聚酰胺6粘结铁氧体的结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了塑料基体、偶联剂、润滑剂以及加工过程对挤出、注射成型制备的聚酰胺6(PA6)粘结铁氧体体系结构与性能的影响。首先,在不同工艺条件下制备出粘结磁体,然后使用双毛细管流变仪、差示扫描量热仪、扫描电镜、拉力机等仪器,分析了不同改性方法、偶联剂的类型及其用量、润滑剂的类型及其用量以及干燥过程对粘结磁体的流变性能、力学性能和微观形态的影响。实验结果表明:
     PA6及PA6/PA610(聚酰胺610)共混体系,在熔融流动过程中,特别是在高剪切速率阶段符合对数律,并且发现该体系的拉伸粘度(ηe)与剪切速率的平方除以拉伸速率(t)存在着精确的ηe ~1/t关系。
     铁氧体/PA6复合物的非等温结晶行为与铁氧体含量、偶联剂和冷却速率密切相关。掺入PA6基体中铁氧体颗粒的效应有:1)作为物理阻碍物阻碍了晶核形成并降低了结晶速率;2)由于磁粉与PA6之间的不相容性,导致在相界面上存在缝隙,使结晶活化能降低,结晶容易发生,在低磁粉填充量阶段反而有利于结晶。磁粉经硅烷偶联剂KH-792处理后,作为异相成核剂,导致结晶速率和结晶度的增加。
     将磁粉表面使用偶联剂包覆,可以显著地改善聚合物基体和磁粉之间的相容性,提高界面结合能力,宏观上表现为增进粘结磁体的机械性能。表面处理工艺也会提高磁粉在基体中的分散,提高了粘结磁体熔体的加工稳定性。由于界面结合力增强,使得粘结磁体熔体粘度增大,熔体流动稳定性增强,可以稳定的工业化制备性能均一的粘结磁体产品。
The influence of polymer matrices, coupling agents, lubricants and processing technology on the structure and properties of polyamide 6 (PA6) bonded ferrites fabricated by extrusion/injection molding were systematically studied in this paper. At first, the bonded magnet has been obtained under various technological conditions. Then, the influence of these conditions, such as the modified methods of polymer matrices, types and contents of coupling agents, types and contents of lubricants, and processing technology on the rheological, mechanical and micro-structural properties of PA6 bonded ferrites were investigated using modern apparatus such as high pressure capillary rheometer, scanning electron microscope (SEM), differential scanning calorimetry (DSC) and tensile testing machine etc. The results indicated that,
     It was found that rheological data of PA6 and PA6/PA610 blends fit well with the logarithmic law during the shear flow, especially in the high-shear-rate region. What was more, extensional viscosity obtained precise mathematical relationship with squared shear rate divided by extensional rate during the extensional flow of PA6 and PA6/PA610 blends.
     There were significant dependence of non-isothermal crystallization behavior and kinetics of ferrite/PA6 composites on the ferrite concentration, coupling agent and cooling rate. The effect of ferrites into PA6 matrix was: 1.the presence of ferrite the PA6 matrix act as physical obstacles hindering the nucleation and decreasing the crystallization rate; 2. due to strongly incompatibility between ferrites and PA6 matrix, there were some cavities on the phase interface which decreased the crystallization activation energy and further ease the crystallization process. However, the ferrite treated with silane coupling agent KH-792 in the PA6 matrix acting as heterogeneous nuclei, resulted in increasing the crystallization rate and degree of crystallinity, due to hydrophobic interfacial property.
     Incorporation of coupling agents onto the surface of ferrite powder could significantly improve the compatibility between polymer matrix and magnetic powder, which caused the interfacial adhesion stronger, thus further improved the mechanical properties. Surface treatment also improved the dispersion of magnetic powder in polyamide matrix, further enhanced the processing stability of the compound. The enhanced interfacial adhesion was correlated with higher viscosity and with stronger flow stability of bonded magnets material, for the potential industrial products with long-term stable performance.
引文
[1]黄丽,郑旖旎,李效玉等,磁性树脂基复合材料的研究进展[J],高分子通报,2005,6:105-111
    [2] Drozzina V., Janus R., A Magnetic Alloy with Very Large Coercivity Force[J], Nature, 1935:36-37.
    [3] Chen D. X., Brug J. A., Goldfarb R. B., Demagnetizing Factors for Cylinders[J], IEEE T Magn, 1991,27: 3601-19
    [4] Andriamandroso D., Matar S., Demazeau G., et al., Morphological And Magnetic Properties of Ru, Os and Ir-substituted Fe4N[J], IEEE T Magn, 1999, 29: 2-6.
    [5] Viazrouge, P., Cros, J., Chalifour, Y., et al., New Structures of Brush and Brushless Motors using Soft Magnetic Composites for Automotive Applications[J], SAE 2001 World Congress, Detroit, Michigan, 2001, 2001-01-0400
    [6] Lafferty M., Plastic Magnets Could Be An Immediate Turn-On For Computers[C], Columbus Dispatch., Apr. 29 2003:pg 07A
    [7] Groenfelder M., Principles And Uses of Permanent Magnets, Plastic-bonded Magnets[J], Magnetic Materials, Verlag TüV-Rheinland, 1990:34.
    [8] Ehrenstein, G. W., Drummer, D., Rationally Integration of Magnetically Polymer for Sensor Application[C], 59 Annual Technical Conference, Dallas USA, 2001:688-692.
    [9] Xiao J., Otaigbe, J. U., Polymer Bonded Magnets: Effect of Liquid Crystal Polymer and Surface Modification on Magneto-Mechanical Properties[J], Polym Composite, 2000, 21(2): 332-342
    [10] Xiao J., Otaigbe J. U., Effect of Coupling Agent and Filler Particle Size on Melt Rheology of Polymer-bonded NdFeB-Magnet[J], Polym Composite, 1999, 20(5): 696-704.
    [11]张晓,各向同性铁氧体粘结磁体的制备工艺及性能研究[D],西安理工大学硕士学位论文,2004.3
    [12] Yu R. H., High-temperature AC Magnetic Properties of FeCo-based Soft Magnets[J], J Magn Magn Mater, 2004, 284: 140-144.
    [13] Li B. W., Shen Y., Yue Z. X., et al., Influence of Particle Size on Electromagnetic Behavior and Microwave Absorption Properties of Z-type Ba-ferrite/Polymer Composites[J], J Magn Magn Mater, 2007, 313: 322-328.
    [14] Mou?ka R., Lopatin A. V., Kazantseva N. E., Enhancement of Magnetic Losses in Hybrid Polymer Composites with MnZn-Ferrite and Conductive Fillers[J], J Mater Sci, 2007, 42: 9480-9490.
    [15] Razzaq M. Y., Anhalt M., Frormann L., et al., Thermal, Electrical and Magnetic Studies of Magnetite Filled Polyurethane Shape Memory Polymers[J], Mater Sci Eng, 2007, 444: 227-235.
    [16] Conti S., Lenz M., Rumpf M., Macroscopic Behaviour of Magnetic Shape-memory Polycrystals and Polymer Composites[J], Mate Sci Eng A, 2008, 481-482: 351-355.
    [17] Hadjipanayis G. C., Zhang W. T., Chui Y., et al., High Temperature 2:17 Magnets: Relationship of Magnetic Properties to Microstructure and Processing[J], IEEE T Magn, 36(5): 3382-3387.
    [18] Dutoit B. M., Besse P. A., Blanchard H., et al., High Performance Micromachined Sm-Co Polymer Bonded Magnets[J], Sens Act, 1999, 77: 178-182.
    [19] Cho E. K., Kwon H. T., Cho E. M., et al., The Control of Nano-grain Size and MagneticProperties of Fe73Si16B7Nb3Cu1 Soft Magnetic Powder Cores[J], Mater Sci Eng, 2007, A:449-451, 368-370.
    [20] Kramer M. J., Xu Y., Dennis K. W., et al., Development of Improved Powder for Bonded Permanent Magnets[J], J Magn Magn Mater, 2003, 39(5): 2971-2973.
    [21] Liu A. Z., Rahman I. Z., Rahman M. A., et al., Fabrication and Measurements on Polymer Bonded NdFeB Magnets[J], J Mate Process Tech, 1996, 56: 571-580.
    [22] Ghandehari, Mohammad H., Rare Earth-Iron-Boron Compositions for Polymer-Bonded Magnets[P], US, 75/254, 5004499, May 26 1989.
    [23] Ghandehari, Mohammad H., Method for Producing Polymer-Bonded Magnets from Rare Earth-Iron-Boron Compositions[P], US, 148/101,4834812, November 2 1987.
    [24] Barbosa L. P., Takiishi H., Lima L. F. et al., The effect of Niobium Content on The Magnetic Properties And Microstructures of PrFeCoBNb HDDR Magnets and Alloys[J], J Magn Magn Mater, 2004, 283:263-269.
    [25] Nakadaira M., Saito R, Kimura T., Excess Li Ions In A Small Graphite Cluster[J], J Mater Res, 2005, 12(5): 1367-1375.
    [26] Brown D. N., Smith B., Ma B. M., et al., The Dependence of Magnetic Properties and Hot Workability of Rare Earth-Iron-Boride Magnets upon Composition[J], IEEE T Magn, 2004, 40(4): 2895-2897.
    [27] Kramer M. J., Xu Y., Dennis K. W., et al., Development of Improved Powder for Bonded Permanent Magnets[J], IEEE T Magn, 2003, 39(5): 2971-2973.
    [28] Liu W., Yang Y. G., Meng Y., et al., The Effects of Surface Modification on the Properties of Bonded NdFeB Magnets[J], Mater Trans, 2003, 44(6):1159-1162.
    [29] Yamashita F., Ogushi M., Nakano M, et al., Highly Dense and Thin Composite-Bonded Magnets with Spherical Sm2Fe17N3 Fine Powder[J], J Magn Magn Mater, 2007, 310: 2578-2580.
    [30] Yamashita F., Kawamura K., Okada Y., et al., Composite Bonded Magnets with Controlled Anisotropy Directions Prepared by Viscous Deformation Technique[J], J Magn Magn Mater, 2007, 316: e101-e104.
    [31] Ishii R., Miyoshi T., Kanekiyo H., et al., High-coercivity Nanocomposite Permanent Magnet Based on Nd–Fe–B–Ti–C with Cr Addition for High-temperature Applications[J], J Magn Magn Mater, 2007, 312:410-413.
    [32] Collocott S. J., Dunlop J. B., A Comparison of The Magnetic Properties of Commercial HDDR Powder With Those of Other Commercial Sintered Rare-earth Magnets[J], J Phys D: Appl Phys, 1997, 30: 1477-1482.
    [33] Izumi H., Machida K., Shiomi A., et al., Preparation of Sm2Fe17Nx Powders and Their Bonded Magnets with High-Performance Permanent Magnetic Characteristics[J], Chem Mater, 1997, 9(12): 2759-2767.
    [34] Noguchi K., Nishimura M., Machida K., et al., Magnetic Property and Stability of Zn/Sm2Fe17Nx Bonded Magnets Using The In Metal Derived from In(C2H5)3 as a Binder[J], Chem Mater, 1999, 11: 2527-2532.
    [35] Zhang S. Y., Xu H., Ni J. S., et al., Effect of Gallium Addition on Magnetic Properties of Nd2Fe14B-Based/α-Fe Nanocomposite Magnets[J], J Rare Earth, 2007, 25: 74-78.
    [36] Yamashita F., Watanabe A., Tsutsumi S., et al., Highly Dense Rare-earth Hybrid Bonded-MagnetConsolidated under Heat and Transverse Field Configuration[J], J Magn Magn Mater, 2004, 272-276: e1865-e1866.
    [37] Yamashita F., Fukunaga H., Radially Anisotropic Sm2Fe17N3/Nd2Fe14B Hybrid Bonded-Magnets Using Self-organization Technique[J], J Alloy Compd, 2006, 408-412: 1350-1354.
    [38] Yamashita F., Environmental Designs for Rare-Earth Bonded Magnets And Their Small Motors[J], Ceramics Japan, 2000, 35:841. (in Japanese)
    [39] Suzuki S., Miura T., Magnetic Properties of Sm2Fe17Nx Powder and Bonded Magnet[J], IEEE T Magn, 28(2): 994-997.
    [40] Miura K., Masuda M., Itoh M., et al., Microwave Absorption Properties of The Nano-composite Powders Recovered from Nd-Fe-B Bonded Magnet Scraps[J], J Alloy Compd, 2006, 408-412: 1391-1395.
    [41] Xiao J., Otaigbe J., Polymer-bonded Magnets III. Effect of Surface Modification and Particle Size on The Improved Oxidation and Corrosion Resistance of Magnetic Rare Earth Fillers[J], J Alloy Compd, 2000, 309: 100-106.
    [42] Xiao J., Otaigbe J. U., Jiles D. C., Modeling of Magnetic Properties of Polymer Bonded Nd-Fe-B Magnets with Surface Modifications[J], J Magn Magn Mater, 2000, 218:60-66.
    [43] Garrell M. G., Ma B. M., Shih A. J., et al., Mechanical Properties of Polyphenylene-sulfide (PPS) Bonded Nd-Fe-B Permanent Magnets[J], Mater Sci Engin, 2003, 359(1-2): 375-383.
    [44] Matutes-aquino J., Diaz-castanon S., Mirabal-garcia M., Et al., Synthesis by Coprecipitation And Study of Barium Hexaferrite Powders[J], Scripta Mater, 2000, 42(3): 295-299.
    [45] Pelí?kováM., Vil?ákováJ., Mou?ka R., Et al., Effect of Coating of Graphite Particles with Polyaniline Base on Charge Transport in Epoxy-resin Composites[J], J Mater Sci,2007, 42(13):4942-4946.
    [46] Kokabi M., Arabgol F., Manteghian M., Nd2Fe14B Permanent Polymeric Composite Magnets[J], Iran Polym J, 2005, 14(1):71-79.
    [47] Matutes-Aquino J., Rios-Jara D., Ayala-valenzuela O., Et al., Composition Dependence of The Magnetic Properties of Bonded Magnets of Strontium Hexaferrite-Polyvinyl Chloride[J], Polym Composite, 2000, 21(5): 734-738.
    [48] Yanez-Flores I. G., Betancourt-Galindo R., Matutes Aquino J. A., Preparation and Characterization of Magnetic PVC Nanocomposites[J], J Non-Cryst Solids, 2007, 353: 799-781.
    [49] Ayala-Valenzuela O., Matutes-Aquino J., Betancourt-Galindo R., Magnetite-Cobalt Ferrite Nanoparticles for Kerosene-based Magnetic Fluids[J], J Magn Magn Mater, 2005, 294: 37-40.
    [50] Tattam C., Williams A. J., Hay J. N., Improvement in the Mechanical Properties of PTFE Bonded Nd-Fe-B Magnets by Heat Treatment[J], J Magn Magn Mater, 1996, 154(3): 328-332.
    [51] Cho E. K., Kwon H. T., Cho E. M., et al., The Control of Nano-grain Size And Magnetic Properties of Fe73Si16B7Nb3Cu1 Soft Magnetic Powder Cores[J], Mat Sci Eng A-Struct, 2007, A: 449-451: 368-370.
    [52] Zhang H. W., Hu B. P., Han Z. F., et al., Magnetic Properties of NdFe10Mo2N Bonded Magnet[J], Phys Status Solidi A., 1997, 161:469-474
    [53] Yudin V. E., Otaigbe J. U., Bui T. X., et al., Polyimide Bonded Magnets: Processing And Properties[J]. J Appl Polym Sci, 2003, 88:3151-3158.
    [54] Svetlichnyi, V. M., Zhukova, T. I., Kudryavtsev V. V., et al., Aromatic Polyetherimides asPromising Fusible Film Binders[J], Polym Eng Sci, 1995, 35: 1321-1324.
    [55] Ohmori K., Hayashi S., Yoshizawa S., Injection-molded Sm-Fe-N Anisotropic Magnets Using Unsaturated Polyester Resin[J], J Alloy Compd, 2006, 408-412: 1359-1362.
    [56] Rozenberg Y. I., Rosenberg Y. R., Krylov V., et al., Resin-bonded Permanent Magnetic Films with Out-of-plane Magnetization for MEMS Applications[J], J Magn Magn Mater, 2006, 305: 357-360.
    [57] Yamashita F., Tsutsumi S., Fukunaga H., Radially Anisotropic Ring/Arc-shaped Rare-Earth Bonded Magnets Using a Self-organization Technique[J], IEEE T Magn, 2004, 40:2059-2061.
    [58] Ormerod J., Constantinides S., Bonded Permanent Magnets: Current Status and Future Opportunities[J], J Appl Phys, 1997,81: 4816.
    [59] Otaigbe J. U., Xiao J., Kim H., Influence of Filler Surface Treatments on Processability and Properties of Polymer-bonded Nd-Fe-B Magnets[J]. J Mater Sci Lett, 1999, 18:329-332.
    [60] Kim A. S., Effect of Oxygen on Magnetic Properties of Nd-Fe-B Magnets[J], J Appl Phys, 1988, 64(10):3376-3379.
    [61] Costa I., Oliveira M. C. L., De Melo H. G., et al, The Effect of The Magnetic Field on The Corrosion Behavior of Nd–Fe–B Permanent Magnets[J], J Magn Magn Mater, 2004, 278:348-358.
    [62] Rodewald W., Wall B., Fernengel W., Et al, Temperature Stability of Flexible RE Magnet-foils[J], IEEE T Magn, 1999, 35(5): 3307-3309.
    [63] Tattam C., Williams A. J., Hay J. N., et al, The Corrosion Behaviour of Uncoated Bonded Nd-Fe-B Magnets in Humid Environments[J], J Magn Magn Mater, 1996, 152(3): 275-278.
    [64] Dobrzaňski L. A., Drak M., Properties of Composite Materials with Polymer Matrix Reinforced with Nd-Fe-B Hard Magnetic Particles[J], J Mater Process Tech, 2006, 175:149-156.
    [65] Rada M., Kardelky S., Mazilu I., et al, Corrosion Behavior of Polymer-Bonded NdFeB-Based Nanocrystalline Magnets[J], IEEE T Magn, 2004, 40(4):2864-2866.
    [66]Yue M., Zhang J. X., Liu W. Q., et a1., Chemical Stability and Microstructure of Nd-Fe-B Magnet Prepared by Spark Plasma Sintering[J], J Magn Magn Mater,271(23): 364-368.
    [67]Yue M., Zhang J. X., Xiao Y. F., et al, A New Kind of NdFeB Magnet Prepared by Spark Plasma Sintering[J], IEEE T Magn, 2003, 39(6): 3551-3558.
    [68]Mamedov V., Spark Plasma Sintering as Advanced PM Sintering Method[J], Powder Metallurgy, 2002, 45(4):322-326.
    [69] Xiao J., Otaigbe J. U., Polymer-Bonded Magnets : Part I. Analytic Thermogravimetry to Determine The Effect of Surface Modification on Dispersion of Nd-Fe-B Fillers[J], J Mater Res, 1999, 14(7):2893-2897.
    [70] Farris R. J., Prediction of the Viscosity of Multimodal Suspensions from Unimodal Viscosity Data[J], J RheoL, 1968, 12:281.
    [71] Zheng Y. Z., Tong M. L., Zhang W. X., Chen X. M., Assembling Magnetic Nanowires into Networks: a Layered CoII Carboxylate Coordination Polymer Exhibiting Single-Chain-Magnet Behavior[J], Angew. Chem. Int. Ed, 2006, 45(38): 6310-6314.
    [72] Guschl P. C., Kim H. S, Otaigbe J. U., Effects of A Nd-Fe-B Magnetic Filler on The Crystallization of Poly(phenylene sulfide) [J]. J Appl Polym Sci, 2002, 83:1091-1102.
    [73] Goykhman M. Y., Svetlichnyi V. M., Kudryavtsev V. V., et al. Thermally Stable Polyimide Binders from Aromatic Dianhydrides and Acetyl Derivatives of Aromatic Diamines: FormationMechanism[J]. Polym Eng Sci, 1997, 37: 1381-1386.
    [74]青岛科技大学.一种具有良好加工性能的铁氧体粘结磁体的制备方法:中国,200810016694.2[P].2008.6.12.
    [75] Schliesch T., Polymer-bonded Magnet - Materials, Design and Test, High Filled Plastic with Designed Magnetic, Electric and Thermal Properties[M], Springer- VDI-Verlag, Düsseldorf Germany, 2002: 179-210.
    [76] Groenfelder M., Principles and Uses of Permanent Magnets, Plastic-bonded Magnets, Magnetic Materials[M], Verlag TüV-Rheinland, 1990: 34.
    [77] Meissner J., Hostettler J., A New Elongational Rheometer for Polymer Melts and other Highly Viscoelastic Liquids[J], Rheo Acta, 2005, 33(1):1-21.
    [78]吴其晔,巫静安.高分子材料流变学[M].北京:高等教育出版社,2002,36-47,194-198,281-304.
    [79]宋大余,粘结磁体喂料流变学及应用[D],四川大学博士学位论文, 2003, 57-61.
    [80] Lenk R. S., Polymer rheology[M], Applied Science Publishers ltd. London. 1978, 1-3.
    [81] Bersted B. H., Refinement of The Converging Flow Method of Measuring Extensional Viscosity in Polymers[J], Polym Eng Sci, 1993, 33(16):1079-1083.
    [82] Cogswell F. N., Converging Flow of Polymer Melts in Extrusion Dies[J]. Polym Eng Sci, 1972, 12: 64-67.
    [83] Fu Q., Research on Extensional Viscosity of Liquid Crystalline Polymer[J]. J Southwest U Nationalit Nat Sci Ed, 2006, 32(6):1223-1226.
    [84] Wang D. P., Jiang C. Y., Li P. J., et al., Peculiar Shear Flow Rheological Characterization of Nylon 6 and its Nylon 610-based Blends[J]. Int J Polym Anal Ch, 2008, 13(6): 441-446.
    [85] Han S. F., Convective Derivative Approach to Constitutive Equation for Liquid Crystalline Polymer and its Flow Bifurcation[C]. Prof. of 3rd Pacific Rim Conference on Rheology, Vancouver, Canada,2001.
    [86] Ramalingam S., Armstrong R. C., Analysis of Isothermal Spinning of Liquid Crystalline Polymers[J], J Rheol, 1993, 37(6): 1141-1169.
    [87] Gotsis A. D., Odriozola M. A. Extensional Viscosity of a Thermotropic Liquid Crystalline Polymer[J], J Rheol, 2000, 44(5): 1205-1225.
    [88] Han S. f.. Constitutive equation of Maxwell-Oldroyd Type for Liquid Crystaline Polymer And Its Fluid Flow[C]. Proc of 3rd Int Conference on Fluid Mechanics, Beijing, Beijing Institute of Technology Press,1998.
    [89] Causin V., Marega C., Marigo A., Morphology, Structure and Properties of a Poly (1-butene)/Montmorillonite Nanocomposite[J], Polymer, 2003, 47(13): 4773-4780.
    [90] Huang Y.; Li W.; Yan D. Preparation and Characterization of a Series of Polyamides with Long Alkylene Segments: Nylons 12 20, 10 20, s 20, 6 20, 4 20 and 2 20[J], Polym Bull, 2002, 49(2-3): 111-118.
    [91] Li J., Fang Z. P., Tong L. F., et al., Effect of Multi-Walled Carbon Nanotubes on Non-isothermal Crystallization Kinetics of Polyamide 6[J], Eur Polym J 2006, 42(12): 3230-3235.
    [92] Derek M. L, Richard A. V., Wang Z. G., et al., Temperature Dependence of Polymer Crystalline Morphology in Nylon 6/Montmorillonite Nanocomposites[J], Polymer, 2001, 42(4): 1621-1631.
    [93] Liu X. H., Wu Q. J., Non-isothermal Crystallization Behaviors of Polyamide 6/ClayNanocomposites[J], Eur Polym J, 2002, 38(7): 1383-1389.
    [94] Weng W. G., Chen G. H., Wu D. J., Crystallization Kinetics and Melting Behaviors of Nylon 6/foliated Graphite Nanocomposites[J], Polymer, 2003, 44(6): 1781-1784.
    [95] Zhao C. X., Zhang P., Yi L. H., et al., Study on the Non-isothermal Crystallization Kinetics of Novel Polyamide 6/Silica Nanocomposites Containing Epoxy Resins[J], Polym Test, 2008, 27(4): 412-419.
    [96] Hemrick J., Lara-curzio E., Liu K., Mechanical Properties of Thermally Cycled Nylon Bonded Nd-Fe-B Permanent Magnets[J], J Mater Sci, 2004, 39(21): 6509-6522.
    [97] Fornes T. D., Yoon P. J., Keskkula H., Paul D. R., Nylon 6 Nanocomposites: the Effect of Matrix Molecular Weight[J], Polymer, 2001,42(25): 9929-9940.
    [98] Kumar S., Doshi H., Srinivasrao M., Park J. O., Schiraldi D. A., Fibers from Polypropylene/Nano Carbon Fiber Composites[J], Polymer, 2002, 43(5): 1701-1703.
    [99] Kim J. Y., Park H. S., Kim S. H., Unique Nucleation of Multi-walled Carbon Nanotube and Poly(ethylene 2,6-naphthalate) Nanocomposites during Non-isothermal Crystallization[J], Polymer, 2006, 47(4): 1379-1389.
    [100] Fornes T. D., Paul D. R., Crystallization Behavior of Nylon 6 Nanocomposites [J], Polymer, 2003, 44(14): 3945-3961.
    [101] Weng W., Chen G., Wu D., Crystallization Kinetics and Melting Behaviors of Nylon 6/foliated Graphite Nanocomposites[J], Polymer, 2003, 44(26): 8119-8132.
    [102] Wanjale S. D., Jog J. P., Crystallization and Phase Transformation Kinetics of Poly(1-butene)/MWCNT Nanocomposites[J], Polymer 2006, 47(18): 6414-6421.
    [103] Li H. B., Huneault M. A., Effect of Nucleation and Plasticization on the Crystallization of Poly(lactic acid)[J], Polymer, 2007, 48(23): 6855-6866.
    [104] Kuo M. C., Huang J. C., Chen M., Non-isothermal Crystallization Kinetic Behavior of Alumina Nanoparticle Filled Poly(ether ether ketone)[J], Mater Chem Phys 2006, 99(2-3): 258-268.
    [105] Tsuji H., Takai H., Saha S. K., Isothermal and Non-isothermal crystallization behavior of poly(l-lactic acid): Effects of Stereocomplex as Nucleating Agent[J], Polymer 2006, 47(11): 3826-3837.
    [106] Shibata M., Inoue Y., Miyoshi M., Mechanical Properties, Morphology, and Crystallization Behavior of Blends of Poly(l-lactide) with Poly(butylene succinate-co-l-lactate) and Poly(butylene succinate)[J], Polymer, 2006, 47(10): 3557-3564.
    [107] Vincent B. F., Calorimetry and Thermal Analysis of Polymers[M]. Berlin: Springer; 2001.
    [108] Gopakumar T. G., Lee J. A., Kontopoulou M., Parent J. S., Influence of Clay Exfoliation on the Physical Properties of Montmorillonite/polyethylene Composites[J], Polymer, 2002, 43(20): 5483-5491.
    [109] Cheng S. Z. D., Wunderlich B., Kinetics of Mesophases in Thermotropic Copolyesters. 1. Calorimetric study[J], Macromolecules, 1988, 21: 789-797.
    [110] Illers K. H., Polymorphie Kristallinitit und Schmelzwarme von Polyamid-6p[J], Makromol Chem, 1978, 179(2):497-507.
    [111] Kim S. H., Ahn S. H., Hirai T., Crystallization Kinetics and Nucleation Activity of Silica Nanoparticle-filled Poly(ethylene 2,6-naphthalate)[J], Polymer, 2003, 44(19): 5625-5634.
    [112] Weng W., Chen G., Wu D., Crystallization Kinetics and Melting Behaviors of nylon 6/foliatedGraphite Nanocomposites[J], Polymer, 2003, 44(26): 8119-8132.
    [113] Avrami M., Kinetics of Phase Change I[J], J Chem Phys, 1939, 7: 1103-1112.
    [114] Avrami M., Kinetics of Phase Change II[J], J Chem Phys, 1940, 8: 212-224.
    [115] Jeziorny A., Parameters Characterizing the Kinetics of the Non-isothermal Crystallization of Poly(ethylene terephthalate) Determined by D. S. C. [J], Polymer 1978, 19:1142-1144.
    [116] Ozawa T., Kinetics of Non-isothermal Crystallization[J], Polymer 1971, 12: 150-158.
    [117] Di-Lorenzo M. L., Silvestre C., Non-isothermal Crystallization of Polymers[J], Prog Polym Sci 1999, 24(6): 917-950.
    [118] Liu T., Mo Z., Wang S., Zhang H., Nonisothermal Melt and Cold Crystallization Kinetics of Poly(aryl ether ether ketone ketone)[J], Polym Eng Sci 1997, 37(3): 568-575.
    [119] Weng W., Chen G., Wu D., Crystallization Kinetics and Melting Behaviors of Nylon 6/Foliated Graphite Nanocomposites[J], Polymer, 2003, 44(26): 8119-8132.
    [120] Kissinger H. E., Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis[J], J Res Natl Stand, 1956, 57(4): 217-221.
    [121] Ray S. S., Okamoto M., Polymer/Layered Silicate Nanocomposites[J], Prog Polym Sci, 2003, 28(11): 1539-1641.
    [122] Williams M. L., Landell R. F., Ferry J. D., The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming[J], J Am Chem Soc, 1955, 77: 3701.
    [123] Ferry J. D., Viscoelastic properties of polymers[M]. New York: J. Wiley;1980.
    [124] Levchik S. V., Weil E. D., Lewin M., Review: Thermal Decomposition of Aliphatic Nylons[J]. Polym Int, 1999, 48:1-51.
    [125] Dussel H. J., Rosen H., Hummel D. O., Feldionen-und Elektronenstos-Massenspektrometrie von Polymeren und Copolymeren'[J], Makromol Chem 1976, 177: 13-18.
    [126] Ohatani H, Nagaya I, Sugimura Y, Tsuge S. J Anal Appl Pyrol, 1982, 4: 117-121.
    [127] Levchik S. V., Costa L., Camino G., Effect of The Fire-Retardant, Ammonium Polyphosphate, On the Thermal Decomposition of Aliphatic Polyamides: Part Ii-Polyamide 6[J]. Polym Degrad Stab, 1992, 36: 229-239.
    [128] Davis R. D., Gilman J. W., VanderHart D. L., Processing Degradation Of Polyamide 6/Montmorillonite Clay Nanocomposites and Clay Organic Modifier[J], Polym Degrad Stabil, 2003, 79: 111-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700