Zr基块体非晶合金过冷液相区力学性能及本构关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
块体非晶合金是一种新型金属材料,独特的原子结构赋予其不同于普通晶态金属的优异性能,如高强度、高硬度、耐腐、耐磨、易于近净形加工成形等。其中Zr基(Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10.0)Be_(22.5)、Zr_(55)Al_(10)Ni_5Cu_(30))是玻璃形成能力(GFA)很好的块体非晶合金形成体系。本文以Zr_(55)Al_(10)Ni_5Cu_(30)块体非晶为研究对象,研究其过冷液相区的力学性能及高温塑性变形机理,并基于高温压缩实验及早期经验模型,提出基于Maxwell-Pulse唯象形本构关系模型,通过有限元模拟方法(FEM)进行了验证。
     采用铜模吸铸方法成功制备了直径为3mm的Zr_(55)Al_(10)Ni_5Cu_(30)。并采用X射线衍射分析(XRD)和示差扫描量热(DSC)方法进行结构和热性能的表征,确定其玻璃转变温度Tg,晶化开始温度Tx和熔点温度Tm,得到过冷液相区温度范围。
     研究块体非晶合金Zr_(55)Al_(10)Ni_5Cu_(30)在过冷液相区的形变行为,采用Zwick/Roell力学性能试验机进行高温压缩实验,研究应变速率、温度、径高比、尺寸大小对非晶合金过冷液相区力学性能的影响。实验结果表明,过冷液相区非晶力学行为对温度和应变速率都很敏感。也研究了径高比对过冷液相区非晶力学性能的影响,高径比太大,会产生失稳,流动应力值较大,径高比较小,接触表面的影响增大,则摩擦影响较大,流动应力值也较大。尺寸大小的影响,当坯料尺寸减至1mm时,块体非晶合金的流变行为受尺寸效应的影响,流动应力值增大。
     探讨Zr_(055)Cu_(30)Al_(10)Ni_5块体非晶在过冷液相区的变形规律,以粘度和应变速率敏感系数为主要参数,研究其过冷液相区的牛顿流变与非牛顿流变的转变。采用X射线衍射分析(XRD)的方法,研究其高温塑性变形中的晶化行为,在出现应力过冲前后晶化现象有明显差异,而应力过冲的峰值与温度和应变速率都有关,则晶化行为也是依赖于温度和应变速率的过程。分别拟合了三种流动力学模型(扩展指数模型,自由体积模型,虚应力模型)的本构方程。并在这些流动力学模型的基础上,提出Maxwell-Pulse唯象型本构关系,用以描述该材料过冷液相区应力应变曲线。
     基于MSC.Marc有限元模拟软件,检验该本构方程。通过采用热力耦合模型模拟块体非晶合金高温压缩实验,分别分析了应力场和温度场的分布及数值大小,分析结果表明: Maxwell-Pulse方程能很好的拟合Zr基非晶过冷液相区的变形行为,不但能拟合牛顿流变区域变形行为,也可以拟合牛顿流变向非牛顿流变转变的变形行为。从温度场的分布可以推断块体非晶发生部分结晶或者生成纳米晶首先发生在模具与材料接触表面上,且沿径向分布方向,越靠近试样边缘区域温度越高。
Bulk Metallic Glass is a new type of metal material, the unique atom structure contributes to its excellent performance such as high strength, high rigidity, decay resistance, wear resistence and the capability that is easy to near net shaping etc. Zr-based bulk metallic glass (Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10.0)Be_(22.5), Zr_(55)Al_(10)Ni_5Cu_(30)) has a very good glass forming ability. The deformation theory and forming ability of Zr_(55)Al_(10)Ni_5Cu_(30) in Suprecooled liquid region was choosen for our research work. Based on some classic constitutive equations and compressive experiment in high temperature, a Maxwell-Pulse constitutive equation was proposed, and be proved by using Finite Element Method.
     In this thesis, in order to acquire Zr_(55)Al_(10)Ni_5Cu_(30) bulk metallic glass, copper mould casting method was introduced. The structure and thermal ability was measured by XRD and DSC methods. So its glass transition temperature, crystallization temperature and the supercooled liquid can be ensured.
     By doing different compression experiments of the strain rate, temperature, diameter- high- ratio, and the size of the amorphous alloy with Zwick/Roell mechanical testing maching, deformation behavior of Zr_(55)Al_(10)Ni_5Cu_(30) bulk amorphous alloys in supercooled liquid was researched.The experimental results showed that mechanical behavior of BMG in the supercooled liquid were very sensitive for temperature and strain rates. The factor of diameter-high ratio was also studied: large diameter-high ratio would leads to instability; while small diameter-high ratio with the impact of contact surface increased, resulted in a greater friction and flow stess. Take size effect into consideration, when the size of the billet was reduced to 1mm, the bulk metallic alloy affected by the size effect and its flow stress increases.
     In order to discuss the deformation of Zr_(55)Al_(10)Ni_5Cu_(30) in supercooled liquid, viscosity and strain rate sensitivity coefficient were chosen for the main parameters to study the Newtonian flow and non-Newtonian flow changes. X-ray diffraction (XRD) method was used to study the crystallization behavior in the high-temperature plastic deformation, and it performed significant different before and after stress overshoot phenomenon. As the stress peak was related with the temperature and strain rate, then crystallization behavior was also dependent on temperature and strain rate. Fitting the three flow constitutive equations (Arrhenius function, free volume model, fictive stress model), and constructed a Maxwell-Pulse phenomenological constitutive relation to describe the supercooled liquid region stress-strain curves.
     The thermal-merchanical coupling models of MSC.Marc was used to examine the Maxwell-Pulse equation and simulate the compressive behavior of bulk metallic alloy in high-temperature experiments, respectively, analyzed the stress and temperature distribution and the value, the results of the analysis show that: Maxwell-Pulse equation can fit well with the experimental result, including Newton flow behavior and the change from Newton flow to non-Newtonian flow. The analysis of temperature distribution inferred that crystallization may occured first on the contact surface between materials and the mold. And along the radial direction, the more close to the edge, the higher temperature got.
引文
[1] Luborsky F E. Amorphous Metallic Alloys. in: Luborsky F E ed. Amorphous Metallic Alloys. London: Butterworths, 1983. 2~3
    [2] Wang W.H., Dong C., Shek C.H. Bulk Metallic Glasses. Mater Sci Eng R 2004, 44: 45~89.
    [3] Klements W, Willens R H, Duwez P. Non-Crystalline Structure in Solidified Gold-Silicon Alloys, Nature, 1960, 187: 869~870
    [4] Chen H.S. The Glass Transition Temperature in Glassy Alloys: Effects of Atomic Sizes and the Heats of Mixing. Acta Metall, 1974, 22(1): 897~900.
    [5] Drehman A.L., Greer A.L., D.Tumbull. Bulk formation of a metallic glass: Pd40Ni40P20. Appl.Phys.Let.1982, 41: 716~717.
    [6] Kui H.W., Greer A.L., Turnbull D. Formation of bulk metallic glass by fluxing, Appl. Phys. Lett.,1984, 45(6):615~616
    [7] Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region. Mater Trans JIM, 1989, 30 (12): 965~972
    [8] Inoue A. High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates (Overview), Mater Trans. JIM 1995, 36: 866
    [9] Inoue A., Zhang T., Nishiyama N. Preparation of 16 mm diameter rod of amorphous Zr65Al 7.5Ni10Cu 17.5 alloy. Mater Trans JIM, 1993, 34(12): 1234
    [10] Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5 Ni10Be22.5. Appl Phys Lett, 1993, 63 (17): 2342~2344
    [11] Inoue A. Nishiyama N. Kimura H. Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Mater. Trans.JIM 1997, 38:179
    [12] Inoue A., Zhang T. Fabrication of Bulk Glassy Zr55Al10Ni5Cu30 Alloy of 30 mm in Diameter by a Suction Casting Method, Mater.Trans., JIM., 1996, 37 (2): 185~187.
    [13] Xu D., Duan G.., Johnson W.L. Unusual Glass-Forming Ability of Bulk Amorphous Alloys Based on Ordinary Metal Copper. Phys. Rev. Lett. 2004, 92: 245504
    [14] Jia P., Guo H., Li Y., Xu J., Ma E., A new Cu-Hf-Al ternary bulk metallic glass with high glass forming ability and ductility, Scripta Mater. 2006, 54 (12): 2165~2168.
    [15] Ma H., Shi L.L., Xu J., Li Y., Ma E.: Improving glass-forming ability of Mg-Cu-Y via substitutional alloying: the effects of Ag versus Ni, J. Mater. Res. 2006, 21: 2204.
    [16] Park E.S., Kyeong J.S., Kim D.H. Enhanced glass forming ability and plasticity in Mg-based bulk metallic glasses. Mater. Sci. Eng. A 2007,225: 449~451
    [17] Ponnambalam V, Poon S J. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J Mater Res, 2004,19:1320~1326
    [18] Shen J., Chen Q.J., Sun J.F., Fan H.B., Wang G. Exceptionally High Glass-Forming Ability of a FeCoCrMoCBY Alloy. Appl Phys Lett, 2005, 86(15): 151907~151907
    [19] Men H., Pang S.J., Zhang T., Thermal stability and microhardness of new Co-based bulk metallic glasses. Mater. Sci. Eng. A, 2007, 538: 449~451
    [20] Guo F.Q., Wang H.J., Poon S.J., Shiflet G.J., Ductile titanium-based glassy alloy ingots, Appl. Phys. Lett., 2005, 86: 091907
    [21] Tan H., Zhang Y., Ma D., Feng Y.P., Li Y. Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La–Al–(Cu, Ni) pseudo ternary system. Acta Mater. 2003,51: 4551
    [22] Guo F.Q. et al., Metallic glass ingots based on yttrium. Appl. Phys. Lett. 2003, 83: 2575.
    [23] Liu Y. H., Wang G., Wang R.J., Zhao D.Q., Pan M.X., Wang W.H. Super Plastic Bulk Metallic Glasses at Room Temperature. Science., 2007, 315:1385
    [24] Zhang Z.F., Eckert J., Schultz L. Difference in compressive and tensile fracture mechanisms of bulk metallic glass. Acta Materialia, 2003(51):1167~1179
    [25]慧希东,陈国良编.块体非晶合金.化学工业出版社,2007,276: 4~10
    [26] Inoue A, Zhang T, Masumoto T. Glass-forming ability of alloys. J Non-Cryst Solids, 1993, 156: 473~480.
    [27] Weinberg M.C. Glass-forming ability and glass stability in simple systems, J. Non-. Cryst. Solids 1994,167:81~88
    [28] Lu Z.P., Liu C.T. A new glass-forming ability criterion for bulk metallic glasses. Acta.Materialia,2002,50:3501~3512
    [29] Jiang Q.K., Zhang G.Q., Chen L.Y., Wu J.Z., Zhang H.G., Jiang J.Z. Glass formability, thermal stability and mechanical properties of La-based bulk metallic glasses., Journal of Alloys and Compounds, 2006,424(1-2):183~186
    [30] Zhang G.Q., Jiang Q.K., Nie X.P., Chen L.Y. et al., Tension and stress relaxation behavior of a La-based bulk metallic glass. J. Mater. Res. 2007, 22:3303~3308
    [31] Ma H., Shi L.L., Xu J., Li Y., Ma E. Discovering inch-diameter metallic glasses in three-dimensional composition space., Appl. Phys. Lett. 2005, 87: 181915.
    [32] Ma H., Xu J., Ma E. Mg-based bulk metallic glass composites with plasticity and high strength. Appl Phys Lett, 2004, 83:2793~2795.
    [33] Inoue A., Shen B.L., Koshiba H., Kato H., Yavari A.R. Ultra-High Strength above 5000 MPa and Soft Magnetic Properties of Co-Fe-Ta-B Bulk Glassy Alloys. Acta. Mater., 2004, 52:1631-1637
    [34] Kawamura Y., Nakamura T., Inoue A. et al. High-Strain-rate Superplasticity due to Newtonian Viscous Flow in La55Al25Ni20 Metallic Glass. Mater. Trans., JIM, 1999, 40(8): 794~803
    [35] Liu L., Qiu C.L., Huang C.Y., Yu Y., Huang H., Zhang S.M. Biocompatibility of Ni-free Zr-based bulk metallic glasses. Intermetallic. 2009,17(4):235~240
    [36] http://www.liquidmetal.com/
    [37]块体非晶合金滚动轴承及其制造工艺发明人:马明臻,刘日平,王文魁,申请人:燕山大学,发明专利中华人民共和国国家知识产权局2004年
    [38]块体非晶合金铸件的连续制造工艺发明人:刘日平;王文魁,申请人:燕山大学,发明专利中华人民共和国国家知识产权局2004年
    [39] He G., Lu J., Bian Z. et al. Fracture morphology and quenched-in precipitates induced embrittlement in a Zr-base bulk glass. Mater. Trans. JIM, 2001, 42(2): 356~364
    [40] Zhang Z.F., Eckert J., Schultz L., Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 2003, 51 (4):1167~1179.
    [41] Mukai T., Nieh T.G., Kawamura Y., Inoue A., Higashi K. Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension. Scripta Mater 2002, 46: 43
    [42] Donovan P.E. Compressive deformation of amorphous Pd40Ni40P20. Mater. Sci. Eng.1988, 98: 487
    [43] Zhang Z.F., Eckert J. Unified Tensile Fracture Criterion, Phys. Rev. Lett. 2005, 94:094301
    [44] Polk D. E. And Turnbull D., Flow of melt and glass forms of metallic alloys. Acta metal., 1972, 20: 493-498
    [45] Leamy H.J., Wang T.T., Chen H.S. Plastic flow and fracture of metallic glass. Metall. Trans., 1972, 3 (3): 699~708.
    [46] Spaepen F., Turnbull D., A mechanism for the flow and fracture of metallic glasses, Scripta. Mater., 1974, 8:563~568
    [47] Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metall., 1977,25:407~415.
    [48] Bletry M., Guyot P., Brechet Y., et al. Transient regimes during high temperature deformation of a bulk metallic glass: A free volume approach., Acta. Mater., 2007, 55: 6331~6337
    [49] Johnson W.L., Lu J., Demetriou M.D. Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids - A self consistent dynamic free volume model. Intermetallics, 2002, 10 (11-12):1039~1046
    [50] Kato H, Kawamura Y, Inoue A, et al. Modeling of Stress-Strain Curves for Pd40Ni10Cu30P20 Glass Alloy under Constant Strain-Rate Deformation, Mater Sci Eng, 2001, A304~306:758
    [51] Hidemi Kato, Yoshihito Kawamura, Ho-Sou Chen and Akihisa Inoue. A fictive Stress Model Calculation of Nonlinear Viscoelastic Behaviors in a Zr-Based Glassy Alloy: Stress Growth and Relaxation. Appl. Phys. 2000, 39:5184~5187
    [52] David Henanna, Lallit Anand. A constitutive theory for the mechanical response of amorphous metals at high temperatures spanning the glass transition temperature: Application to microscale thermoplastic forming. Acta. Mater. 2008(56):3290
    [53] Yoshihito Kawamura, Toshihim Nakamura, Hidemi Kato, Hideo Mano, Akihisa Inoue, Newtonian and non-Newtonian viscosity of supercooled liquid in metallic glasses. Mater. Sci. & Eng. 2001, A304-306:674~678.
    [54] Bletry M., Guyot P., Brechet Y., Blandin JJ., Homogeneous deformation of Zr-Ti-Al-Cu-Ni bulk metallic glasses.,Intermetallics., 2004, 12:: 1051~1055
    [55]苑伟政,马柄和,微机械与微细加工技术,西安:西北工业大学出版社,2000
    [56]王春举,曲东升,周健,单德彬,郭斌,孙立宁,精密微塑性成形系统的研制,锻压技术,2005,3:56~59
    [57] Inoue A., Kawase D., Tsai A.P., Zhang T. and Masutmoto T. Stability and transformation to crystalline phases of amorphous Zr-Al-Cu with significant supercooled liquid region. Mater. Sci. Eng.1994,178:255~263
    [58] Bian Z., He G., Chen G.L. Investigation of shear bands under compressive testing for Zr-base bulk metallic glasses containing nanocrystals., Scripta Mater., 2002, 46 (6):407~412
    [59] Kawamura Y., Shibata T., Inoue A., Masumoto T. Workability of the supercooled liquid in the Zr65Cu15Al10Ni10 bulk metallic glass Acta. Meter. 1998,46:253
    [60] Liu L., Sun M., Chen Q., Liu B., Qiu Ch. L. Crystallization, mechanical and corrosion properties of Zr-Cu-Ni-Al-Nb bulk glassy alloy. Acta. Physica. China 2006, 55(04):1930~1935
    [61] Masumoto T. Recent progress in amorphous metallic materials in Japen [J]. Mater. Sci. Eng. A, 1994,179(1):8~16
    [62]王建青,梁红梅,宗海涛,海顺星,Zr55Al10Ni5Cu30大块金属玻璃的晶化行为研究,燕山大学学报,2008,32(4):326~329
    [63] Bakke E., Busch R., Johnson W. L. The viscosity of the Zr46. 75Ti8. 25Cu7. 5Ni10 Be27. 5 bulk metallic glass forming alloy in the supercooled liquid. Appl. Phys. Lett. , 1995, 67: 3260~3262
    [64] Busch R., Bakke E., Johnson W. L. Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46. 75Ti8. 25Cu7. 5Ni10Be27. 5 bulk metallic glass forming alloy. Acta Mater. , 1998, 46: 4725~4736
    [65] Waniuk A., Busch R., Masuhr A., et al. Equilibrium viscosity of the Zr41. 2Ti13. 8Cu12.5 Ni10Be22. 5 bulk metallic glass-forming liquid and viscous flow during relaxation, phase separation, and primary crystallization. Acta Mater. , 1998, 46: 5229~5240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700