organic Liquids That Includes a Modified Hydration-Shell Hydrogen-Bond Model for Water,J.Phys.Chem.B 2002,106,6864-6870.
    [31]H(o|¨)fler,T.;Wenz,G.Determination of binding energies between cyclodextrins and aromatic guest molecules by microcalorimetry,J.Inclusion Phenom.Macrocyclic Chem.1996,25,81-84.
    [32]Ikeda,H.;Iidaka,Y.;Ueno,A.Remarkably Enhanced Excimer Formation of Naphthylacetate in Cation-Charged γ-Cyclodextrin,Org.Lett.2003,5,1625-1627.
    [33]Funasaki,N.;Ishikawa,S.;Neya,S.1:1 and 1:2 Complexes between Long-Chain Surfactant and α-Cyclodextrin Studied by NMR,J.Phys.Chem.B 2004,108,9593-9598.
    [34]Funasaki,N.;Ishikawa,S.;Neya,S.Proton NMR Study of α-Cyclodextrin Inclusion of Short-Chain Surfactants,J.Phys.Chem.B 2003,107,10094-10099.
    [35]Cabaleiro-Lago,C.;Nilsson,M.;Soderman,O.Self-Diffusion NMR Studies of the Host-Guest Interaction between β-Cyclodextrin and Alkyltrimethylammonium Bromide Surfactants,Langmuir 2005,21,11637-11644.
    [36]王世兵;宋明芝;魏西莲;尹宝霖;孙得志 微量热法研究α-环糊精与新型表面活性剂的包结作用,物理化学学报 2004,20,837-842.
    [37]孙得志;王世兵;魏西莲;尹宝霖;李林尉 微量热法研究β-环糊精与3-烷氧基-2-羟丙基三甲基溴化铵的相互作用,化学学报 2004,62,1247-1251.
    [38]Gonzalez-Gaitano,G.;Crespo,A.;Tardajos,G.Thermodynamic Investigation(Volume and Compressibility) of the Systems β-Cyclodextrin+n-Alkyltrimethylammonium Bromides +Water,J.Phys.Chem.B 2000,104,1869-1879.
    [39]Gonzalez-Gaitano,G.;Crespo,A.;Compostizo,A.;Tardajos,G.Study at a Molecular Level of the Transfer Process of a Cationic Surfactant from Water to β-Cyclodextrin,J.Phys.Chem.B 1997,101,4413-4421.
    [40]Junquera,E.;Aicart,E.;Tardajos,G.Inclusional complexes of decyltrimethylammonium bromide and β-cyclodextrin in water,J.Phys.Chem.1992,96,4533-4537.
    [41]Gonzalez-Gaitano,G.;Compostizo,A.;Sanchez-Martin,L.;Tardajos,G.Speed of Sound,Density,and Molecular Modeling Studies on the Inclusion Complex between Sodium Cholate and β-Cyclodextrin,Langmuir 1997,13,2235-2241.
    [42]Gonzalez-Gaitano,G.;Sanz-Garcia,T.;Tardajos,G.Molar Partial Compressibilities and Volumes,1H NMR,and Molecular Modeling Studies of the Ternary Systems β-Cyclodextrin +Sodium Octanoate/Sodium Decanoate+Water,Langmuir 1999,15,7963-7972.
    [43]Jobe,D.J.;Verrall,R.E.;Junquera,E.;Aicart,E.Effects of surfactant/β-cyclodextrin complex formation on the surfactant monomer-micelle exchange rate in aqueous solutions of decyltrimethylammonium bromide,J.Phys.Chem.1993,97,1243-1248.
    [44]Jobe,D.J.;Verrall,R.E.;Junquera,E.;Aicart,E.Ultrasonic Absorption Studies of Aqueous Solutions of Cetyltrimethylammonium Bromide and 2,6-O-Dimethyl-β-cyclodextrin,J.Colloid Interface Sci.1997,189,294-298.
    [45]Jobe,D.J.;Verrall,R.E.;Junquera,E.;Aicart,E.Effects of β-Cyclodextrin/Surfactant Complex Formation on the Surfactant Monomer-Micelle Exchange Rate in Aqueous Solutions of Sodium Perfluorooctanoate and.beta.-Cyclodextrin,J.Phys.Chem.1994,98,10814-10818.
    [46]Jobe,D.J.;Reinsborough,V.C.;Wetmore,S.D.Sodium Dodecyl sulfate Micellar Aggregation Numbers in the Presence of Cyclodextrins,Langmuir 1995,11,2476-2479.
    [47]王键吉;杨震宇;岳永魁;赵扬;卓克垒 十六烷基三甲基氯化铵在β-环糊精水溶液中的胶束化行为,化学学报 2003,61,1261-1265.
    [48]Qu,X.K.;Zhu,L.Y.;Li,L.;Wei,X.L.;Liu,F.;Sun,D.Z.Host-Guest Complexation of β-,γ-Cyclodextrin with Alkyl Trimethyl Ammonium Bromides in Aqueous Solution,J.Solution Chem.2007,36,643-650.
    [49]Funasaki,N.;Ishikawa,S.;Hirota,S.Chemical shifts as a novel measure of interactions between two binding sites of symmetric dialkyldimethylammonium bromides to α-cyclodextrin,Analytica Chimica Acta 2006,555,278-285.
    [50]Gokt(u|¨)rk,S.;Mahramanlloglu,M.;Tuncay,M.Surface tension studies of lauryl sul fobetaine-β-cyclodextrin and dodecyltrimethylammonium bromide-β-cyclodextrin inclusion complexes in aqueous solution,Can.J.Chem.1999,77,1208-1213.
    [51]Tuncay,M.;Christian,S.D.A Study of the Binding of Dimethyldodecylamine Oxide by β-Cyclodextrin Using Surface Tension Measurements,J.Colloid Interface Sci.1994,167,181-185.
    [52]Martin,J.V.;Turmine,M.;Letellier,P.;Hemery,P.Study of β-cyclodextrin/dodecyltrimethylammonium bromide complex into water-isopropanol mixtures,Electrochim.Acta 1995,40,2749-2753.
    [53]Galant,C.,Wintgens,V.;Amiel,C.;Auvray,L.A Reversible Polyelectrolyte Involving a β-Cyclodextrin Polymer and a Cationic Surfactant,Macromolecules 2005,38,5243-5253.
    [54]Galant,C.;Amiel,C.;Wintgens,V.;Sebille,B.;Auvray,L.Ternary Complexes with Poly(β-cyclodextrin),Cationic Surfactant,and Polyanion in Dilute Aqueous Solution:A Viscometric and Small-Angle Neutron Scattering Study,Langmuir 2002,18,9687-9695.
    [55]Dorrego,B.;Garcia-Rio,L.;Herves,P.;Leis,J.R.;Mejuto,J.C.;Perez-Juste,J.Changes in the Fraction of Uncomplexed Cyclodextrin in Equilibrium with the Micellar System as a Result of Balance between Micellization and Cyclodextrin-Surfactant Complexation.Cationic Alkylammonium Surfactants,J.Phys.Chem.B 2001,105,4912-4920.
    [56]Alvarez,A.R.;Garcia-Rio,L.;Herves,P.;Leis,J.R.;Mejuto,J.C.;Perez-Juste,J.Basic Hydrolysis of Substituted Nitrophenyl Acetates in β-Cyclodextrin/Surfactant Mixed Systems.Evidence of Free Cyclodextrin in Equilibrium with Micellized Surfactant,Langmuir 1999,15,8368-8375.
    [57]Du,X.-Z.;Zhang,Y.;Huang,X.-Z.;Li,Y.-Q.;Jiang,Y.-B.;Chen,G.-Z.β-cyclodextrin induced room temperature phosphorescence from 1-bromonaphthalene in the presence of naphthalene and 1-butanol,Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy 1996,52,1541-1545.
    [58]Lin,L.-R.;Jiang,Y.-B.;Du,X.-Z.;Huang,X.-Z.,Chen,G.-z.A study of the properties of the 1:1 inclusion complex of β-cyclodextrin with cetyltrimethylammonium bromide,Chem.Phys.Lett.1997,266,358-362.
    [59]Du,X.-Z.;Zhang,Y.;Jiang,Y.-B.;Lin,L.-R.;Huang,X.-Z.;Chen,G.-Z.Phosphorescence study of 1-bromonaphthalene in aerated aqueous solution of surfactant and β-cyclodextrin,J.Photochem.Photobiol.,A 1998,112,53-57.
    [60]Du,X.Z.;Chen,X.C.;Lu,W.H.,Hou,J.G.Spectroscopic study on binding behaviors of different structural nonionic surfactants to cyclodextrins,J Colloid Interface Sci.2004,274,645-651.
    [61]Du,X.Z.;Lu,W.H.;Ding,N.;Dai,H.X.;Teng,X.L.;Deng,H.L.Spectral properties and supramolecular inclusion complexes of β-cyclodextrin with flexible amphiphilic and rigid compounds,J.Photochem.Photobiol.,A 2006,177,76-82.
    [62]Garcia-Rio,L.;Mendez,M.;Paleo,M.R.;Sardina,F.J.New Insights in Cyclodextrin:Surfactant Mixed Systems from the Use of Neutral and Anionic Cyclodextrin Derivatives,J.Phys.Chem.B 2007,111,12756-12764.
    [63]Garcia-Rio,L.;Leis,J.R.;Mejuto,J.C.;Perez-Juste,J.Investigation of Micellar Media Containing β-Cyclodextrins by Means of Reaction Kinetics:Basic Hydrolysis of N-Methyl-N-nitroso-p-toluenesulfonamide,J.Phys.Chem.B 1997,101,7383-7389.
    [64]Garcia-Rio,L.;Leis,J.R.;Mejuto,J.C.;Navarro-Vazquez,A.;Perez-Juste,J.;Rodriguez-Dafonte,P.Basic Hydrolysis of Crystal Violet in β-Cyclodextrin/Surfactant Mixed Systems,Langmuir 2004,20,606-613.
    [65]Dalmora,M.E.A.;Oliveira,A.G.Inclusion complex of piroxicam with β-cyclodextrin and incorporation in hexadecyltrimethylammonium bromide based microemulsion,Int.J.Pharm.1999,184,157-164.
    [66]Schmolzer,S.;Hoffmann,H.The influence of hydrophobically modified cyclodextrins (HM-CD) on the aggregation behaviour of surfactants,Colloids Surf.,A 2003,213,157-166.
    [67]Lu,R.H.;Hao,J.C.;Wang,H.Q.;Tong,L.H.Determination of Association Constants for Cyclodextrin-Surfactant Inclusion Complexes:A Numerical Method Based on Surface Tension Measurements,J.Colloid Interface Sci.1997,192,37-42.
    [68]DeLisi,R.;Lazzara,G.;Milioto,S.;Muratore,N.Characterization of the Cyclodextrin-Surfactant Interactions by Volume and Enthalpy,J.Phys.Chem.B 2003,107,13150-13157.
    [69]DeLisi,R.;Lazzara,G.;Milioto,S.;Muratore,N.;Terekhova,I.V.Heat Capacity Study to Evidence the Interactions between Cyclodextrin and Surfactant in the Monomeric and Micellized States,Langmuir 2003,19,7188-7195.
    [70]Auzely-Velty,R.;Pean,C.;Djedaini-Pilard,F.;Zemb,T.;Perly,B.Micellization of Hydrophobically Modified Cyclodextrins:2.Inclusion of Guest Molecules,Langmuir 2001,17,504-510.
    [71]Bravo-Diaz,C.;Gonzalez-Romero,E.Inhibition of the β-Cyclodextrin Catalyzed Dediazoniation of 4-Nitrobenzenediazonium Tetrafluoroborate.Blocking Effect of Sodium Dodecyl Sulfate,Langmuir 2005,21,4888-4895.
    [72]Tsianou,M.;Alexandridis,P.Control of the Rheological Properties in Solutions of a Polyelectrolyte and an Oppositely Charged Surfactant by the Addition of Cyclodextrins,Langmuir 1999,15,8105-8112.
    [73]Lim,K.T.;Ganapathy,H.S.;Lee,M.Y.;Yuvaraj,H.;Lee,W.-K.;Heo,H.A facile one-pot synthesis of novel amphiphilic perfluoroalkyl ester functionalized [gamma]-cyclodextrin and complex formation with anionic surfactants,J.Fluorine Chem.2006,127,730-735.
    [74]Silva,O.F.;Silber,J.J.;deRossi,R.H.;Correa,N.M.;Fernandez,M.A.On the Possibility That Cyclodextrins' Chiral Cavities Can Be Available on AOT n-Heptane Reverse Micelles.A UV-Visible and Induced Circular Dichroism Study,J.Phys.Chem.B 2007,111,10703-10712.
    [75]张有明;汪汉卿 β-环糊精与两性表面活性剂相互作用,无机化学学报 2002,18,773-776.
    [76]Sehgai,P.;Sharma,M.;Wimmer,R.;Larsen,K.;Otzen,D.Interactions between anionic mixed micelles and α-cyclodextrin and their inclusion complexes:conductivity,NMR and fluorescence study,Colloid Polym.Sci.2006,284,916-926.
    [77]Du,X.Z.;Jiang,Y.B.;Lin,L.R.;Huang,X.Z.;Chen,G.Z.Phosphorescence-probed study on the association of surfactants with β-cyclodextrin,Chem.Phys.Lett.1997,268,31-35.
    [78]Topchieva,I.;Karezin,K.Self-Assembled Supramolecular Micellar Structures Based on Non-ionic Surfactants and Cyclodextrins,J.Colloid Interface Sci.1999,213,29-35.
    [79]Saito,Y.;Ueda,H.;Abe,M;Sato,T.;Christian,S.D.Inclusion complexation of triton X-100 with α-,β-,and γ-cyclodextrins,Colloids Surf.,A 1998,135,103-108.
    [80]Guerrero-Martinez,A.;Montoro,T.;Vinas,H.V.;Gonzalez-Gaitano,G.;Tardajos,G.Study of the Interaction between a Nonyl Phenyl Ether and β-Cyclodextrin:Declouding Nonionic Surfactant Solutions by Comolexation,J.Phys.Chem.B 2007,111,1368-1376.
    [81]鲁润华;齐彦兴 β—环糊精与TritonN—101相互作用的研究,化学物理学报2001,14,725-731.
    [82]Funasaki,N.;Ishikawa,S.;Neya,S.Binding of Short-Chain Lecithin by β-Cyclodextrin,Langmuir 2002,18,1786-1790.
    [83]Harada,A.;Okumura,H.;Okada,M.;Suzuki,S.;Kamachi,M.Site-Selective Complexation of Amphiphilic Compounds by Cyclodextrins,Chem.Lett.2000,29,548-549.
    [84]Bernat,V.;Ringard-Lefebvre,C.;LeBas,G.;Perly,B.;Djedaini-Pilard,F.;Lesieur,S Inclusion Complex of n-Octyl β-D-Glucopyranoside and α-Cyclodextrin in Aqueous Solutions:Thermodynamic and Structural Characterization,Langmuir 2008,24,3140-3149.
    [85]Vico,R.V.;Silva,O.F.;de Rossi,R.H.;Maggio,B.Molecular Organization,Structural Orientation,and Surface Topography of Monoacylated β-Cyclodextrins in Monolayers at the Air-Aqueous Interface,Langmuir 2008,24,7867-7874.
    [86]Abrahmsen-Alami,S.;Alami,E.;Eastoe,J.;Cosgrove,T.Interaction between a Novel Gemini Surfactant and Cyclodextrin:NMR and Surface Tension Studies,J.Colloid Interface Sci.2002,246,191-202.
    [87]Alami,E.;Abrahmsen-Aiami,S.;Eastoe,J.;Grillo,I.;Heenan,R.K.Interactions between a Nonionic Gemini Surfactant and Cyclodextrins Investigated by Small-Angle Neutron Scattering,J.Colloid Interface Sci.2002,255,403-409.
    [88]Nilsson,M.;Cabaleiro-Lago,C.;Valente,A.J.M.;Soderman,O.Interactions between Gemini Surfactants,12-s-12,and β-cyclodextrin As Investigated by NMR Diffusometry and Electric Conductometry,Langmuir 2006,22,8663-8669.
    [89]Li,N.;Liu,J.;Zhao,X.;Gao,Y.a.;Zheng,L.;Zhang,J.;Yu,L.Complex formation of ionic liquid surfactant and β-cyclodextrin,Colloids Surf.,A 2007,292,196-201.
    [90]Gao,Y.;Zhao,X.;Dong,B.;Zheng,L.;Li,N.;Zhang,S.Inclusion Complexes of β-Cyclodextrin with Ionic Liquid Surfactants,J.Phys.Chem.B 2006,110,8576-8581.
    [91]Wilson,L.D.;Verrall,R.E.A Volumetric Study of β-Cyclodextrin/Hydrocarbon and β-Cyclodextrin/Fluorocarbon Surfactant Inclusion Complexes in Aqueous Solutions,J.Phys.Chem.B 1997,101,9270-9279.
    [92]Wilson,L.D.;Verrall,R.E.Volumetric Study of Modified β-Cyclodextrin/Hydrocarbon and/Fluorocarbon Surfactant Inclusion Complexes in Aqueous Solutions,J.Phys.Chem.B 1998,102,480-488.
    [93]Wilson,L.D.Binding studies of cyclodextrin-surfactant complexes,The University of Saskatchewan(Canada),Ph.D.,Canada,1998.
    [94]De Lisi,R.;Milioto,S.;De Giacomo,A.;Inglese,A.Thermodynamic Properties of Sodium n-Perfluoroalkanoates in Water and in Water+Cyclodextrins Mixtures,Langmuir 1999,15,5014-5022.
    [95]De Lisi,R.;Milioto,S.;Pellerito,A.;Inglese,A.Thermodynamic Properties of Sodium n-Alkanecarboxylates in Water and in Water+Cyclodextrins Mixtures,Langmuir 1998,14,6045-6053.
    [96]De Lisi,R.;Milioto,S.;Muratore,N.Thermodynamic Evidence of Cyclodextrin-Micelle Interactions,J.Phys.Chem.B 2002,106,8944-8953.
    [97]Jiang,L.;Deng,M.;Wang,Y.;Liang,D.;Yan,Y.;Huang,J.Special Effect of β-Cyclodextrin on the Aggregation Behavior of Mixed Cationic/Anionic Surfactant Systems,J.Phys.Chem.B 2009,doi=10.1021/jp811455f,
    [98]Eliadou,K.;Yannakopoulou,K.;Rontoyianni,A.;Mavridis,I.M.NMR Detection of Simultaneous Formation of[2]- and[3]Pseudorotaxanes in Aqueous Solution between α-Cyclodextrin and Linear Aliphatic α,ω-Amino acids,an α,ω-Diamine and an α,ω-Diacid of Similar Length,and Comparison with the Solid-State Structures,J.Org.Chem.1999,64,6217-6226.
    [99]Smith,A.C.;Macartney,D.H.Kinetics of the Self-Assembly of α-Cyclodextrin
    [2]Pseudorotaxanes with 1,12-Bis(4-(α-alkyl-α-methylmethanol)pyridinium)dodecane Dications in Aqueous Solution,J.Org.Chem.1998,63,9243-9251.
    [100]Avram,L.;Cohen,Y.Complexation in Pseudorotaxanes Based on α-Cyclodextrin and Different α,ω-Diaminoalkanes by NMR Diffusion Measurements,J.Org.Chem.2002,67,2639-2644.
    [101]Cabaleiro-Lago,C.;Nilsson,M.;Valente,A.J.M.;Bonini,M.;S 鰀 erman,O.NMR diffusometry and conductometry study of the host-guest association between β-cyclodextrin and dodecane 1,12-bis(trimethylammonium bromide),J.Colloid Interface Sci.2006,300,782-787.
    [102]Gonzalez-Gaitano,G.;Guerrero-Martinez,A.;Ortega,F.;Tardajos,G.Thermodynamic and Spectroscopic Study of a Molecular Rotaxane Containing a Bolaform Surfactant and β-Cyclodextrin,Langmuir 2001,17,1392-1398.
    [103]Han,B.-H.;Antonietti,M.Cyclodextrin-Based Pseudopolyrotaxanes as Templates for the Generation of Porous Silica Materials,Chem.Mater.2002,14,3477-3485.
    [104]Harada,A.;Okada,M.;Kamachi,M.Complex formation between poly (oxytrimethylene) and cyclodextrins,Acta Polymerica 1995,46,453-457.
    [105]Harada,A.;Okada,M.;Kawaguchi,Y.;Kamachi,M.Macromolecular recognition:new cyclodextrin polyrotaxanes and molecular tubes,Polymers for Advanced Technologies 1999,10,3-12.
    [106]Harada,A.;Okada,M.Complex formation between hydrophobic polymers and methylated cyclodextrins.Oligo(ethylene) and poly(propylene),Polym.J.1999,31,1095-1098.
    [107]Okada,M.;Kamachi,M.;Harada,A.Preparation and Characterization of Inclusion Complexes of Poly(propylene glycol) with Methylated Cyclodextrins,J.Phys.Chem.B 1999,103,2607-2613.
    [108]Okada,M.;Kamachi,M.;Harada,A.Preparation and Characterization of Inclusion Complexes between Methylated Cyclodextrins and Poly(tetrahydrofuran),Macromolecules 1999,32,7202-7207.
    [109]Horsky,J.;Mikesova,J.;Quadrat,O.;nuparek,J.The effect of (2-hydroxypropyl)-β-cyclodextrin on rheology of hydrophobically end-capped poly(ethylene glycol) aqueous solutions,Journal of Rheology 2003,48,23.
    [110]Horsky,J.Viscometric detection of polymer inclusion complexes,Polymer Bulletin 1998,41,215-221.
    [111]Kim,E.-Y.;Gao,Z.-G.;Park,J.-S.;Li,H.;Han,K.rhEGF/HP-β-CD complex in poloxamer gel for ophthalmic delivery,Int.J.Pharm.2002,233,159-167.
    [112]Gaitano,G.G.;Brown,W.;Tardajos,G.Inclusion Complexes between Cyclodextrins and Triblock Copolymers in Aqueous Solution:A Dynamic and Static Light-Scattering Study,J.Phys.Chem.B 1997,101,710-719.
    [113]Rodriguez-Perez,A.I.;Rodriguez-Tenreiro,C.;Alvarez-Lorenzo,C.;Concheiro,A.;Torres-Labandeira,J.J.Drug Solubilization and Delivery from Cyclodextrin-Pluronic Aggregates,J.Nanosci.Nanotechnol.2006,6,3179-3186.
    [114]Qi,H.;Li,L.;Huang,C.;Li,W.;Wu,C.Optimization and Physicochemical Characterization of Thermosensitive Poloxamer Gel Containing Puerarin for Ophthalmic Use,CHEMICAL & PHARMACEUTICAL BULLETIN 2006,54,1500-1507.
    [115]Nogueiras-Nieto,L.;Alvarez-Lorenzo,C.;Sandez-Macho,I.;Concheiro,A.; Otero-Espinar,F.J.Hydrosoluble Cyclodextrin/Poloxamer Polypseudorotaxanes at the Air/Water Interface,in Bulk Solution,and in the Gel State,J.Phys.Chem.B 2009,113,2773-2782.
    [116]Bonacucina,G.;Spina,M.;Misici-Falzi,M.;Cespi,M.;Pucciarelli,S.;Angeletti,M;Palmieri,G.F.Effect of hydroxypropyl β-cyclodextrin on the self-assembling and thermogelation properties of Poloxamer 407,Eur.J.Pharm.Sci.2007,32,115-122.
    [117]Jing,B.;Chen,X.;Hao,J.C.;Qiu,H.Y.;Chai,Y.C.;Zhang,G.D.Supramolecular self-assembly of polypseudorotaxanes in ionic liquid,Colloids Surf.,A 2007,292,51-55.
    [118]Mayer,B.;Klein,C.T.;Topchieva,I.N.;K(o|¨)hler,G.Selective assembly of cyclodextrins on poly(ethylene oxide)-poly(propylene oxide) block copolymers,J.Comput.-Aided Mol.Des.1999,13,373-383.
    [119]Li,J.;Ni,X.P.;Leong,K.W.Block-Selected Molecular Recognition and Formation of Polypseudorotaxanes between Poly(propylene oxide)-Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymers and alpha-Cyclodextrin13,Angew.Chem.,Int.Ed.2003,42,69-72.
    [120]Li,J.;Ni,X.P.;Zhou,Z.H.;Leong,K.W.Preparation and Characterization of Polypseudorotaxanes Based on Block-Selected Inclusion Complexation between Poly(propylene oxide)-Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymers and α-Cyclodextrin,J.Am.Chem.Soc.2003,125,1788-1795.
    [121]Li,J.;Li,X.;Toh,K.C.;Ni,X.;Zhou,Z.;Leong,K.W.Inclusion Complexation and Formation of Polypseudorotaxanes between Poly[(ethylene oxide)-ran-(propylene oxide)]and Cyclodextrins,Macromolecules 2001,34,8829-8831.
    [122]Chen,J.;Dyer,M.J.;Yu,M.F.Cyclodextrin-Mediated Soft Cutting of Single-Walled Carbon Nanotubes,J.Am.Chem.Soc.2001,123,6201-6202.
    [123]Chambers,G.;Carroll,C.;Farrell,G.F.;Dalton,A.B.;McNamara,M.;in het Panhuis,M.;Byrne,H.J.Characterization of the Interaction of Gamma Cyclodextrin with Single-Walled Carbon Nanotubes,Nano Lett.2003,3,843-846.
    [124]Dodziuk,H.;Ejchart,A.;Anczewski,W.;Ueda,H.;Krinichnaya,E.;Dolgonos,G.;Kutner,W.Water solubilization,determination of the number of different types of single-wall carbon nanotubes and their partial separation with respect to diameters by complexation with eta-cyclodextrin,Chem.Commun.2003,986-987.
    [125]Jiang,L.;Gao,L.;Sun,J.Production of aqueous colloidal dispersions of carbon nanotubes,J.Colloid Interface Sci.2003,260,89-94.
    [126]Shin,J.Y.;Premkumar,T.;Geckeler,K.E.Dispersion of Single-Walled Carbon Nanotubes by Using Surfactants:Are the Type and Concentration Important?,Chem.Fur.J.2005,14,6044-6048.
    [127]Attal,S.;Thiruvengadathan,R.;Regev,O.Determination of the Concentration of Single-Walled Carbon Nanotubes in Aqueous Dispersions Using UV-Visible Absorption Spectroscopy,Anal.Chem.2006,78,8098-8104.
    [128]Matarredona,O.;Rhoads,H.;Li,Z.;Harwell,J.H.;Balzano,L.;Resasco,D.E.Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS,J.Phys.Chem.B 2003,107,13357-13367.
    [129]Moore,V.C.;Strano,M.S.;Haroz,E.H.;Hauge,R.H.;Smalley,R.E.;Schmidt,J.;Talmon,Y.Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants,Nano Lett.2003,3,1379-1382.
    [130]Wang,Q.;Han,Y.;Wang,Y.;Qin,Y;Guo,Z.-X.Effect of Surfactant Structure on the Stability of Carbon Nanotubes in Aqueous Solution,J.Phys.Chem.B 2008,
    [131]Wang,J.Y.;Li,Y.Selective Band Structure Modulation of Single-Walled Carbon Nanotubes in Ionic Liquids,J.Am.Chem.Soc.2009,131,5364-5365.
    [132]Vaisman,L.;Wagner,H.D.;Marom,G.The role of surfactants in dispersion of carbon nanotubes,Adv.Colloid Interface Sci.2006,128-130,37-46.
    [133]Richard,C.;Balavoine,F.;Schultz,P.;Ebbesen,T.W.;Mioskowski,C.Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes,Science 2003,300,775-778.
    [134]O'Connell,M.J.;Bachilo,S.M.;Huffman,C.B.;Moore,V.C.;Strano,M.S.;Haroz,E.H.;Rialon,K.L.;Boul,P.J.;Noon,W.H.;Kittrell,C.;Ma,J.;Hauge,R.H.;Weisman,R.B.;Smalley,R.E.Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,Science 2002,297,593-596.
    [135]Islam,M.F.;Rojas,E.;Bergey,D.M.;Johnson,A.T.;Yodh,A.G.High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water,Nano Lett.2003,3,269-273.
    [136]Yurekli,K.;Mitchell,C.A.;Krishnamoorti,R.Small-Angle Neutron Scattering from Surfactant-Assisted Aqueous Dispersions of Carbon Nanotubes,J.Am.Chem.Soc.2004,126,9902-9903.
    [137]Liu,K.;Fu,H.;Xie,Y.;Zhang,L.;Pan,K.;Zhou,W.Assembly of β-Cyclodextrins Acting as Molecular Bricks onto Multiwall Carbon Nanotubes,J.Phys.Chem.C 2008,112,951-957.
    [138]Wang,Z.M.;Chen,Y.M.Supramolecular hydrogels hybridized with single-walled carbon nanotubes,Macromolecules 2007,40,3402-3407.
    [1]Rosen,M.J.Surfactants and Interfacial Phenomena,John Wiley & Sons,Inc.,Hoboken,New Jersey,2004.
    [2]Guo,R.;Zhu,X.J.;Guo,X.The effect of β-cyclodextrin on the properties of cetyltrimethylammonium bromide micelles,Colloid Polym.Sci.2003,281,876-881.
    [3]Garcia-Rio,L.;Godoy,A.Use of Spectra Resolution Methodology to Investigate Surfactant/β-Cyclodextrin Mixed Systems,J.Phys.Chem.B 2007,111,6400-6409.
    [4]Lin,L.-R.;Jiang,Y.-B.;Du,X.-Z.;Huang,X.-Z.;Chen,G.-z.A study of the properties of the 1:1 inclusion complex of β-cyclodextrin with cetyltrimethylammonium bromide,Chem.Phys.Lett.1997,266,358-362.
    [5]Turco Liveri,V.;Cavallaro,G.;Giammona,G.;Pitarresi,G.;Puglisi,G.;Ventura,C.Calorimetric investigation of the complex formation between surfactants and α-,β- and γ-cyclodextrins,Thermochimica Acta 1992,199,125-132.
    [6]Du,X.-Z.;Zhang,Y.;Jiang,Y.-B.;Lin,L.-R.;Huang,X.-Z.;Chen,G.-Z.Phosphorescence study of 1-bromonaphthalene in aerated aqueous solution of surfactant and β-cyclodextrin,J.Photochem.Photobiol.,A 1998,112,53-57.
    [7]Iglesias,E.;Fernandez,A.Cyclodextrin catalysis in the basic hydrolysis of alkyl nitrites,Journal of the Chemical Society,Perkin Transactions 2 1998,1998,1691-1700.
    [8]Garcia-Rio,L.;Herves,P.;Iglesias,E.;Leis,J.R.;Mejuto,J.C.;Perez-Juste,J.Influence of cyclodextrins on chemical reactivity in water and micellar systems,Recent research developments in physical chemistry 2000,4,101-133.
    [9]Okubo,T.;Kitano,H.;Ise,N.Conductometric studies on association of cyclodextrin with colloidal electrolytes,J.Phys.Chem.1976,80,2661-2664.
    [10]Dharmawardana,U.R.;Christian,S.D.;Tucker,E.E.;Taylor,R.W.;Scamehorn,J.F.A surface tension method for determining binding constants for cyclodextrin inclusion complexes of ionic surfactants,Langmuir 1993,9,2258-2263.
    [11]Gokt(u|¨)rk,S.;Mahramanlloglu,M.;Tuncay,M.Surface tension studies of lauryl sulfobetaine-β-cyclodextrin and dodecyltrimethylammonium bromide-β-cyclodextrin inclusion complexes in aqueous solution,Can.J.Chem.1999,77,1208-1213.
    [12]Nilsson,M.;Cabaleiro-Lago,C.;Valente,A.J.M.;Soderman,O.Interactions between Gemini Surfactants,12-s-12,and β-cyclodextrin As Investigated by NMR Diffusometry and Electric Conductometry,Langmuir 2006,22,8663-8669.
    [13]Cabaleiro-Lago,C.;Nilsson,M.;Soderman,O.Self-Diffusion NMR Studies of the Host-Guest Interaction between β-Cyclodextrin and Alkyltrimethylammonium Bromide Surfactants,Langmuir 2005,21,11637-11644.
    [14]Denadai,A.M.L.;Teixeira,K.I.;Santoro,M.M.;Pimenta,A.M.C.;Cortes,M.E.;Sinisterra,R.D.Supramolecular self-assembly of β-cyclodextrin:an effective carrier of the antimicrobial agent chlorhexidine,Carbohydr.Res.2007,342,2286-2296.
    [15]Casu,B.;Grenni,A.;Naggi,A.;Torri,G.;Virtuani,M.;Focher,B.Interaction of cyclodextrins(cyclomalto-oligosaccharides) with glycolipids:n.m.r,studies of aqueous systems of cyclo-maltohexaose and alkyl glycosides,Carbohydr.Res.1990,200,101-109.
    [16]Gharibi,H.;Jalili,S.;Rajabi,T.Electrochemical studies of interaction between ceyltrimethylammonium bromide and α-,β-cyclodextrins at various temperature,Colloids Surf.,A 2000,175,361-369.
    [17]Saito,Y.;Ueda,H.;Abe,M.;Sato,T.;Christian,S.D.Inclusion complexation of triton X-100 with α-,β-,and γ-cyclodextrins,Colloids Surf.,A 1998,135,103-108.
    [18]Topchieva,I.;Karezin,K.Self-Assembled Supramolecular Micellar Structures Based on Non-ionic Surfactants and Cyclodextrins,J.Colloid Interface Sci.1999,213,29-35.
    [19]Czapkiewicz,J.;Tutaj,B.Surface tension studies on the complexation of dodecylpyridinium chloride by β-cyclodextrin in aqueous electrolyte solutions,J.Inclusion Phenom.Macrocyclic Chem.1993,16,377-382.
    [20]Du,X.-Z.;Jiang,Y.-B.;Lin,L.-R.;Huang,X.-Z.;Chen,G.-Z.Phosphorescence-probed study on the association of surfactants with β-cyclodextrin,Chem.Phys.Lett.1997,268,31-35.
    [21]Reinsborough,V.C.;Stephenson,V.C.Inclusion complexation involving sugar-containing species:β-cyclodextrin and sugar surfactants,Can.J.Chem.2004,82,45-49.
    [22]Pineiro,A.;Banquy,X.;Perez-Casas,S.;Tovar,E.;Garcia,A.;Villa,A.;Amigo,A.;Mark,A.E.;Costas,M.On the Characterization of Host-Guest Complexes:Surface Tension,Calorimetry,and Molecular Dynamics of Cyclodextrins with a Non-ionic Surfactant,J.Phys.Chem.B 2007,111,4383-4392.
    [23]Tuncay,M.;Christian,S.D.A Study of the Binding of Dimethyldodecylamine Oxide by β-Cyclodextrin Using Surface Tension Measurements,J.Colloid Interface Sci.1994,167,181-185.
    [24]Lu,R.H.;Hao,J.C.;Wang,H.Q.;Tong,L.H.Determination of Association Constants for Cyclodextrin-Surfactant Inclusion Complexes:A Numerical Method Based on Surface Tension Measurements,J.Colloid Interface Sci.1997,192,37-42.
    [25]Para,G.;Jarek,E.;Warszynski,P.The Hofmeister series effect in adsorption of cationic surfactants—theoretical description and experimental results,Adv.Colloid Interface Sci.2006,122,39-55.
    [26]Galant,C.;Wintgens,V.;Amiel,C.;Auvray,L.A Reversible Polyelectrolyte Involving a β-Cyclodextrin Polymer and a Cationic Surfactant,Macromolecules 2005,38,5243-5253.
    [27]Zhao,G.X.;Zhu,B.Y.Principles of Surfactant Action,China Light Industry Press,Beijing,2003.
    [28]Sepulveda,L.;Cortes,J.Ionization degrees and critical micelle concentrations of hexadecyltrimethylammonium and tetradecyltrimethylammonium micelles with different counterions,J.Phys.Chem.1985,89,5322-5324.
    [29]Bergeron,V.Disjoining Pressures and Film Stability of Alkyltrimethylammonium Bromide Foam Films,Langmuir 1997,13,3474-3482.
    [30]Ozeki,S.;Ikeda,S.The Adsorption of Dodecyldimethylammonium Chloride on Aqueous Surfaces of Concentrated NaCl Solutions,Bull.Chem.Soc.Jpn.1980,53,1832-1836.
    [31]Okuda,H.;Ozeki,S.;Ikeda,S.The Adsorption of Dodecyldimethylammonium Bromide on Aqueous Surfaces of Sodium Bromide Solutions,Bull.Chem.Soc.Jpn.1984,57,1321-1327.
    [32]Rijnbout,J.B.Adsorption and dimerization of hexadecyltrimethylammonium bromide from surface tension measurements,J.Colloid Interface Sci.1977,62,81-86.
    [33]Okuda,H.;Imae,T.;Ikeda,S.The adsorption of cetyltrimethylammonium bromide on aqueous surfaces of sodium bromide solutions,Colloids and Surfaces 1987,27,187-200.
    [34]Para,G.;Jarek,E.;Warszynski,P.The surface tension of aqueous solutions of cetyltrimethylammonium cationic surfactants in presence of bromide and chloride counterions,Colloids Surf.,A 2005,261,65-73.
    [35]Bhatt,D.;Chee,R.;Newman,J.;Radke,C.J.Molecular simulation of the surface tension of simple aqueous electrolytes and the Gibbs adsorption equation,Current Opinion in Colloid & Interface Science 2004,9,145-148.
    [36]Jungwirth,P.;Tobias,D.J.Ions at the Air/Water Interface,J.Phys.Chem.B 2002,106,6361-6373.
    [37]Liu,D.;Ma,G.;Levering,L.M.;Allen,H.C.Vibrational Spectroscopy of Aqueous Sodium Halide Solutions and Air-Liquid Interfaces:Observation of Increased Interfacial Depth,J.Phys.Chem.B 2004,108,2252-2260.
    [38]Vrbka,L.;Mucha,M.;Minofar,B.;Jungwirth,P.;Brown,E.C.;Tobias,D.J.Propensity of soft ions for the air/water interface,Current Opinion in Colloid & Interface Science 2004,9,67-73.
    [39]Park,J.W.;Song,H.J.Association of anionic surfactants with β-cyclodextrin:fluorescence-probed studies on the 1:1 and 1:2 complexation,J.Phys.Chem.1989,93,6454-6458.
    [40]De Lisi,R.;Milioto,S.;Muratore,N.Thermodynamic Evidence of Cyclodextrin-Micelle Interactions,J.Phys.Chem.B 2002,106,8944-8953.
    [41]Garcia-Rio,L.;Mendez,M.;Paieo,M.R.;Sardina,F.J.New Insights in Cyclodextrin:Surfactant Mixed Systems from the Use of Neutral and Anionic Cyclodextrin Derivatives,J.Phys.Chem.B 2007,111,12756-12764.
    [42]Junquera,E.;Tardajos,G.;Aicart,E.Study of the 2,6-o-Dimethyl-β-cyclodextrin+Hexadecyltrimethylammonium Bromide+Water System from Speed of Sound Measurements,J.Colloid Interface Sci.1993,158,388-394.
    [43]Gonzalez-Gaitano,G.;Crespo,A.;Tardajos,G.Thermodynamic Investigation(Volume and Compressibility) of the Systems β-Cyclodextrin+n-Alkyltrimethylammonium Bromides +Water,J.Phys.Chem.B 2000,104,1869-1879.
    [44]Li,N.;Liu,J.;Zhao,X.;Gao,Y.a.;Zheng,L.;Zhang,J.;Yu,L.Complex formation of ionic liquid surfactant and β-cyclodextrin,Colloids Surf.,A 2007,292,196-201.
    [45]Gao,Y.;Zhao,X.;Dong,B.;Zheng,L.;Li,N.;Zhang,S.Inclusion Complexes of β-Cyclodextrin with Ionic Liquid Surfactants,J.Phys.Chem.B 2006,110,8576-8581.
    [46]Zana,R.Ionization of cationic micelles:Effect of the detergent structure,J.Colloid Interface Sci.1980,78,330-337.
    [47]Li,J.B.;Kretzschmar,G.;Miller,R.;Mohwald,H.Viscoelasticity of phospholipid layers at different fluid interfaces,Colloids Surf.,A 1999,149,491-497.
    [48]Xin,X.;Xu,G.;Wu,D.;Gong,H.;Zhang,H.;Wang,Y.Effects of sodium halide on the interaction between polyvinylpyrrolidone and sodium oleate:Surface tension and oscillating barrier studies,Colloids Surf.,A 2008,322,54-60.
    [49]Li,Y.M.;Xu,G.Y.;Xin,X.;Cao,X.R.;Wu,D.Dilational surface viscoelasticity of hydroxypropyl methyl cellulose and CnTAB at air-water surface,Carbohydr.Polym.2008,72,211-221.
    [50]Zhang,H.;Xu,G.;Wu,D.;Wang,S.Aggregation of cetyltrimethylammonium bromide with hydrolyzed polyacrylamide at the paraffin oil/water interface:Interfacial rheological behavior study,Colloids Surf.,A 2008,317,289-296.
    [51]Hernandez-Pascacio,J.;Garza,C.;Banquy,X.;Diaz-Vergara,N.;Amigo,A.;Ramos,S.;Castillo,R.;Costas,M.;Pineiro,A.Cyclodextrin-Based Self-Assembled Nanotubes at the Water/Air Interface,J.Phys.Chem.B 2007,111,12625-12630.
    [52]Qu,X.K.;Zhu,L.Y.;Li,L.;Wei,X.L.;Liu,F.;Sun,D.Z.Host-Guest Complexation of β-,γ-Cyclodextrin with Alkyl Trimethyl Ammonium Bromides in Aqueous Solution,J.Solution Chem.2007,36,643-650.
    [53]Rafati,A.A.;Bagheri,A.;Iloukhani,H.;Zarinehzad,M.Study of inclusion complex formation between a homologous series of n-alkyltrimethylammonium bromides and β-cyclodextrin,using conductometric technique,Journal of Molecular Liquids 2005,116,37-41.
    [54]Tutaj,B.;Kasprzyk,A.;Czapkiewicz,J.The Spectral Displacement Technique for Determining the Binding Constants of β-Cyclodextrin-Alkyltrimethylammonium Inclusion Complexes,J.Inclusion Phenom.Macrocyclic Chem.2003,47,133-136.
    [55]Jezequel,D.;Mayaffre,A.;Letellier,P.Potentiometric study of the stability of b-cyclodextrin surfactant complexes,Can.J.Chem 1991,69,1865-1871.
    [56]Mwakibete,H.;Cristantino,R.;Bloor,D.M.;Wyn-Jones,E.;Holzwarth,J.F.Reliability of the Experimental Methods To Determine Equilibrium Constants for Surfactant/Cyclodextrin Inclusion Complexes,Langmuir 1995,11,57-60.
    [57]Lianos,P.;Zana,R.Fluorescence probe studies of the effect of concentration on the state of aggregation of surfactants in aqueous solution,J.Colloid Interface Sci.1981,84,100-107.
    [58]Funasaki,N.;Ishikawa,S.;Neya,S.Proton NMR Study of α-Cyclodextrin Inclusion of Short-Chain Surfactants,J.Phys.Chem.B 2003,107,10094-10099.
    [59]Funasaki,N.;Ishikawa,S.;Neya,S.1:1 and 1:2 Complexes between Long-Chain Surfactant and α-Cyclodextrin Studied by NMR,J.Phys.Chem.B 2004,108,9593-9598.
    [60]Avram,L.;Cohen,Y.Complexation in Pseudorotaxanes Based on α-Cyclodextrin and Different α,ω-Diaminoalkanes by NMR Diffusion Measurements,J.Org.Chem.2002,67,2639-2644.
    [61]Tsao,H.K.Counterion Distribution Enclosed in a Cylinder and a Sphere,J.Phys.Chem.B 1998,102,10243-10247.
    [62]Bhattacharya,S.;Haldar,J.Thermodynamics of Micellization of Multiheaded Single-Chain Cationic Surfactants,Langmuir 2004,20,7940-7947.
    [63]Ao,M.Q.;Xu,G.Y.;Zhu,Y.Y.;Bai,Y.Synthesis and properties of ionic liquid-type Gemini imidazolium surfactants,J.Colloid Interface Sci.2008,326,490-495.
    [64]Cserhati,T.;Szejtli,J.Inclusion complexes of some non-ionic surfactants with cyclomalto-oligosaccharides,Carbohydr.Res.1992,224,165-173.
    [65]Abrahmsen-Alami,S.;Alami,E.;Eastoe,J.;Cosgrove,T.Interaction between a Novel Gemini Surfactant and Cyclodextrin:NMR and Surface Tension Studies,J.Colloid Interface Sci.2002,246,191-202.
    [66]Harada,A.;Okumura,H.;Okada,M.;Suzuki,S.;Kamachi,M.Site-Selective Complexation of Amphiphilic Compounds by Cyclodextrins,Chem.Lett.2000,29,548-549.
    [1]Iijima,S.;Ichihashi,T.Single-shell carbon nanotubes of 1-nm diameter,Nature 1993,363,603-605.
    [2]Iijima,S.Helical microtubules of graphitic carbon,Nature 1991,354,56-58.
    [3]Kang,S.Z.;Cui,Z.Y.,Liu,L.Y.;Mu,J.Sensitizing Effect of Oxazine on the Photoluminescence of Cyclodextrin-Modified Carbon Nanotubes,J.Dispersion Sci.Technol.2006,27,45-47.
    [4]Vaisman,L.;Wagner,H.D.;Marom,G.The role of surfactants in dispersion of carbon nanotubes,Adv.Colloid Interface Sci.2006,128-130,37-46.
    [5]Wang,S.C.;Yang,H.;Banerjee,S.;Herman,I.P.;Akins,D.L.AOT dispersed single-walled carbon nanotubes for transistor device application,Mater.Lett.2008,62,843-845.
    [6]Zhang,J.;Gao,L.Dispersion of multiwall carbon nanotubes by sodium dodecyl sulfate for preparation of modified electrodes toward detecting hydrogen peroxide,Mater.Lett.2007,61,3571-3574.
    [7]Tanskanen,J.T.;Linnolahti,M.;Karttunen,A.J.;Pakkanen,T.A.Structural and electronic characteristics of perhydrogenated carbon nanotubes,Chem.Phys.2007,340,120-126.
    [8]Liu,K.;Fu,H.;Xie,Y.;Zhang,L.;Pan,K.;Zhou,W.Assembly of β-Cyclodextrins Acting as Molecular Bricks onto Multiwall Carbon Nanotubes,J.Phys.Chem.C 2008,112,951-957.
    [9]Noguchi,Y.;Fujigaya,T.;Niidome,Y.;Nakashima,N.Regulation of the Near-IR Spectral Properties of Individually Dissolved Single-Walled Carbon Nanotubes in Aqueous Solutions of dsDNA,Chem.Eur.J.2008,14,5966-5973.
    [10]Sandier,J.;Shaffer,M.S.P.;Prasse,T.;Bauhofer,W.;Schulte,K.;Windle,A.H.Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties,Polymer 1999,40,5967-5971.
    [11]Mishra,S.R.;Rawat,H.S.;Mehendale,S.C.;Rustagi,K.C.;Sood,A.K.;Bandyopadhyay,R.;Govindaraj,A.;Rao,C.N.R.Optical limiting in single-walled carbon nanotube suspensions,Chem.Phys.Lett.2000,317,510-514.
    [12]Liu,M.;Yang,Y.;Zhu,T.;Liu,Z.A General Approach to Chemical Modification of Single-Walled Carbon Nanotubes with Peroxy Organic Acids and Its Application in Polymer Grafting,J.Phys.Chem.C 2007,111,2379-2385.
    [13]Nobusawa,K.;Ikeda,A.;Kikuchi,J.I.;Kawano,S.I.;Fujita,N.;Shinkai,S.Reversible Solubilization and Precipitation of Carbon Nanotubes through Oxidation-Reduction Reactions of a Solubilizing Agent,Angew.Chem.,Int.Ed.2008,47,4577-4580.
    [14]Xu,Y.;Pehrsson,P.E.;Chen,L.;Zhang,R.;Zhao,W.Double-Stranded DNA Single-Walled Carbon Nanotube Hybrids for Optical Hydrogen Peroxide and Glucose Sensing,J.Phys.Chem.C 2007,111,8638-8643.
    [15]Shin,J.Y.;Premkumar,T.;Geckeler,K.E.Dispersion of Single-Walled Carbon Nanotubes by Using Surfactants:Are the Type and Concentration Important?,Chem.Eur.J.2008,14,6044-6048.
    [16]Jiang,W.;Yu,B.;Liu,W.;Hao,J.Carbon Nanotubes Incorporated within Lyotropic Hexagonal Liquid Crystal Formed in Room-Temperature Ionic Liquids,Langmuir 2007,23,8549-8553.
    [17]Liu,Y.;Gao,L.;Sun,J.Noncovalent Functionalization of Carbon Nanotubes with Sodium Lignosulfonate and Subsequent Quantum Dot Decoration,J.Phys.Chem.C 2007,111,1223-1229.
    [18]Moore,V.C.;Strano,M.S.;Haroz,E.H.;Hauge,R.H.;Smalley,R.E.;Schmidt,J.;Talmon,Y.Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants,Nano Lett.2003,3,1379-1382.
    [19]赵明刚 功能性β-环糊精衍生物的合成及应用,山东大学,博士学位论文,济南,2004.
    [20]童林荟 环糊精化学——基础与应用,科学出版社,2001.
    [21]Chen,J.;Dyer,M.J.;Yu,M.F.Cyclodextrin-Mediated Soft Cutting of Single-Walled Carbon Nanotubes,J.Am.Chem.Soc.2001,123,6201-6202.
    [22]Chambers,G.;Carroll,C.;Farrell,G.F.;Dalton,A.B.;McNamara,M.;in her Panhuis,M.;Byrne,H.J.Characterization of the Interaction of Gamma Cyclodextrin with Single-Walled Carbon Nanotubes,Nano Lett.2003,3,843-846.
    [23]Ikeda,A.;Hayashi,K.;Konishi,T.;Kikuchi,J.Solubilization and debundling of purified single-walled carbon nanotubes using solubilizing agents in an aqueous solution by high-speed vibration milling technique,Chem.Commun.2004,1334-1335.
    [24]Yu,J.G.;Huang,K.L.;Liu,S.Q.;Tang,J.C.Preparation and characterization of soluble methyl-β-cyclodextrin functionalized single-walled carbon nanotubes,Physica E 2008,40,689-692.
    [25]Dodziuk,H.;Ejchart,A.;Anczewski,W.;Ueda,H.;Krinichnaya,E.;Dolgonos,G.;Kutner,W.Water solubilization,determination of the number of different types of single-wall carbon nanotubes and their partial separation with respect to diameters by complexation with eta-cyclodextrin,Chem.Commun.2003,986-987.
    [26]Xiao,S.F.;Wang,Z.H.;Luo,G.A.;Wang,Y.M.Voltammetric determination of L-cysteine at cyclodextrin-incorporated carbon nanotubes modified electrode,Chem.Res.Chin.Univ.2004,25,1833-1835.
    [27]Wang,Z.H.;Wang,Y.M.;Luo,G.The electrocatalytic oxidation of thymine at alpha-cyclodextrin incorporated carbon nanotube-coated electrode,Electroanalysis 2003,15,1129-1133.
    [28]Wang,G.Y.;Liu,X.J.;Yu,B.;Luo,G.Electrocatalytic response of norepinephrine at a beta-cyclodextrin incorporated carbon nanotube modified electrode,J.Electroanal.Chem. 2004,567,227-231.
    [29]Yogeswaran,U.;Thiagarajan,S.;Chen,S.M.Pinecone shape hydroxypropyl-β-cyclodextrin on a film of multi-walled carbon nanotubes coated with gold particles for the simultaneous determination of tyrosine,guanine,adenine and thymine,Carbon 2007,45,2783-2796.
    [30]Kong,B.;Yin,T.J.;Liu,X.Y.;Wei,W.Z.Voltammetric determination of hydroquinone using β-cyclodextrin/poly(N-acetylaniline)/carbon nanotube composite modified glassy carbon electrode,Anal.Lett.2007,40,2141-2150.
    [31]Zhao,M.G.;Hao,A.Y.;Li,J.;Wei,Y.H.;Guo,P.New cyclomaltoheptaose (β-cyclodextrin) derivative 2-O-(2-hydroxybutyl)cyclomaltoheptaose:preparation and its application for the separation of enantiomers of drugs by capillary electrophoresis,Carbohydr.Res.2005,340,1563-1565.
    [32]Xin,X.;Xu,G.Y.;Zhao,T.T.;Zhu,Y.Y.;.Shi,X.F.;Gong,H.J.;Zhang,Z.Q.Dispersing Carbon Nanotubes in Aqueous Solutions by a Starlike Block Copolymer,J.Phys.Chem.C 2008,112,16377-16384.
    [33]Bonini,M.;Rossi,S.;Karlsson,G.;Almgren,M.;LoNostro,P.;Baglioni,P.Self-Assembly of β-Cyclodextrin in Water.Part 1:Cryo-TEM and Dynamic and Static Light Scattering,Langmuir 2006,22,1478-1484.
    [34]Saito,R.;Dresselhaus,G.;Dresselhaus,M.S.Trigonal warping effect of carbon nanotubes,Phys.Rev.B 2000,61,2981-2990.
    [35]Bandow,S.;Asaka,S.;Saito,Y.;Rao,A.M.;Grigorian,L.;Richter,E.;Eklund,P.C.Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes,Phys.Rev.Lett.1998,80,3779-3782.
    [36]Wenz,G.;Han,B.H.;Muller,A.Cyclodextrin Rotaxanes and Polyrotaxanes,Chem.Rev.2006,106,782-817.
    [37]O'Connell,M.J.;Bachilo,S.M.;Huffman,C.B.;Moore,V.C.;Strano,M.S.;Haroz,E.H.,Rialon,K.L.;Boul,P.J.;Noon,W.H.;Kittrell,C.;Ma,J.;Hauge,R.H.;Weisman,R.B.;Smalley,R.E.Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,Science 2002,297,593-596.
    [38]Saito,R.;Dresselhaus,G.;Dresselhaus,M.S.Physical Properties of Carbon Nanotubes,Imperial College Press,London,1998.
    [39]Venkateswaran,U.D.;Rao,A.M.;Richter,E.;Menon,M.;Rinzler,A.;Smalley,R.E.;Eklund,P.C.Probing the single-wall carbon nanotube bundle:Raman scattering under high pressure,Phys.Rev.B 1999,59,10928-10934.
    [40]Chatterjee,T.;Yurekli,K.;Hadjiev,V.G.;Krishnamoorti,R.Single-Walled Carbon Nanotube Dispersions in Poly(ethylene oxide),Adv.Funct.Mater.2005,15,1832-1838.
    [41]Hadjiev,V.G.;Iliev,M.N.;Arepalli,S.;Nikolaev,P.;Files,B.S.Raman scattering test of single-wall carbon nanotube composites,Appl.Phys.Lett.2001,78,3193-3195.
    [42]Rusa,C.C.;Fox,J.;Tonelli,A.E.Competitive Formation of Polymer-Cyclodextrin Inclusion Compounds,Macromolecules 2003,36,2742-2747.
    [43]Li,J.;Ni,X.;Leong,K.Block-Selected Molecular Recognition and Formation of Polypseudorotaxanes between Poly(propylene oxide)-Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymers and,Angew.Chem.Int.Ed.2003,42,69-72.
    [44]Harada,A.;Kamachi,M.Complex formation between poly(ethylene glycol) and α-cyclodextrin,Macromolecules 1990,23,2821-2823.
    [45]史晓峰 线性及支装嵌段聚醚的界面聚集行为,山东大学硕士学位论文,济南,2008.
    [46]Hunt,M.A.;Tonelli,A.E.;Balik,C.M.Effect of Guest Hydrophobicity on Water Sorption Behavior of Oligomer/β-Cyclodextrin Inclusion Complexes,J.Phys.Chem.B 2007,111,3853-3858.
    [47]Harada,A.;Okada,M.;Li,J.;Kamachi,M.Preparation and Characterization of Inclusion Complexes of Poly(propylene glycol) with Cyclodextrins,Macromolecules 1995,28,8406-8411.
    [48]窦文玲;辛霞;徐桂英 两亲分子对碳纳米管的分散稳定作用,物理化学学报 2009,25,382-388.
    [49]Jiang,L.;Gao,L.;Sun,J.Production of aqueous colloidal dispersions of carbon nanotubes,J.Colloid Interface Sci.2003,260,89-94.
    [50]Attal,S.;Thiruvengadathan,R.;Regev,O.Determination of the Concentration of Single-Walled Carbon Nanotubes in Aqueous Dispersions Using UV-Visible Absorption Spectroscopy,Anal.Chem.2006,78,8098-8104.
    [51]Matarredona,O.;Rhoads,H.;Li,Z.;Harwell,J.H.;Balzano,L.;Resasco,D.E.Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS,J.Phys.Chem.B 2003,107,13357-13367.
    [52]Wang,Q.;Han,Y.;Wang,Y.;Qin,Y.;Guo,Z.-X.Effect of Surfactant Structure on the Stability of Carbon Nanotubes in Aqueous Solution,J.Phys.Chem.B 2005,
    [53]Ogoshi,T.;Yamagishi,T.;Nakamoto,Y.;Harada,A.Water soluble single-walled carbon nanotubes using inclusion complex of cyclodextrin with an adamantane derivative,Chem.Lett.2007,36,1026-1027.
    [1]Xue,J.;Jia,Z.;Jiang,X.;Wang,Y.;Chen,L.;Zhou,L.;He,P.;Zhu,X.;Yan,D.Kinetic Separation of Polymers with Different Terminals through Inclusion Complexation with Cyclodextrin,Macromolecules 2006,39,8905-8907.
    [2]Nepogodiev,S.A.;Stoddart,J.F.Cyclodextrin-Based Catenanes and Rotaxanes,Chem.Rev.1998,98,1959-1976.
    [3]Szejtli,J.Introduction and General Overview of Cyclodextrin Chemistry,Chem.Rev.1998,98,1743-1754.
    [4]Harada,A.Cyclodextrin-Based Molecular Machines,Acc.Chem.Res.2001,34,456-464.
    [5]Wenz,G.;Han,B.H.;Muller,A.Cyclodextrin Rotaxanes and Polyrotaxanes,Chem.Rev.2006,106,782-817.
    [6]SaUas,F.;Darcy,R.Amphiphilic cyclodextrins-Advances in synthesis and supramolecular chemistry,Eur.J.Org.Chem.2008,957-969.
    [7]Cristiano,A.;Lim,C.W.;Rozkiewicz,D.I.;Reinhoudt,D.N.;Ravoo,B.J.Solid-Supported Monolayers and Bilayers of Amphiphilic β-Cyclodextrins,Langmuir 2007,23,8944-8949.
    [8]Auzely-Velty,R.;Perly,B.;Tach,O.;Zemb,T.;Jehan,P.;Guenot,P.;Dalbiez,J.P.;Djedaini-Pilard,F.Cholesteryl-cyclodextrins:synthesis and insertion into phospholipid membranes,Carbohydr.Res.1999,318,82-90.
    [9]Dubes,A.;Degobert,G.;Fessi,H.;Parrot-Lopez,H.Synthesis and characterisation of sulfated amphiphilic α-,β-,and γ-cyclodextrins:application to the complexation of acyclovir,Carbohydr.Res.2003,338,2185-2193.
    [10]Silva,O.F.;Fernandez,M.A.;Pennie,S.L.;Gil,R.R.;deRossi,R.H.Synthesis and Characterization of an Amphiphilic Cyclodextrin,a Micelle with Two Recognition Sites,Langmuir 2008,24,3718-3726.
    [11]Falvey,P.;Lim,C.W.;Darcy,R.;Revermann,T.;Karst,U.;Giesbers,M.;Marcelis,A.T.M.;Lazar,A.;Coleman,A.W.;Reinhoudt,D.N.Bilayer Vesicles of Amphiphilic Cyclodextrins:Host Membranes That Recognize Guest Molecules,Chem.Fur.J.2005,11,1171-1180.
    [12]Auzely-Velty,R.;Djedaini-Pilard,F.;Desert,S.;Perly,B.;Zemb,T.Micellization of Hydrophobically Modified Cyclodextrins.1.Micellar Structure,Langmuir 2000,16,3727-3734.
    [13]Tchoreloff,P.C.;Boissonnade,M.M.;Coleman,A.W.;Baszkin,A.Amphiphilic Monolayers of Insoluble Cyclodextrins at the Water/Air Interface.Surface Pressure and Surface Potential Studies,Langmuir 1995,11,191-196.
    [14]Schalchli,A.;Benattar,J.J.;Tchoreloff,P.;Zhang,P.;Coleman,A.W.Structure of a monomolecular layer of amphiphilic cyclodextrins,Langmuir 1993,9,1968-1970.
    [15]Ringard-Lefebvre,C.;Bochot,A.;Memi soglu,E.;Charon,D.;Duchene,D.;Baszkin,A.Effect of spread amphiphilic β-cyclodextrins on interfacial properties of the oil/water system,Colloids Surf.,B 2002,25,109-117.
    [16]Vico,R.V.;Silva,O.F.;de Rossi,R.H.;Maggio,B.Molecular Organization,Structural Orientation,and Surface Topography of Monoacylated β-Cyclodextrins in Monolayers at the Air-Aqueous Interface,Langmuir 2008,24,7867-7874.
    [17]Mazzaglia,A.;Angelini,N.;Darcy,R.;Donohue,R.;Lombardo,D.;Micali,N.;Sciortino,M.T.;Villari,V.;Scolaro,L.M.Novel Heterotopic Colloids of Anionic Porphyrins Entangled in Cationic Amphiphilic Cyclodextrins:Spectroscopic Investigation and Intracellular Delivery,Chem.Eur.J.2003,9,5762-5769.
    [18]Binkowski,C.;Hapiot,F.;Lequart,V.;Martin,P;Monflier,E.Evidence of a self-inclusion phenomenon for a new class of mono-substituted alkylammonium-β-cyclodextrins,Org.Biomol.Chem.2005,3,1129-1133.
    [19]Rosen,M.J.Surfactants and Interfacial Phenomena,John Wiley & Sons,Inc.,Hoboken,New Jersey,2004.
    [20]Lu,R.H.;Hao,J.C.;Wang,H.Q.;Tong,L.H.Determination of Association Constants for Cyclodextrin-Surfactant Inclusion Complexes:A Numerical Method Based on Surface Tension Measurements,J.Colloid Interface Sci.1997,192,37-42.
    [21]Moroi,Y.Micelles:theoretical and applied aspects,Plenum Press,New York,1992.
    [22]Tsao,H.K.Counterion Distribution Enclosed in a Cylinder and a Sphere,J.Phys.Chem.B 1998,102,10243-10247.
    [23]Bhattacharya,S.;Haldar,J.Thermodynamics of Micellization of Multiheaded Single-Chain Cationic Surfactants,Langmuir 2004,20,7940-7947.
    [24]Ao,M.Q.;Xu,G.Y.;Zhu,Y.Y.;Bai,Y.Synthesis and properties of ionic liquid-type Gemini imidazolium surfactants,J.Colloid Interface Sci.2008,326,490-495.
    [25]Zana,R.Critical Micellization Concentration of Surfactants in Aqueous Solution and Free Energy of Micellization,Langmuir 1996,12,1208-1211.
    [26]Kovalchuk,V.I.;Miller,R.;Fainerman,V.B.;Loglio,G.Dilational rheology of adsorbed surfactant layers—role of the intrinsic two-dimensional compressibility,Adv.Colloid Interface Sci.2005,114-115,303-312.
    [27]Tadros,T.F.Colloid Stability:The Role of Surface Forces-Part Ⅰ,Wiley-VCH-Verl.,Weinheim,2007.
    [28]Ravera,F.;Ferrari,M.;Santini,E.;Liggieri,L.Influence of surface processes on the dilational visco-elasticity of surfactant solutions,Adv.Colloid Interface Sci.2005,117,75-100.
    [29]Xin,X.;Xu,G.;Wu,D.;Gong,H.;Zhang,H.;Wang,Y.Effects of sodium halide on the interaction between polyvinylpyrrolidone and sodium oleate:Surface tension and oscillating barrier studies,Colloids Surf.,A 2008,322,54-60.
    [30]Wu,D.;Xu,G.;Feng,Y.;Li,Y.Aggregation behaviors of gelatin with cationic gemini surfactant at air/water interface,Int.J.Biol.Macromol.2007,40,345-350.
    [31]Rao,A.;Kim,Y.;Kausch,C.M.;Russell,V.M.;Thomas,R.R.Synthesis,Characterization,and Interfacial Properties of an Oligomeric,Cationic Fluorooxetane,Langmuir 2006,22,4811-4817.
    [1]Morse,J.W.;Arvidson,R.S.;Luttge,A.Calcium Carbonate Formation and Dissolution,Chem,.Rev.2007,107,342-381.
    [2]Dalas,E.;Klepetsanis,P.;Koutsoukos,P.G.The Overgrowth of Calcium Carbonate on Poly(vinyl chloride-co-vinyl acetate-co-maleic acid),Langmuir 1999,15,8322-8327.
    [3]徐旭荣;蔡安华;刘容;潘海华;唐睿康 生物矿化中的无定形碳酸钙,化学进展2008,20,54-59.
    [4]Arias,J.L.;S,F.M.Polysaccharides and Proteoglycans in Calcium Carbonate-based Biomineralization,Chem.Rev.2008,108,4475-4482.
    [5]Cusack,M.;Freer,A.Biomineralization:Elemental and Organic Influence in Carbonate Systems,Chem.Rev.2008,108,4433-4454.
    [6]Sikiric,M.D.;Furedi-Milhofer,H.The influence of surface active molecules on the crystallization of biominerals in solution,Adv.Colloid Interface Sci.2006,128-130,135-158.
    [7]Dickinson,S.R.;McGrath,K.M.Switching between kinetic and thermodynamic control: calcium carbonate growth in the presence of a simple alcohol,Journal of Materials Chemistry 2003,13,928-933.
    [8]Zhang,X.Y.;Liao,Z.J.;Yang,L.;Hu,Z.G.;Jiang,K.;Guo,Y.M.Interaction between β-cyclodextrin and crystallization of calcium carbonate,Acta Chim.Sin.2003,61,69-73.
    [9]Yang,L.;Zhang,X.;Liao,Z.;Guo,Y.;Hu,Z.;Cao,Y.Interfacial molecular recognition between polysaccharides and calcium carbonate during crystallization,Journal of Inorganic Biochemistry 2003,97,377-383.
    [10]Volkmer,D.;Fricke,M.;Agena,C.;Mattay,J.Interfacial electrostatics guiding the crystallization of CaCO_3 underneath monolayers of calixarenes and resorcarenes,Journal of Materials Chemistry 2004,14,2249-2259.
    [11]Gao,Y.X.;Yu,S.H.;Guo,X.H.Double Hydrophilic Block Copolymer Controlled Growth and Self-Assembly of CaCO3 Multilayered Structures at the Air/Water Interface,Langmuir 2006,22,6125-6129.
    [12]Takiguchi,M.;Igarashi,K.;Azuma,M.;Ooshima,H.Flowerlike Agglomerates of Calcium Carbonate Crystals Formed on an Eggshell Membrane,Cryst.Growth Des.2006,6,2754-2757.
    [13]Takiguchi,M.;Igarashi,K.;Azuma,M.;Ooshima,H.Tubular Structure Agglomerates of Calcium Carbonate Crystals Formed on a Cation-Exchange Membrane,Cryst.Growth Des.2006,6,1611-1614.
    [14]Wei,H.;Ma,N.;Song,B.;Yin,S.;Wang,Z.Formation of Multilayered Vaterite via Phase Separation,Crystalline Transformation,and Self-Assembly of Nanoparticles at the Air/Water Interface,J.Phys.Chem.C 2007,111,5628-5632.
    [15]Liang,P.;Shen,Q.;Zhao,Y.;Zhou,Y.;Wei,H.;Lieberwirth,I.;Huang,Y.;Wang,D.;Xu,D.Petunia-Shaped Superstructures of CaCO3 Aggregates Modulated by Modified Chitosan,Langmuir 2004,20,10444-10448.
    [16]Pichon,B.P.;Bomans,P.H.H.;Frederik,P.M.;Sommerdijk,N.A.J.M.A Quasi-Time-Resolved CryoTEM Study of the Nucleation of CaCO3 under Langmuir Monolayers,J.Am.Chem.Soc.2008,130,4034-4040.
    [17]Zhong,C.;Chu,C.C.Acid Polysaccharide-Induced Amorphous Calcium Carbonate (ACC) Films:Colloidal Nanoparticle Self-Organization Process,Langmuir 2009,25,3045-3049.
    [18]Pichon,B.P.;Cantin,S.;Smulders,M.M.J.;Vos,M.R.J.;Chebotareva,N.;Popescu,D.C.;van Asselen,O.;Perrot,F.;Sijbesma,R.;Sommerdijk,N.A.J.M.Molecular Recognition Controls the Organization of Mixed Self-Organized Bis-Urea-Based Mineralization Templates for CaCO3,Langmuir 2007,23,12655-12662.
    [19]Park,H.K.;Lee,I.;Kim,K.Controlled growth of calcium carbonate by poly (ethylenimine) at the air/water interface,Chem.Commun.2004,2004,24-25.
    [20]Xu,A.W.;Dong,W.F.;Antonietti,M.;Colfen,H.Polymorph Switching of Calcium Carbonate Crystals by Polymer-Controlled Crystallization,Adv.Funct.Mater 2008,18,1307-1313.
    [21]Sakamoto,T.;Oichi,A.;Oaki,Y.;Nishimura,T.;Sugawara,A.;Kato,T.Three-Dimensional Relief Structures of CaCO3 Crystal Assemblies Formed by Spontaneous Two-Step Crystal Growth on a Polymer Thin Film,Crystal Growth & Design 2009,9,622-625.
    [22]Xu,A.W.;Yu,Q.;Dong,W.F.;Antonietti,M.;Colfen,H.Stable amorphous CaCO_3 microparticles with hollow spherical superstructures stabilized by phytic acid,Advanced Materials 2005,17,2217-2221.
    [23]Lukeman,P.S.;Stevenson,M.L.;Seeman,N.C.Morphology Change of Calcium Carbonate in the Presence of Polynucleotides,Cryst.Growth Des.2008,8,1200-1202.
    [24]Judat,B.;Kind,M.Morphology and internal structure of barium sulfate—derivation of a new growth mechanism,J.Colloid Interface Sci.2004,269,341-353.
    [25]Nicolis,I.;Coleman,A.W.;Charpin,P.;Rango,C.d.First sphere coordination of divalent metal cations by cyclodextrin:structure of the β-cyclodextrin-calcium chloride-water (1/2/11.25) compound,Acta Crystallographica Section B 1996,52,122-130.
    [26]闻辂 矿物红外光谱学,重庆出版社,重庆,1989.
    1.Dodziuk H(2006) Cyclodextrins and Their Complexes:chemistry,analytical methods,applications.WILEY-VCH Verlag GmbH & Co.KGaA,Weinheim
    2.Xue J,Jia Z,Jiang X et al(2006) Kinetic Separation of Polymers with Different Terminals through Inclusion Complexation with Cyclodextrin.Macromolecules 39:8905-8907
    3.Nepogodiev SA,Stoddart JF(1998) Cyclodextrin-Based Catenanes and Rotaxanes.Chem.Rev.98:1959-1976
    4.Szejtli J(1998) Introduction and General Overview of Cyclodextrin Chemistry.Chem.Rev.98:1743-1754
    5.Harada A(2001) Cyclodextrin-Based Molecular Machines.Acc.Chem.Res.34:456-464
    6.Wenz G,Han BH,Muller A(2006) Cyclodextrin Rotaxanes and Polyrotaxanes.Chem.Rev.106:782-817
    7.Xiao Y,Lim HM,Chung TS et al(2007) Acetylation of β-Cyclodextrin Surface-Functionalized Cellulose Dialysis Membranes with Enhanced Chiral Separation.Langmuir 23:12990-12996
    8.Rodriguez-Perez AI,Rodriguez-Tenreiro C,Alvarez-Lorenzo C et al(2006) Drag Solubilization and Delivery from Cyclodextrin-Pluronic Aggregates.J.Nanosci.Nanotech.6:3179-3186
    9.Estevan M,Gamazo C,Grillo MJ et al(2006) Experiments on a sub-unit vaccine encapsulated in microparticles and its efficacy,against Brucella melitensis in mice.Vaccine 24:4179-4187
    10.Kang K-H,Kim H-U,Lim K-H(2001) Effect of temperature on critical micelle concentration and thermodynamic potentials of micellization of anionic ammonium dodecyl sulfate and cationic octadecyl trimethyl ammonium chloride.Colloids Surf.A 189:113-121
    11.Rosen MJ(2004) Surfactants and Interfacial Phenomena.John Wiley & Sons,Inc.,Hoboken,New Jersey
    12.Guo R,Zhu XJ,Guo X(2003) The effect of β-cyclodextrin on the properties of cetyltrimethylammonium bromide micelles.Colloid Polym.Sci.281:876-881
    13.Garcia-Rio L,Godoy A(2007) Use of Spectra Resolution Methodology to Investigate Surfactant/β-Cyclodextrin Mixed Systems.J.Phys.Chem.B 111:6400-6409
    14.Lin L-R,Jiang Y-B,Du X-Z et al(1997) A study of the properties of the 1:1 inclusion complex of β-cyclodextrin with cetyltrimethylammonium bromide.Chem.Phys.Lett.266:358-362
    15.Gharibi H,Jalili S,Rajabi T(2000) Electrochemical studies of interaction between ceyltrimethylammonium bromide and α-,β-cyclodextrins at various temperature.Colloids Surf.A 175:361-369
    16.Turco Liveri V,Cavallaro G,Giammona G et al(1992) Calorimetric investigation of the complex formation between surfactants and α,β- and γ-cyclodextrins.Thermochim.Acta.199:125-132
    17.Du X-Z,Zhang Y,Jiang Y-B et al(1998) Phosphorescence study of 1-bromonaphthalene in aerated aqueous solution of surfactant and β-cyclodextrin.J.Photochem.Photobiol.A 112:53-57
    18.Iglesias E,Fernandez A(1998) Cyclodextrin catalysis in the basic hydrolysis of alkyl nitrites.J.chem.Soc..Perkin Trans.1998:1691-1700
    19.Garcia-Rio L,Herves P,Iglesias E et al(2000) Influence of cyclodextrins on chemical reactivity in water and micellar systems.J.Recent research develop,in phys.chem.4:101-133
    20.Okubo T,Kitano H,Ise N(1976) Conductometric studies on association of cyclodextrin with colloidal electrolytes.J.Phys.Chem.80:2661-2664
    21.Dharmawardana UR,Christian SD,Tucker EE et al(1993) A surface tension method for determining binding constants for cyclodextrin inclusion complexes of ionic surfactants.Langmuir 9:2258-2263
    22.Gokt(u|¨)rk S,Mahramanlloglu M,Tuncay M(1999) Surface tension studies of lauryl sulfobetaine-β-cyclodextrin and dodecyltrimethylammonium bromide-β-cyclodextrin inclusion complexes in aqueous solution.Can.J.Chem.77:1208-1213
    23.Nilsson M,Cabaleiro-Lago C,Valente AJM et al(2006) Interactions between Gemini Surfactants,12-s-12,and β-cyclodextrin As Investigated by NMR Diffusometry and Electric Conductometry.Langmuir 22:8663-8669
    24.Cabaleiro-Lago C,Nilsson M,Soderman O(2005) Self-Diffusion NMR Studies of the Host-Guest Interaction between β-Cyclodextrin and Alkyltrimethylammonium Bromide Surfactants.Langmuir 21:11637-11644
    25.Denadai AML,Teixeira KI,Santoro MM et al(2007) Supramolecular self-assembly of β-cyclodextrin:an effective carrier of the antimicrobial agent chlorhexidine.Carbohydr.Research 342:2286-2296
    26.Casu B,Grenni A,Naggi A et al(1990) Interaction of cyclodextrins(cyclomalto-oligosaccharides) with glycolipids:n.m.r,studies of aqueous systems of cyclo-maltohexaose and alkyl glycosides.Carbohydr.Research 200:101-109
    27.Saito Y,Ueda H,Abe M et al(1998) Inclusion complexation of triton X-100 with α-,β-,and γ-cyclodextrins.Colloids Surf.A 135:103-108
    28.Topchieva I,Karezin K(1999) Self-Assembled Supramolecular Micellar Structures Based on Non-ionic Surfactants and Cyclodextrins.J.Colloid Interface Sci.213:29-35
    29.Czapkiewicz J,Tutaj B(1993) Surface tension studies on the complexation of dodecylpyridinium chloride by β-cyclodextrin in aqueous electrolyte solutions.J.Inclusion Phenom.Macrocyclic Chem.16:377-382
    30.Du X-Z,Jiang Y-B,Lin L-R et al(1997) Phosphorescence-probed study on the association of surfactants with β-cyclodcxtrin.Chem.Phys.Lett.268:31-35
    31.Reinsborough VC,Stephenson VC(2004) Inclusion complexation involving sugar-containing species:β-cyclodextrin and sugar surfactants.Can.J.Chem.82:45-49
    32.Pineiro A,Banquy X,Perez-Casas S et al(2007) On the Characterization of Host-Guest Complexes:Surface Tension,Calorimetry,and Molecular Dynamics of Cyclodextrins with a Non-ionic Surfactant.J.Phys.Chem.B 111:4383-4392
    33.Tuncay M,Christian SD(1994) A Study of the Binding of Dimethyldodecylamine Oxide by β-Cyclodextrin Using Surface Tension Measurements.J.Colloid Interface Sci.167:181-185
    34.Lu R,Hao J,Wang H et al(1997) Determination of Association Constants for Cyclodextrin-Surfactant Inclusion Complexes:A Numerical Method Based on Surface Tension Measurements.J.Colloid Interface Sci.192:37-42
    35.Tadros TF(2007) Colloid Stability:The Role of Surface Forces-Part Ⅰ.Wiley-VCH-Verl.,Weinheim
    36.Wu D,Feng Y,Xu G et al(2007) Dilational rheological properties of gemini surfactant 1.2-ethane bis(dimethyl dodecyl ammonium bromide) at air/water interface.Colloids Surf.A 299:117-123
    37.Kazakov VN,Fainerman VB,Kondratenko PG et al(2008) Dilational rheology of serum albumin and blood serum solutions as studied by oscillating drop tensiometry.Colloids Surf.B 62:77-82
    38.Kovalchuk VI,Miller R,Fainerman VB et al(2005) Dilational rheology of adsorbed surfactant layers—role of the intrinsic two-dimensional compressibility.Adv.Colloid Interface Sci.114-115:303-312
    39.Ravera F,Ferrari M,Santini E et al(2005) Influence of surface processes on the dilational visco-elasticity of surfactant solutions.Adv.Colloid Interface Sci.117:75-100
    40.Miller R,Fainerman VB,Makievski AV et al(2000) Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interface.Adv.Colloid Interface Sci.86:39-82
    41.Fruhner H,Wantke KD,Lunkenheimer K(2000) Relationship between surface dilational properties and foam stability.Colloids Surf.A 162:193-202
    42.Zhang H,Xu G,Wu D et al(2008) Aggregation of cetyltrimethylammonium bromide with hydrolyzed polyacrylamide at the paraffin oil/water interface:Interfacial rheological behavior study.Colloids Surf.A 317:289-296
    43.Li YM,Xu GY,Xin X et al(2008) Dilational surface viscoelasticity of hydroxypropyl methyl cellulose and CnTAB at air-water surface.Carbohydr.Polym.72:211-221
    44.Penfold J,Thomas RK,Taylor DJF(2006) Polyelectrolyte/surfactant mixtures at the air-solution interface.Curr.Opin.Colloids Interface Sci 11:337-344
    45.Pare G,Jarek E,Warszynski P(2006) The Hofmeister series effect in adsorption of cationic surfactants—theoretical description and experimental results.Adv.Colloid Interface Sci.122:39-55
    46.Galant C,Wintgens V,Amiel C et al(2005) A Reversible Polyelectrolyte Involving a β-Cyclodextrin Polymer and a Cationic Surfactant.Macromolecules 38:5243-5253
    47.Luan Y,Xu G,Yuan S et al(2002) Comparative Studies of Structurally Similar Surfactants:Sodium Bis(2-ethylhexyl)phosphate and Sodium Bis(2-ethylhexyl)sulfosuccinate.Langmuir 18:8700-8705
    48.Hilles H,Maestro A,Monroy F et al(2007) Polymer monolayers with a small viscoelastic linear regime:Equilibrium and rheology of poly(octadecyl acrylate) and poly(vinyl stearate).J.Chem.Phys.126:124904
    49.Sepulveda L,Cortes J(1985) Ionization degrees and critical micelle concentrations of hexadecyltrimethylammonium and tetradecyltrimethylammonium micelles with different counterions.J.Phys.Chem.89:5322-5324
    50.Bergeron V(1997) Disjoining Pressures and Film Stability of Alkyltrimethylammonium Bromide Foam Films.Langmuir 13:3474-3482
    51.Ozeki S,Ikeda S(1980) The Adsorption of Dodecyldimethylammonium Chloride on Aqueous Surfaces of Concentrated NaCl Solutions.Bull.Chem Soc.Jap.53:1832-1836
    52.Okuda H,Ozeki S,Ikeda S(1984) The Adsorption of Dodecyldimethylammonium Bromide on Aqueous Surfaces of Sodium Bromide Solutions.Bull.Chem Soc.Jap.57:1321-1327
    53.Rijnbout JB(1977) Adsorption and dimerization of hexadecyltrimethylammonium bromide from surface tension measurements.J.Colloid Interface Sci.62:81-86
    54.Okuda H,Imae T,Ikeda S(1987) The adsorption of cetyltrimethylammonium bromide on aqueous surfaces of sodium bromide solutions.Colloids and Surfaces 27:187-200
    55.Para G,Jarek E,Warszynski P(2005) The surface tension of aqueous solutions of cetyltrimethylammonium cationic surfactants in presence of bromide and chloride counterions.Colloids Surf.A 261:65-73
    56.Bhatt D,Chee R,Newman J et al(2004) Molecular simulation of the surface tension of simple aqueous electrolytes and the Gibbs adsorption equation.Curr.Opin.Colloid Interface Sci.9:145-148
    57.Jungwirth P,Tobias DJ(2002) Ions at the Air/Water Interface.J.Phys.Chem.B 106:6361-6373
    58.Liu D,Ma G,Levering LM et al(2004) Vibrational Spectroscopy of Aqueous Sodium Halide Solutions and Air-Liquid Interfaces:Observation of Increased Interfacial Depth.J.Phys.Chem.B 108:2252-2260
    59.Vrbka L,Mucha M,Minofar B et al(2004) Propensity of soft ions for the air/water interface.Curr.Opin.Colloid Interface Sci.9:67-73
    60.Park JW,Song HJ(1989) Association of anionic surfactants with β-cyclodextrin:fluorescence-probed studies on the 1:1 and 1:2 complexation.J.Phys.Chem.93:6454-6458
    61.Zhao G,Zhu B(2003) Principles of Surfactant Action.China Light Industry Press,Beijing
    62.De Lisi R,Milioto S,Muratore N(2002) Thermodynamic Evidence of Cyclodextrin-Micelle Interactions.J.Phys.Chem.B 106:8944-8953
    63.Garcia-Rio L,Mendez M,Paleo MR et al(2007) New Insights in Cyclodextrin:Surfactant Mixed Systems from the Use of Neutral and Anionic Cyclodextrin Derivatives.J.Phys.Chem.B 111:12756-12764
    64.Junquera E,Tardajos G,Aicart E(1993) Study of the 2,6-o-Dimethyl-β-cyclodextrin +Hexadecyltrimethylammonium Bromide+Water System from Speed of Sound Measurements.J.Colloid Interface Sci.158:388-394
    65.Gonzalez-Gaitano G,Crespo A,Tardajos G(2000) Thermodynamic Investigation(Volume and Compressibility) of the Systems β-Cyclodextrin+n-Alkyltrimethylammonium Bromides+Water.J.Phys.Chem.B 104:1869-1879
    66.Li N,Liu J,Zhao X et al(2007) Complex formation of ionic liquid surfactant and β-cyclodextrin.Colloids Surf.A 292:196-201
    67.Gao Y,Zhao X,Dong B et al(2006) Inclusion Complexes of β-Cyclodextrin with Ionic Liquid Surfactants.J.Phys.Chem.B 110:8576-8581
    68.Zana R(1980) Ionization of cationic micelles:Effect of the detergent structure.J.Colloid Interface Sci.78:330-337
    69.Hernandez-Pascacio J,Garza C,Banquy X et al(2007) Cyclodextrin-Based Self-Assembled Nanotubes at the Water/Air Interface.J.Phys.Chem.B 111:12625-12630
    1.Iijima S and Ichihashi T(1993) Single-shell carbon nanotubes of 1-nm diameter.Nature 363:603-605
    2.Iijima S(1991) Helical microtubules of graphitic carbon.Nature 354:56-58
    3.Gong K,Chakrabarti S and Dai L(2008) Electrochemistry at Carbon Nanotube Electrodes:Is the Nanotube Tip More Active Than the Sidewall? Angew Chem,Int Ed 47:5446-5450
    4.Vaisman L,Wagner HD and Marom G(2006) The role of surfactants in dispersion of carbon nanotubes.Adv Colloid Interface Sci 128-130:37-46
    5.Liu K,Fu H,Xie Y et al(2008) Assembly of β-Cyclodextrins Acting as Molecular Bricks onto Multiwall Carbon Nanotubes.J Phys Chem C 112:951-957
    6.Noguchi Y,Fujigaya T,Niidome Y et al(2008) Regulation of the Near-IR Spectral Properties of Individually Dissolved Single-Walled Carbon Nanotubes in Aqueous Solutions of dsDNA.Chem Eur J 14:5966-5973
    7.Nobusawa K,Ikeda A,Kikuchi JI et al(2008) Reversible Solubilization and Precipitation of Carbon Nanotubes through Oxidation-Reduction Reactions of a Solubilizing Agent.Angew Chem,Int Ed 47:4577-4580
    8.Shin JY,Premkumar T and Geckeler KE(2008) Dispersion of Single-Walled Carbon Nanotubes by Using Surfactants:Are the Type and Concentration Important? Chem Eur J 14:6044-6048
    9.Liu M,Yang Y,Zhu T et al(2007) A General Approach to Chemical Modification of Single-Walled Carbon Nanotubes with Peroxy Organic Acids and Its Application in Polymer Grafting.J Phys Chem C 111:2379-2385
    10.Xu Y,Pehrsson PE,Chen L et al(2007) Double-Stranded DNA Single-Walled Carbon Nanotube Hybrids for Optical Hydrogen Peroxide and Glucose Sensing.J Phys Chem C 111:8638-8643
    11.Liu Y,Gao L and Sun J(2007) Noncovalent Functionalization of Carbon Nanotubes with Sodium Lignosulfonate and Subsequent Quantum Dot Decoration.J Phys Chem C 111:1223-1229
    12.Dodziuk H(2006) Cyclodextrins and Their Complexes:chemistry,analytical methods,applications.WILEY-VCH Verlag GmbH & Co.KGraA,Weinheim
    13.Xue J,Jia Z,Jiang X et al(2006) Kinetic Separation of Polymers with Different Terminals through Inclusion Complexation with Cyclodextrin.Macromolecules 39:8905-8907
    14.Nepogodiev SA and Stoddart JF(1998) Cyelodextrin-Based Catenanes and Rotaxanes.Chem Rev 98:1959-1976
    15.Szejtli J(1998) Introduction and General Overview of Cyclodextrin Chemistry.Chem Rev 98:1743-1754
    16.Harada A(2001) Cyclodextrin-Based Molecular Machines.Acc Chem Res 34:456-464
    17.Wenz G,Han BH and Muller A(2006) Cyclodextrin Rotaxanes and Polyrotaxanes.Chem Rev 106:782-817
    18.Chen J,Dyer MJ and Yu MF(2001) Cyclodextrin-Mediated Soft Cutting of Single-Walled Carbon Nanotubes.J Am Chem Soc 123:6201-6202
    19.Chambers G,Carroll C,Farrell GF et al(2003) Characterization of the Interaction of Gamma Cyclodextrin with Single-Walled Carbon Nanotubes.Nano Lett 3:843-846
    20.Ikeda A,Hayashi K,Konishi T et al(2004) Solubilization and debundling of purified single-walled carbon nanotubes using solubilizing agents in an aqueous solution by high-speed vibration milling technique.Chem Commun 1334-1335
    21.Zhao MG,Hao AY,Li J et al(2005) New cyclomaltoheptaose(β-cyclodextrin) derivative 2-O-(2-hydroxybutyl)cyclomaltoheptaose:preparation and its application for the separation of enantiomers of drugs by capillary electrophoresis.Carbohydr Res 340:1563-1565
    22.Saito R,Dresselhaus G and Dresselhaus MS(2000) Trigonal warping effect of carbon nanotubes.Phys Rev B 61:2981-2990
    23.Bandow S,Asaka S,Saito Y et al(1998) Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes.Phys Rev Lett 80:3779-3782
    24.O'Connell MJ,Bachilo SM,Huffman CB et al(2002) Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes.Science 297:593-596
    25.Saito R,Dresselhaus G and Dresselhaus MS(1998) Physical Properties of Carbon Nanotubes.Imperial College Press,London
    26.Venkateswaran UD,Rao AM,Richter E et al(1999) Probing the single-wall carbon nanotube bundle:Raman scattering under high pressure.Phys Rev B 59:10928-10934
    27.Chatterjee T,Yurekli K,Hadjiev VG et al(2005) Single-Walled Carbon Nanotube Dispersions in Poly(ethylene oxide).Adv Funct Mater 15:1832-1838
    28.Hadjiev VG,Iliev MN,Arepalli S et al(2001) Raman scattering test of single-wall carbon nanotube composites.Appl Phys Lett 78:3193-3195
    29.Casu B and Reggiani M(1964) Infrared spectra of amylose and its oligomers.J Polym Sci,Part C 7:171-185
    30.Rusa CC,Fox J and Tonelli AE(2003) Competitive Formation of Polymer-Cyclodextrin Inclusion Compounds.Macromolecules 36:2742-2747
    31.Li J,Ni X and Leong K(2003) Block-Selected Molecular Recognition and Formation of Polypseudorotaxanes between Poly(propylene oxide)-Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymers and.Angew.Chem.Int.Ed.42:69-72
    32.Harada A and Kamachi M(1990) Complex formation between poly(ethylene glycol) and α-cyclodextrin.Macromolecules 23:2821-2823

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700