铜基纳米材料的控制合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Controlled Synthesis and Properties Characterization of Copper Compound
  • 作者:许艳艳
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2008
  • 导师:陈代荣
  • 学科代码:070301
  • 学位授予单位:山东大学
  • 论文提交日期:2008-05-10
摘要
本论文主要采用溶液化学法对铜基化合物纳米颗粒、纳米片及多级纳米结构进行控制合成,探讨其控制机制及内在规律。分别从纳米材料制备、形成机理以及性质表征和应用研究几个方面进行论述,内容涉及水溶液体系中小分子结构导向剂的辅助下氧化物多级纳米结构的制备、形成机制和催化性质,水溶液体系中低分子量聚合物辅助下氧化物中空球、中空立方体及碘化物纳米片的控制合成、形成机制、光学性质和电学性质研究等。旨在探索水溶液中纳米颗粒形成的内在调控机制,寻找构建多级纳米结构材料的更加有效的手段和途径。
     1.水溶液中小分子配位剂存在下CuO多级结构纳米材料的制备与形成机制
     以CuCl_2·2H_2O、Na_2(C_4H_4O_6)·3H_2O和NaOH为原料,利用简单的水热法在60~180℃下反应一定时间就可以得到微米级CuO刺球(CPMs)。CPMs由一端粗一端细的扁平纳米刺构成,纳米刺的尖端尺寸小于10nm。改变NaOH和Cu~(2+)的摩尔比,刺球的尺寸在100-200nm到4-6μm之间可调,原料的浓度也在一定程度上影响产物的尺寸:而C_4H_4O_6~(2-)和Cu~(2+)的摩尔比则对产物的形貌有很大影响,随着两者之间比例的增大产物形貌由纳米片、纳米刺逐渐过渡到微米刺球;反应温度主要决定CPMs的生成速度,对形貌和尺寸影响不大。通过透射电镜及X-射线粉末衍射跟踪反应过程研究了CPMs的形成机制:首先,溶液中Cu~(2+)离子、C_4H_4O_6~(2-)离子和OH~-离子反应形成Cu(C_4H_2O_6)~(2-)络阴离子,在加热条件下,Cu(C_4H_2O_6)~(2-)络阴离子通过可逆水解反应控制释放Cu~(2+)和OH~-,形成Cu(OH)_2纳米团簇;然后,Cu(OH)_2纳米团簇在加热条件下快速脱水得到CuO纳米颗粒。纳米团簇表面存在配位的或吸附的酒石酸根离子导致其沿着[010]方向定向聚集生长,形成具有单晶结构的CuO“主干纳米刺”。聚集生长使得“主干纳米刺”上存在很多“台阶”状的缺陷,缺陷处具有高的表面能,有可能为后面的晶体生长提供活性点。溶液中通过可逆反应不断提供Cu~(2+)离子和氧原子或者氢氧根离子使其在“主干纳米刺”的高活性“台阶”生长点上,进一步生长而得到新的branch纳米刺,透射电镜分析发现branch纳米刺沿着[101]方向生长。整个反应过程中Cu~(2+)离子的释放速率比晶体生长速率慢而且晶体成核所需要的过饱和度比晶体生长所需要的过饱和度大,因此成功地实现了晶体成核和生长过程的分离。
     为了进一步阐明小分子配位剂在氧化物纳米材料结构和形貌控制及形成机制中的作用,我们针对水体系中CuO的形成进行进一步研究。在90-180℃的温和条件下将CuCl_2·2H_2O与氨水的混合溶液进行水热反应,制备了由纳米片构成的尺寸可调的CuO微米花状结构,其中构成微米花的纳米片具有弯曲的边缘,厚度为20-40nm,宽度为500-800nm。我们利用相似的方法跟踪研究了产物的形成机制:首先,具有层状结构的正交晶系的Cu(OH)_2在NH_3分子的辅助下,得到Cu(OH)_2的纳米带;然后,Cu(OH)_2纳米带脱水得到短的CuO纳米带,CuO纳米带自组装聚集形成CuO纺锤形聚集体;最后CuO纳米片的聚集体继续生长得到CuO微米花。实验结果表明高的氨水浓度、氨水(C_(NH3))和铜离子(C_(Cu2+))高的摩尔浓度比以及高的反应温度是形成微米花的必要条件。红外光谱结果显示产物表面除了吸附水和表面羟基外没有任何杂质,因此对高氯酸铵的分解表现出优异的催化性能,与尺寸为8-15nm的CuO纳米颗粒具有相似的催化效果。这说明我们的产物虽然聚集尺寸在微米尺度,但是仍能够保持纳米结构单元的性质。微米尺寸的纳米结构颗粒能够克服纳米颗粒易团聚、难混匀等缺点,有利于将来的实际应用。
     2.低分子量聚乙二醇辅助下Cu_2O中空纳米结构的控制合成与性能研究
     以CuCl_2·2H_2O和NaNO_3为原料,PEG400为辅助剂,通过两步湿化学法制备了具有介孔壳壁的Cu_2O/PEG400复合物纳米中空球。中空球直径在50-80nm之间,壁厚约为15-20nm,由大约为5nm的纳米晶构成。中空球是由无机组分Cu_2O和有机物PEG构成的,其中Cu_2O的含量大约为72%,壳壁具有介孔结构,介孔孔径的平均尺寸为3.8nm,BET比表面积为85.8m~2/g。纳米尺寸的复合物中空球的形成过程是:CuCl_2·2H_2O、NaNO_3和PEG400在180℃下反应形成前驱体溶液,然后前驱体溶液水解得到Cu_2O中空球。第一步反应中PEG400分子起还原剂、溶剂和配位剂的作用,而在水解过程中PEG400分子的胶束聚集体起到模板的作用,指导中空球的形成。壳壁上的介孔是在纳米颗粒定向聚集的过程中形成的。纳米尺寸的复合物中空球表现出奇特的光致发光现象,在414nm和436nm处有强的发光峰,在454、570和637nm处有弱峰。另外,中空球对甲基橙分子表现出优异的吸附性能,可能归因于其复合物结构和介孔结构。
     以CuCl_2·2H_2O和NaOH为原料,PEG200为辅助剂,制备了前驱体溶液,然后利用前驱体溶液水解在室温中性环境下直接得到规则形貌的具有单晶壳壁和纳米尺寸的Cu_2O中空立方体,其边长在50-90nm之间,壳壁厚度约为6-15nm。通过调节前驱体溶液中反应物的浓度及溶剂的种类,可以在60-200nm之间调节中空纳米立方体的尺寸。NaOH对单晶中空纳米立方体的形成起重要作用,然而其具体的作用机制仍需进一步深入研究。
     3.利用表面活性剂及低分子量聚合物辅助的溶液过程制备单晶CuI纳米片
     首次在室温下利用PEG辅助的水溶液路线制备了CuI单晶纳米片,基本过程是将KI和十二烷基苯磺酸钠(SDBS)溶解在PEG600中,CuCl_2·2H_2O溶解在PEG600中,得到两份溶液,将两者混合,得到澄清的紫红色溶液前驱溶液,然后将前驱溶液滴加到NaNO_3水溶液中即可水解得到CuI纳米片。拉曼光谱显示前驱体溶液中形成了I-Cu(Ⅰ)-PEG配合物,因此推测在前驱溶液中PEG600的配位作用使Cu(Ⅰ)稳定存在,阻止了CuI沉淀的形成。在水解过程中PEG600和SDBS的共存对纳米片的形成起主要作用。透射电镜和扫描电镜结果显示纳米片的厚度和面内尺寸分别为60-80nm和几个微米。与块体CuI相比纳米片的相转变温度和熔点分别降低了8℃和12℃。利用AFM探针测得单个纳米片的的电阻率为1.996×10~(-2)Ω·cm,并且发现纳米片具有光导现象。作为一个通用的合成方法,该路线还可以制备Ag和BiOI纳米片。
This paper is focused on controlled synthesis of copper-based inorganic nanoparticles, nanosheets,and hierarchical nanostructures through liquid-phase chemical routes. Growth mechanism,self-assembly of nanoparticles and primary property characterizations were also conducted.Investigations are based on several aspects including controlled synthesis,formation mechanism,and properties and applications. The contents mainly include preparation and formation mechanism of hierarchical transition metal oxide microspheres;controlled synthesis,fabrication mechanism,and optical or catalytic properties of composite hollow spheres,hollow naocubes,and CuI nanosheets.The aim is to study the intrinsic controlling mechanism of nanoparticls in solution and construct nanostructured materials with nanoparticles as building blocks.
     1.Preparation and formation mechanism of CuO hierarchical nanostructures through a chelating agent assisted aqueous solution route
     CuO pricky microspheres(CPMs)were fabricated through a simple hydrothermal route at 60-180℃for a setting time using CuCl_2·2H_2O,Na_2(C_4H_4O_6)·3H_2O,and NaOH as reactants.The CPMs were composed of compressed nanothoms exhibiting tapering feature with tip size of less than 10nm.The size of the CPMs can be tuned from 100-200 nm to 4-6μm by simple adjusting the molar ratio of NaOH to Cu~(2+)or reagent contentration.The morphology of the CPMs was determined by the molar ratio of tartrate to Cu~(2+)cations.Reaction temperature mainly affected the formation rate of the product rather the size and morphology.The formation mechanism of the nanostructures was investigated in detail through time-dependent experiments with TEM and XRD.At first,Cu(C_4H_2O_6)~(2-)formed through a reversible reaction in the precursor solution that prevents the formation of precipitates.With the temperature increasing,Cu~(2+)and OH~- were released and a homogeneous nucleation of Cu(OH)_2 occurred.Subsequently,Cu(OH)_2 nanoclusters dehydrated and aggregated orientedly to form CuO truck nanothorns along[010]direction due to the coordinated or absorbed tartrate anions on the crystal surface.The aggregation-based growth resulted in many defects in the inner parts and surface of the nanothorns that might supply active sites for next crystal growth.So the constant supply of Cu~(2+)cations would facilitate further growth of new CuO nanothorn from the surface steps.The nucleation and crystal growth were successfully separated by controlled releasing of Cu~(2+)and OH- ions through the reversible reaction of Cu~(2+)cations,OH~-,and C_4H_4O_6~(2-)anions. We conducted further investigation with CuO as target product to clarify the formation mechanism of nanostructured oxides in solution and shed some light on the effect of the coordinated agent on the formation of the oxides.Nanostructured CuO microflowers with tunable size were prepared by heated the solution of CuCl_2·2H_2O and ammonia at 90-180℃.The CuO microflowers were composed of nanosheets with zigzag edges which were 20-40 nm in thickness and 500-800 nm in width.The formation mechanism of CuO microflowers based on the assembly of Cu(OH)_2 nanobelts was elucidated by tracking the hydrothermal process.At first,due to the layered structure of orthorhombic Cu(OH)_2 and assistant of NH_3 molecules,the Cu(OH)_2 grew preferentially to form the belt-like Cu(OH)_2 crystals.Subsequently,the dehydration of Cu(OH)_2 nanobelts occurred,leading to the formation of short CuO nanoribbons.Then the CuO nanoribbons assembled to form CuO aggregates through an oriented-assembly manner.Finally,the aggregates of CuO nanosheets developed into the CuO microflowers.The high ammonia concentration,high ratio of NH_3 to Cu~(2+)(Rac)and elevated temperature were necessary for the formation of microflowers,and the ammonia concentration was critical for the morphology evolution of the particles.The effect of the products as catalyst on the decomposition of ammonium perchlorate was enhanced remarkably compared to bulk CuO and was similar with the CuO nanoparticles with size of 8-15 nm derived from the aqueous solution,which means that although enlarging the overall size of the aggregations into micrometer scale the properties of nanobuilding blocks retained excellently.These nanostructured microparticles avoid the limitations of nanoparticles,such as conglomeration and difficult to mix due to high surface energy,while retain the good catalytic property,which may supply potential applications in the future.
     2.PEG-assisted formation of nanosized Cu_2O Hollow structures and theis optical properties
     The nanosized Cu_2O/PEG400 composite hollow spheres(HSs,50-80 nm in diameter) with mesoporous shells of~15-20 nm were synthesized by a poly(ethylene glycol) (PEG)-assisted wet-chemical method using CuCl_2·2H_2O and NaNO_3 as reactants.In the hollow nanostructures,the polymer content was ca.18.1 wt%,and the mean size of the component nanocrystals and the pore diameter were ca.5 and 3.8 nm, respectively.The formation of the products included two steps:at first,PEG200, CuCl_2·2H_2O and NaNO_3 reacted at 180℃for 6h to form a precursor solution,then, after cooled to room temperature the precursor solution hydrolyzed in deionized water to obtain the composite hollow spheres.During the first step,Cu(Ⅱ)were reduced to Cu(Ⅰ)by PEG molecular which can be proved UV-vis spectra.So PEG acts as solvent, reducing agent,and complexing agent.And in the second step poly(ethylene glycol 400)(PEG400)molecules self-assemble to form micelles which act as templates for the formation of the hollow structures.The formation of mesoporous structures is due to the oriented-aggregation of composite nanoparticles.The nanosized-composite HSs exhibited peculiar photoluminescence(PL)phenomenon with strong peaks at 414 and 436 nm and weak ones at 454,570,and 637 nm.Furthermore,the HSs showed excellent adsorption ability for methyl orange(MO)because of their composite and mesoporous shell structures.
     A precursor solution was prepared with CuCl_2·2H_2O and NaOH as reactants,and PEG200 as solvent,complexing agent and reducing agent.Then nanosized Cu_2O hollow nanocubes with single crystalline shells were produced directly through the hydrolysis of the precursor solution under room temperature.The length and the shell thickness of the hollow nanocubes' sides are ca.50-90 nm and ca.6-15 nm, respectively.The size of the hollow nanocubes can be tuned from 60 nm to 200 nm by simple adjusting the reagent contentration and solvents of the precursor solution. NaOH play an important role in the formation of the products,however,the detailed formation mechanism still needs further investigation.
     3.PEG-Assisted Fabrication of Single-Crystalline CuI Nanosheets CuI single-crystalline nanosheets have been prepared for the first time via a PEG-assisted aqueous solution route at room temperature.Certain amount of KI and sodium dodecyl benzenesulfonate(SDBS)was dissolved in PEG600 under stirring to give a clear solution and CuCl_2·2H_2O was dissolved in PEG600,too.The two solutions were mixed together to give a clear amaranth solution which was used as the precursor solution.Then the precursor solution was added into NaNO_3 solution drop by drop with a burette under stirring to generate CuI precipitate at room temperature. Raman spectra and TEM observation on the precursor solution confirmed that aⅠ-Cu(Ⅰ)-PEG complex rather than CuⅠnanoparticles formed in the precursor solution. Thus,PEG600 serve as a complex agent to prevent the formation of CuⅠ.The thickness and in-plane size of the nanosheets were ca.60-80 nm and several micrometers,respectively.The two basal surfaces of these nanosheets were(111) planes.The phase transformation temperature and the melting point decreased 8 and 12℃compared with those of the bulk CuⅠ,respectively.The resistance of a single CuⅠnanosheet was measured by a conductive AFM tip method,and a high conductivity of 1.996×10~(-2)Ω·cm and a photoconduction phenomenon were observed. As a general process this strategy can be used to prepare more 2-D nanostructures including Ag and BiOⅠ.
引文
[1]Service,R.F.Atom-Scale Research Gets Real,Science 2000,290,1524-1531.
    [2]Klabunde,K.J.In Nanoscale Materials in Chemistry,Wiley-Interscience:New York,2001.
    [3]Hochella,M.F.Nanoscience and technology:the next revolution in the Earth sciences,Earth Planet.Sci.Lett.2002,203,593-605.
    [4]Havancsak,K.Nanotechnology at Present and its Promise for the Future,Mater.Sci.Forum 2003,414-415,85-94.
    [5]Roco,M.C.Nanotechnology:convergence with modern biology and medicine,Curr.Opin.Biotechnol.2003,14,337-346.
    [6]Lieber,C.M.Nanoscale Science and Technology:Building a Big Future from Small Things,MRS Bull.2003,28,486-491.
    [7]Brus,L.E.A Simple model for the ionization potential,electron affinity,and aqueous redox potentials of small semiconductor crystallites,J.Chem.Phys.1983,79,5566-5571.
    [8]Brus,L.E.Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state,J.Chem.Phys.1984,80,4403-4409.
    [9]Steigerwald,M.L.;Brus,L.E.;Semiconductor Crystallites:A Class of Large Molecules,Acc.Chem.Res.1990,23,183-188.
    [10]Ramaniah,L.M.;Nair,S.V.Electronic structure of semiconductor quantum dots,Physica B 1995,212,245-250.
    [11]Alivisatos,A.P.Perspectives on the Physical Chemistry of Semiconductor Nanocrystals,J.Phys.Chem.1996,100,13226-13239.
    [12]Iijima,S.Helical Microtubules of Graphitic Carbon,Nature 1991,354,56-58.
    [13]Munoz-Espi,R,;Jeschke,G.;Lieberwirth,I.;Gomez,C.M.;Wegner,G.ZnO-Latex Hybrids Obtained by Polymer-Controlled Crystallization:A Spectroscopic Investigation,J.Phys.Chem.B 2007,111,697-707.
    [14]Sertchook,H.;Elimelech,H.;Makarov,C.;Khalfin,R.;Cohen,Y.;Shuster,M.;Babonneau,F.;Avnir,D.Composite Particles of Polyethylene @ Silica,J.Am.Chem.Soc.2007,129,98-108.
    [15]Li,D.;He,Q.;Cui,Y.;Li,J.;Fabrication ofpH-Responsive Nanocomposites of Gold Nanoparticles/Poly(4-vinylpyridine),Chem.Mater.2007,19,412-417.
    [16]Chen,W.;Peng,Q.;Li Y.Luminescent Bis-(8-hydroxyquinoline)Cadmium Complex Nanorods,Cryst.Growth Des.2008,8,564-567.
    [17]Wang,X.;Wang,H.;Frankowski,D.J.;Lam,P.G.;Welch,P.M.;Winnik,M.A.;Hartmann,J.;Manners,I.;Spontak,R.J.Growth and Crystallization of Metal-Containing Block Copolymer Nanotubes in a Selective Solvent,Adv.Mater.2007,19,2279-2285.
    [18]Gensheimer,M.;Becker,M.;Brandis-Heep,A.;Wendorff,J.H.;Thauer,R.K.;Greiner,A.Novel Biohybrid Materials by Electrospinning:Nanofibers of Poly(ethylene oxide)and Living Bacteria,Adv.Mater.2007,19,2480-2482.
    [19]Tang,Q.;Li,L.;Song,Y.;Liu,Y.;Li,H.;Xu,W.;Liu,Y.;Hu,W.;Zhu,D. Photoswitches and Phototransistors from Organic Single-Crystalline Sub-micro/nanometer Ribbons,Adv.Mater.2007,19,2624-2628.
    [20]Wang,Y.;Gosele,U.;Steinhart,M.;Mesoporous Polymer Nanofibers by Infiltration of Block Copolymers with Sacrificial Domains into Porous Alumina,Chem.Mater.2008,20,379-381.
    [21]Zhong,L.;Hu,J.;Liang,H.;Cao,A.;Song,W.;Wan,Li.Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment,Adv.Mater.2006,18,2426-2431.
    [22]Ullah,M.H.;Chung,W.;Kim,I.;Ha,C.pH-Selective Synthesis of Monodisperse Nanoparticles and 3D Dendritic Nanoclusters of CTAB-Stabilized Platinum for Electrocatalytic O_2 Reduction,Small 2006,2,870-873.
    [23]Bao,N.;Shen,L.;Takata,T.;Domen,K.Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light,Chem.Mater.2008,20,110-117.
    [24]Mann,S.The Chemistry of Form,Angew.Chem.,Int.Ed.2000,39,3392-3406.
    [25]Popescu,D.C.;Smulders,M.M.J.;Pichon,B.P.;Chebotareva,N.;Kwak,S.;van Asselen,O.L.J.;Sijbesma,R.P.;DiMasi,E.;Sommerdijk,N.A.J.M.Template Adaptability Is Key in the Oriented Crystallization of CaCO_3,J.Am.Chem.Soc.2007,129,14058-14067.
    [26]Wilcox,D.L.;Berg,M.;Bernat,T.;Kellerman,D.;Cochran,J.K.,Eds.;Hollow and Solid Spheres and Microspheres:Science and Technology Associated With Their Fabrication and Application,MRS Symposium Proceedings,Vol.372,Materials Research Society:Pittsburgh,PA 1995.
    [27]Caruso,F.Nanoengineering of Particle Surfaces,Adv.Mater.2001,13,11-22.
    [28]Cao,S.;Zhu,Y.;Ma,M.;Li,L.;Zhang,L.Hierarchically Nanostructured Magnetic Hollow Spheres of Fe_3O_4 and γ-Fe_2O_3:Preparation and Potential Application in Drug,Delivery,J.Phys.Chem.C 2008,112,1851-1856.
    [29]Kroger,N.;Deutzmann,R.;Sumper,M.Polycationic Peptides from Diatom Biosilica That Direct Silica Nanosphere Formation,Science 1999,286,1129-1132.
    [30]Botterhuis,N.E.;Sun,Q.Y.;Magusin,P.;van Santen,R.A.;Sommerdijk,N. Hollow Silica Spheres with an Ordered Pore Structure and Their Application in Controlled Release Studies, Chem. Eur. J. 2006,12, 1448-1456.
    
    [31] Kim, S.; Kim, M.; Lee, W.; Hyeon, T. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions, J. Am. Chem. Soc. 2002,124, 7642-7643.
    
    [32] Wang, J.; Jiang, M. Polymeric Self-Assembly into Micelles and Hollow Spheres with Multiscale Cavities Driven by Inclusion Complexation, J. Am. Chem. Soc. 2006, 128, 3703-3708.
    
    [33] Zhang, Z.; Sui, J.; Zhang, L.; Wan, M; Wei, Y.; Yu; L. Synthesis of Polyaniline with a Hollow, Octahedral Morphology by Using a Cuprous Oxide Template, Adv. Mater. 2005,17, 2854-2857.
    
    [34] Han, J.; Song, G.; Guo, R. A Facile Solution Route for Polymeric Hollow Spheres with Controllable Size, Adv. Mater. 2006,18, 3140-3144.
    
    [35]Yang, H. G.; Zeng, H. C. Preparation of Hollow Anatase TiO_2 Nanospheres via Ostwald Ripening, J. Phys. Chem. B 2004,108, 3492-349.
    
    [36] Fan, H. J.; Gosele, U.; Zacharias, M. Formation of Nanotubes and Hollow Nanoparticles Based on Kirkendall and Diffusion Processes: A Review, Small 2007, 3, 1660-1671.
    
    [37]Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect, Science 2004, 304, 711-714.
    
    [38] Kim, D.; Park, J.; An, K.; Yang, N.-K.; Park, J.-G.; Hyeon, T. Synthesis of Hollow Iron Nanoframes, J. Am. Chem. Soc. 2007,129, 5812-5813.
    
    [39] Fan, H. J.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; Gosele, U. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect, Nat. Mater. 2006, 5, 627-631.
    
    [40] Fan, H. J.; Knez, M.; Scholz, R.; Hesse, D.; Nielsch, K.; Zacharias, M.; Gosele, U. Influence of Surface Diffusion on the Formation of Hollow Nanostructures Induced by the Kirkendall Effect: The Basic Concept, Nano Lett. 2004, 7, 993-997.
    
    [41] Yang, H. G.; Zeng, H. C. Self-Construction of Hollow SnO_2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites,Angew.Chem.,Int.Ed.2004,43,5930-5933.
    [42]Park,S.;Lim,J.-H.;Chung,S.-W.;Mirkin,C.A.Self-Assembly of Mesoscopic Metal-Polymer Amphiphiles,Science 2004,303,348-351.
    [43]Yurdakal,S.;Palmisano,G.;Loddo,V.;Augugliaro,V.;Palmisano,L.Nanostructured Rutile TiO_2 for Selective Photocatalytic Oxidation of Aromatic Alcohols to Aldehydes in Water,J.Am.Chem.Soc.2008,130,1568-1569.
    [44]Tang,W.;An,H.UV/ TiO_2 photocatalytic oxidation of commercial dyes in aqueous solutions,Chemosphere 1995,31,4157-4170.
    [45]Xu,C.;Su,J.;Xu,X.;Liu,P.;Zhao,H.;Tian,F.;Ding,Y.Low Temperature CO Oxidation over Unsupported Nanoporous Gold,J.Am.Chem.Soc.2007,129,42-43.
    [46]Huang,Y.;Chang,H.;Tan,W.Cancer Cell Targeting Using Multiple Aptamers Conjugated on Nanorods,Anal.Chem.2008,80,567-572.
    [47]Chen,J.;Wang,D.;Xi,J.;Au,L.;Siekkinen,A.;Warsen,A.;Li,Z.-Y.;Zhang,H.;Xia,Y.;Li,X.Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells,Nano Lett.2007,7,1318-1322.
    [48]Skrabalak,S.E.;Chen,J.;Au,L.;Lu,X.;Li,X.;Xia,Y.Gold Nanocages for Biomedical Applications,Adv.Mater.2007,19,3177-3184.
    [49]Service,R.F.Nanomaterials show signs of toxicity,Science 2003,300,243.
    [50]Brumfiel,G.A little knowledge,Nature 2003,424,246-248.
    [51]Pan,Y.;Neuss,S.;Leifert,A.;Fischler,M.;Wen,F.;Simon,U.;Schmid,G.;Brandau,W.;Jahnen-Dechent,W.Size-Dependent Cytotoxicity of Gold Nanoparticles,Small 2007,3,1941-1949.
    [52]Elder,A.;Yang,H.;Gwiazda,R.;Teng,X.;Thurston,S.;He,H.;Oberdorster,G.Testing Nanomaterials of Unknown Toxicity:An Example Based on Platinum Nanoparticles of Different Shapes,Adv.Mater.2007,19,3124-3129.
    [53]LaMer,V.K.;Dinegar,R.H.Theory,Production and Mechanism of Formation of Monodispersed Hydrosols,J.Am.Chem.Soc.1950,72,4847-4854.
    [54]Matijevic,E.Preparation and Properties of Uniform Size Colloids,Chem.Mater.1993,5,412-426.
    [55]Matijevic,E.Monodispersed Colloids:Art and Science? Langmuir 1986,2,12-20.
    [56]Matijevic,E.Monodispersed Metal(Hydrous)Oxides-A Fascinating Field of Colloid Science,Acc.Chem.Res.1981,14,22-29.
    [57]Cushing,B.L.;Kolesnichenko,V.L.;O'Connor,C.J.Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles,Chem.Rev.2004,104,3893-3946.
    [58]Sugimoto,T.Preparation of monodispersed colloidal particles,Adv.Colloid Interface Sci.1987,28,65-108.
    [59]Dadyburjor,D.B.;Ruckenstein,E.Kinetics of Ostwald ripening,J.Cryst.Growth 1977,40,279-290.
    [60]Sugimoto,S.General kinetics of Ostwald ripening of precipitates,J.Colloid Interface Sci.1978,63,16-26.
    [61]Sugimoto,S.Kinetics of reaction-controlled Ostwald ripening of precipitates in the steady state,J.Colloid Interface Sci.1978,63,369-377.
    [62]Marqusee,J.A.;Ross,J.Kinetics of phase transitions:Theory of Ostwald ripening,J.Chem.Phys.1983,79,373-378.
    [63]Tokuyama,M.;Kawasaki,K.;Enomoto,Y.Kinetic equations for Ostwald ripening,Physica A 1986,134,323-338.
    [64]Madras,G.;McCoy,B.J.Ostwald ripening with size-dependent rates:Similarity and power-law solutions,J.Chem.Phys.2002,117,8042-8049.
    [65]Oskam,G.;Hu,Z.;Penn,R.L.;Pesika,N.;Searson,P.C.Coarsening of metal oxide nanoparticles,Phys.Rev.E 2002,66,011403-4.
    [66]Lifshitz,I.M.;Slyozov V.V.The kinetics of precipitation from supersaturated solid solutions,J.Phys.Chem.Solids 1961,19,35-50.
    [67]Wagner,C.Z.Theory of precipitate change by redissolution,Elektrochem.1961,65,581-91.
    [68]Burda,C.;Chen,X.;Narayanan,R.;El-Sayed,M.A.Chemistry and Properties of Nanocrystals of Different Shapes,Chem.Rev.2005,105,1025-1102.
    [69]Titiloye,J.O.;Parker,S.C.;Osguthorpe,D.J.;Mann,S.Predicting the influence of growth additives on the morphology of ionic crystals, J. Chem. Soc. Chem. Commun. 1991, 1494-1496.
    
    [70] Titiloye, J. O.; Parker, S. C.; Mann, S. Atomistic simulation of calcite surfaces and the influence of growth additives on their morphology, J. Cryst. Growth 1993, 131, 533-545.
    
    [71] Hou, Y.; Kondoh, H.; Ohta, T.; Self-Assembly of Co Nanoplatelets into Spheres: Synthesis and Characterization, Chem. Mater. 2005,17, 3994-3996.
    
    [72] Wu, J.; Zhang, H.; Du, N.; Ma, X.; Yang, D. General Solution Route for Nanoplates of Hexagonal Oxide or Hydroxide, J. Phys. Chem. B. 2006, 110, 11196-11198.
    
    [73] Zhang, M.; Fan, H.; Xi, B.; Wang, X.; Dong, C; Qian, Y. Synthesis, Characterization, and Luminescence Properties of Uniform Ln~(3+)-Doped YF_3 Nanospindles, J. Phys. Chem. C. 2007, 111, 6652-6657.
    
    [74] Siegfried, M. J.; Choi, K. Elucidating the Effect of Additives on the Growth and Stability of Cu_2O Surfaces via Shape Transformation of Pre-Grown Crystals, J. Am. Chem. Soc. 2006,128, 10356-10357.
    
    [75] Davey, R. J.; Black, S. N.; Bromley, L. A.; Cottier, D.; Dobbs, B.; Rout, J. E. Molecular design based on recognition at inorganic surfaces, Nature 1991, 353, 549-550.
    
    [76] Stupp, S. I.; Braun, P. V.; Molecular Manipulation of Microstructures: Biomaterials, Ceramics, and Semiconductors, Science 1997,277, 1242-1248.
    
    [77] Gower, L. A.; Tirrell, D. A. Calcium carbonate films and helices grown in solutions of poly(aspartate), J. Cryst. Growth 1998,191, 153-160.
    
    [78] Naka, K.; Tanaka, Y.; Chujo, Y. Effect of Anionic Starburst Dendrimers on the Crystallization of CaCO_3 in Aqueous Solution: Size Control of Spherical Vaterite Particles, Langmuir 2002,18, 3655-3658.
    
    [79] Fievet, F.; Lagier, J. P.; Blin, B.; Beaudoin, B.; Figlarz, M. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles, Solid State Ionics 1989, 32/33,198-205.
    
    [80] Viau, G.; Fievet-Vincent, F.; Fievet, F. Nucleation and growth of bimetallic CoNi and FeNi monodisperse particles prepared in polyols, Solid State Ionics 1996, 84, 259-270.
    
    [81] Toneguzzo, P.; Viau, G.; Acher, O.; Fievet-Vincent, F.; Fievet, F. Monodisperse Ferromagnetic Particles for Microwave Applications, Adv. Mater. 1998, 10, 1032-1035.
    
    [82] Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science 2002, 295, 2176-2179.
    
    [83] Zhang, Z.; Zhao, B.; Hu, L. PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes, J. Solid State Chem. 1996, 727,105-110.
    
    [84] Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence, Nano Lett. 2003, 3, 955-960.
    
    [85] Colfen, H. Double-Hydrophilic Block Copolymers: Synthesis and Application as Novel Surfactants and Crystal Growth Modifiers, Macromol. Rapid Commun. 2001, 22,219-252.
    
    [86] Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Frederickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science 1998, 279, 548-552.
    
    [87] Liu, X.; Tian, B.; Yu, C; Gao, F.; Xie, S.; Tu, B.; Che, R.; Peng, L.; Zhao, D. Room-Temperature Synthesis in Acidic Media of Large-Pore Three-Dimensional Bicontinuous Mesoporous Silica with Ia3d Symmetry, Angew. Chem., Int. Ed. 2002, 41, 3876-3878.
    
    [88] Fan, J.; Yu, C; Lei, J.; Zhang, Q.; Li, T.; Tu, B.; Zhou, W.; Zhao, D. Low-Temperature Strategy to Synthesize Highly Ordered Mesoporous Silicas with Very Large Pores, J. Am. Chem. Soc. 2005, 727, 10794-10795.
    
    [89] Kim, J.; Cha, S.; Shin, K.; Jho, J.; Lee, J. Preparation of Gold Nanowires and Nanosheets in Bulk Block Copolymer Phases under Mild Conditions, Adv. Mater. 2004,16, 459-464.
    
    [90] Yang, J.; Lu, L.; Wang, H.; Shi, W.; Zhang, H. Glycyl Glycine Templating Synthesis of Single-Crystal Silver Nanoplates,Cryst.Growth Des.2006,6,2155-2158.
    [91]Vekilov,P.G.What Determines the Rate of Growth of Crystals from Solution?Cryst.Growth Des.2007,7,2796-2810.
    [92]Lisiecki,I.;Pileni,M.P.Synthesis of copper metallic clusters using reverse micelles as microreactors,J.Am.Chem.Soc.1993,115,3887-3896.
    [93]Lisiecki,I.;Pileni,M.P.Copper Metallic Particles Synthesized "in Situ" in Reverse Micelles:Influence of Various Parameters on the Size of the Particles,J.Phys.Chem.1995,99,5077-5082.
    [94]Wennerstrom,H.;Soderman,O.;Olsson,U.;Lindman,B.Macroemulsions versus microemulsions,Colloids Surf.A 1997,123-124,13-26.
    [95]Liveri,V.T.In Nano-Surface Chemistry;Rosoff,M.,Ed.;Dekker:New York,2001.
    [96]Hiral,T.;Hariguchi,S.;Komasawa,I.;Davey,R.J.Biomimetic Synthesis of Calcium Carbonate Particles in a Pseudovesicular Double Emulsion,Langmuir 1997,13,6650-6653.
    [97]Wu,M.;Wang,G.;Xu,H.;Long,J.;Shek,F.L.Y.;Lo,S.M.F.;Williams,I.D.;Feng,S.;Xu,R.Hollow Spheres Based on Mesostructured Lead Titanate with Amorphous Framework,Langmuir 2003,19,1362-1367.
    [98]Fowler,C.E.;Khushalani,D.;Mann,S.Interracial synthesis of hollow microspheres of mesostructured silica,Chem.Commun.2001,2028-2029.
    [99]Putlitz,B.Z.;Landfester,K.;Fischer,H.;Antonietti,M.The Generation of "Armored Latexes" and Hollow Inorganic Shells Made of Clay Sheets by Templating Cationic Miniemulsions and Latexes,Adv.Mater.2001,13,500-503.
    [100]Landfester,K.The Generation of Nanoparticles in Miniemulsions,Adv.Mater.2001,13,765-768.
    [101]Andersson,M.;Osterlund,L.;Ljungstrom,S.;Palmqvist,A.Preparation of Nanosize Anatase and Rutile TiO_2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol,J.Phys.Chem.B 2002,106,10674-10679.
    [102]Zhang,J.;Sun,L.;Jiang,X.;Liao,C.;Yan,C.Shape Evolution of One-Dimensional Single-Crystalline ZnO Nanostructures in a Microemulsion System,Cryst.Growth Des.2004,4,309-313.
    [103]Adschiri,T.;Hakuta,Y.;Arai,K.Hydrothermal Synthesis of Metal Oxide Fine Particles at Supercritical Conditions,Ind.Eng.Chem.Res.2000,39,4901-4907.
    [104]Komarneni,S.;Katsuki,H.Nanophase materials by a novel microwave-hydrothermal process,Pure Appl.Chem.2002,74,1537-1543.
    [105]Fowler,C.E.;Khushalani,D.;Mann,S.Facile synthesis of hollow silica microspheres,J.Mater.Chem.2001,11,1968-1971.
    [106]Huang,J.;Xie,Y.;Li,B.;Liu,Y.;Qian,Y.;Zhang,S.In-Situ Source-Template-Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres,Adv.Mater.2000,12,808-811.
    [107]Schmidt,H.T.;Ostafin,A.E.Liposome Directed Growth of Calcium Phosphate Nanoshells,Adv.Mater.2002,14,532-535.
    [108]Hubert,D.H.W.;Jung,M.;German,A.L.Vesicle Templating,Adv.Mater.2000,12,1291-1924.
    [109]Hentze,H.P.;Raghavan,S.R.;Mckelvey,C.A.;Kaler,E.W.Silica Hollow Spheres by Templating of Catanionic Vesicles,Langmuir 2003,19,1069-1074.
    [110]Caruso,F.;Caruso,R.A.;Mohwald,H.Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating,Science 1998,282,1111-1114.
    [111]Stein,A.;Li,F.;Denny,N.R.Morphological Control in Colloidal Crystal Templating of Inverse Opals,Hierarchical Structures,and Shaped Particles,Chem.Mater.2008,20,649-666.
    [112]Salgueirino-Maceira,V.;Spasova,M.;Farle,M.Water-Stable,Magnetic Silica-Cobalt/Cobalt Oxide-Silica Multishell Submicrometer Spheres,Adv.Funct.Mater.2005,15,1036-1040.
    [113]Sun,X.;Li,Y.Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles,Angew.Chem.,Int.Ed.2004,43,597-601.
    [114]Yu,S.;Cui,X.;Li,L.;Li,K.;Yu,B.;Antonietti,M.;Colfen,H.From Starch to Metal/Carbon Hybrid Nanostructures:Hydrothermal Metal-Catalyzed Carbonization, Adv.Mater.2004,16,1636-1640.
    [115]Pu,L.;Bao,X.;Zou,J.;Feng,D.Individual Alumina Nanotubes,Angew.Chem.Int.Ed.2001,40,1490-1493.
    [116]Martin,C.R.Membrane-Based Synthesis of Nanomaterials,Chem.Mater.1996,8,1739-1746.
    [117]Steinhart,M.;Wendorff,J.H.;Greiner,A.;Wehrspohn,R.B.;Nielsch,K.;Schilling,J.;Choi,J.;Gosele,U.Polymer Nanotubes by Wetting of Ordered Porous Templates,Science,2002,296,1997-1997.
    [1](a)Ewers,T.D.;Sra,A.K.;Norris,B.C.;Cable,R.E.;Cheng,C.H.;Shantz,D.F.;Schaak,R.E.Spontaneous Hierarchical Assembly of Rhodium Nanoparticles into Spherical Aggregates and Superlattices,Chem.Mater.2005,17,514-520.
    (b).Yang,H.G.;Zeng,H.C.Self-Construction of Hollow SnO_2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites,Angew.Chem.,Int.Ed.Engl.2004,43,5930-5933.
    (c)Yang,X.J.;Makita,Y.;Liu,Z.H.;Sakane,K.;Ooi,K.Structural Characterization of Self-Assembled MnO_2 Nanosheets from Birnessite Manganese Oxide Single Crystals,Chem.Mater.2004,16,5581-5588.
    [2](a)Shi,H.T.;Qi,L.M.;Ma,J.M.Cheng,H.M.Polymer-Directed Synthesis of Penniform BaWO_4 Nanostructures in Reverse Micelles,J.Am.Chem.Soc.2003,125,3450-3451.
    (b)Zhang,J.;Sun,L.D.;Yin,J.L.;Su,H.L.;Liao,C.S.;Yan,C.H.Control of ZnO Morphology via a Simple Solution Route,Chem.Mater.2002,14,4172-4177.
    [3]Gao,F.;Lu,Q.Y.;Xie,S.H.;Zhao,D.Y.A Simple Route for the Synthesis of Multi-Armed CdS Nanorod-Based Materials,Adv.Mater.2002,14,1537-1540.
    [4]Mann,S.The Chemistry of Form,Angew.Chem.,Int.Ed.Engl.2000,39,3392-3406.
    [5](a)Jun,Y.W.;Lee,S.M.;Kang,N.J.;Cheon,J.Controlled Synthesis of Multi-armed CdS Nanorod Architectures Using Monosurfactant System,J.Am.Chem.Soc.2001,123,5150-5151.
    (b)Lu,Q.Y.;Gao,F.;Zhao,D.Y.Creation of a Unique Self-Supported Pattern of Radially Aligned Semiconductor Ag_2S Nanorods,Angew.Chem.,Int.Ed Engl.2002,41,1932-1934.
    (c)Qin,A.M.;Fang,Y.P.;Ou,H.D.;Liu,H.Q.;Su,C.Y.Formation of Various Morphologies of Covellite Copper Sulfide Submicron Crystals by a Hydrothermal Method without Surfactant,Cryst.Growth Des.2005,5,855-860.
    (d)Lu,Q.Y.;Gao,F.;Zhao,D.Y.One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires,Nanotubes,and Nanovesicles by a Simple Organic Amine-Assisted Hydrothermal Process,Nano Lett.2002,2,725-728.
    [6](a)Wu,C.Z.;Xie,Y.;Wang,D.;Yang,J.;Li,T.W.Selected-Control Hydrothermal Synthesis of γ-MnO_2 3D Nanostructures,J.Phys.Chem.B 2003,107,13583-13587.
    (b)Ohgi,H.;Maeda,T.;Hosono,E.;Fujihara,S.;Imai,H.Evolution of Nanoscale SnO_2 Grains,Flakes,and Plates into Versatile Particles and Films through Crystal Growth in Aqueous Solutions,Cryst.Growth Des.2005,5,1079-1083.
    (c)Lou,X.W.;Zeng,H.C.Complex α-MoO_3 Nanostructures with External Bonding Capacity for Self-Assembly,J.Am.Chem.Soc.2003,125,2697-2704.
    [7](a)Jana,N.R.;Gearheart,L.;Murphy,C.J.Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template,Adv.Mater.2001,13,1389-1393.
    (b)Chen,J.Y.;Herricks,T.;Geissler,M.;Xia,Y.N.Single-Crystal Nanowires of Platinum Can Be Synthesized by Controlling the Reaction Rate of a Polyol Process,J.Am.Chem.Soc.2004,126,10854-10855.
    (c)Qu,L.T.;Shi,G.Q.;Wu,X.F.;Fan,B.Facile Route to Silver Nanotubes,Adv.Mater.2004,16,1200-1203.
    [8](a)Bigi,A.;Boanini,E.;Walsh,D.;Mann,S.Morphosynthesis of Octacalcium Phosphate Hollow Microspheres by Polyelectrolyte-Mediated Crystallization,Angew.Chem.,Int.Ed.Engl.2002,41,2163-2166.
    (b)Yu,S.H.;Colfen,H.;Antonietti,M.Polymer-Controlled Morphosynthesis and Mineralization of Metal Carbonate Superstructures,J.Phys.Chem.B 2003,107,7396-7405.
    (c)Yu,S.H.;Colfen,H.;Xu,A.W.;Dong,W.F.Complex Spherical BaCO_3 Superstructures Self-Assembled by a Facile Mineralization Process under Control of Simple Polyelectrolytes,Cryst.Growth Des.2004,4,33-37.
    (d)Yu,S.H.;Antonietti,M.;Colfen,H.;Hartmann,J.Growth and Self-Assembly of BaCrO_4 and BaSO_4 Nanofibers toward Hierarchical and Repetitive Superstructures by Polymer-Controlled Mineralization Reactions,Nano Lett.2003,3,379-382.
    [9](a)Wu,M.K.;Ashburn,J.R.;Torng,C.J.;Hor,P.H.;Meng,R.L.;Gao,L.;Huang,Z.J.;Wang,Y.Q.;Chu,C.W.Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure,Phys.Rev.Lett.1987,58,908-910.
    (b)Zheng,X.G.;Xu,C.N.;Tomokiyo,Y.;Tanaka,E.;Yamada,H.;Soejima,Y.Observation of Charge Stripes in Cupric Oxide,Phys.Rev.Lett.2000,85,5170-5173.
    (c)Prabhakaran,D.;Subramanian,C.;Balakumar,S.;Ramasamy,P.Morphology and etching studies on YBCO and CuO single crystals,Phys.C 1999,319,99-103.
    (d)Dai,P.C.;Mook,H.A.;Aeppli,G.;Hayden,S.M.;Dogan,F.Resonance as a measure of pairing correlations in the high-Tc superconductor YBa_2Cu_3O_(6.6),Nature 2000,406,965-968.
    [10](a)Ramirez-Ortiz,J.;Ogura,T.;Medina-Valtierra,J.;Acosta-Oritz,S.E.;Bosch, P.;de los Reyes,J.A.;Lara,V.H.A catalytic application of Cu_2O and CuO films deposited over fiberglass,Appl.Surf.Sci.2001,174,177-184.
    (b)Wang,H.;Xu,J.Z.;Zhu,J.J.;Chen,H.Y.Preparation of CuO nanoparticles by microwave irradiation,J.Cryst.Growth 2002,244,88-94.
    (c)Wang,W.;Zhan,Y.;Wang,X.;Liu,Y.;Zheng,C.;Wang,G.Synthesis and characterization of CuO nanowhiskers by a novel one-step,solid-state reaction in the presence of a nonionic surfactant,Mater.Res.Bull.2002,37,1093-1100.
    [11](a)Rakhshni,A.E.Preparation,characteristics and photovoltaic properties of cuprous oxide—a review,Solid State Electron.1986,29,7-17.
    (b)Musa,A.O.;Akomolafe,T.;Carter,M.J.Production of cuprous oxide,a solar cell material,by thermal oxidation and a study of its physical and electrical properties,Sol.Energy Mater.Sol.Cells 1998,51,305-316.
    [12](a)Lanza,F.;Feduzi,R.;Fuger,J.Effects of lithium oxide on the electrical properties of CuO at low temperatures,J.Mater.Res.1990,5,1739-1744.
    (b)Gao,X.P.;Bao,J.L.;Pan,G.L.;.Zhu,H.Y.;Huang,P.X.;Wu,F.;Song D.Y.Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery,J.Phys.Chem.B 2004,108,5547-5551.
    [13](a)Tongpool,R.;Leach,C.;Freer,R.Temperature and microstructural dependence of the sensitivity of heterocontacts between zinc oxide and copper oxide in reducing environments,J.Mater.Sci.Lett.,2000,19,119-121.
    (b)S.J.Jung and H Yanagida,The characterization of a CuO/ZnO heterocontact-type gas sensor having selectivity for CO gas,Sens.Actuators B,1996,37,55-60.
    (c)Borgohain,K.;Mahamuni,S.Formation of single-phase CuO quantum particles,J.Mater.Res.2002,17,1220-1223.
    [14](a)Lee,S.H.;Her,Y.S.;Matijevic,E.Preparation and Growth Mechanism of Uniform Colloidal Copper Oxide by the Controlled Double-Jet Precipitation,J.Colloid Interface Sci.1997,186,193-202.
    (b)Yang,R.;Gao,L.Novel Way to Synthesize CuO Nanocrystals with Various Morphologies Chem.Lett.2004,33,1194-1195.
    (c)Kumar,R.V.;Diamant,Y.;Gedanken,A.Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates,Chem.Mater.2000,12,2301-2305.
    (d)Liang,Z.H.;Zhu,Y.J.Microwave-assisted Synthesis of Single-crystalline CuO Nanoleaves,Chem.Lett.2004,33,1314-1315.
    [15](a)Xu,C.K.;Liu,Y.K.;Xu,G.D.;Wang,G.G.Preparation and characterization of CuO nanorods by thermal decomposition of CiC_2O_4 precursor,Mater.Res.Bull.2002,37,2365-2372.
    (b)Cao,M.H.;Hu,C.W.;Wang,Y.H.;Guo,Y.H.;Guo,C.X.;Wang,E.B.A controllable synthetic route to Cu,Cu_2O,and CuO nanotubes and nanorods,Chem.Commun.2003,1884-1885.
    [16](a)Chang,Y.;Zeng,H.C.Controlled Synthesis and Self-Assembly of Single-Crystalline CuO Nanorods and Nanoribbons,Cryst.Growth Des.2004,4,397-402.
    (b)Lu,C.H.;Qi,L.M.;Yang,J.H.;Zhang,D.Y.;Wu,N.Z.;Ma,J.M.Simple Template-Free Solution Route for the Controlled Synthesis of Cu(OH)_2 and CuO Nanostructures,J.Phys.Chem.B 2004,108,17825-17831.
    (c)Song,X.Y.;Sun,S.X.;Zhang,W.M.;Yu,H.Y.;Fan,W.L.Synthesis of Cu(OH)_2 Nanowires at Aqueous-Organic Interfaces,J.Phys.Chem.B 2004,108,5200-5205.
    (d)Hou,H.W.;Xie,Y.;Li,Q.Large-Scale Synthesis of Single-Crystalline Quasi-Aligned Submicrometer CuO Ribbons,Cryst.Growth Des.2005,5,201-205.
    [17]Zhao,Y.;Zhu,J.J.;Hong,J.M.;Bian,N.S.;Chen,H.Y.Microwave-Induced Polyol-Process Synthesis of Copper and Copper Oxide Nanocrystals with Controllable Morphology,Eur.J.Inorg.Chem.2004,4072-4080.
    [18]Zhang,L.Z.;Yu,J.C.;Xu,A.W.;Li,Q.;Kwong,K.W.;Yu,S.H.Peanut-shaped nanoribbon bundle superstructures of malachite and copper oxide,J.Cryst.Growth 2004,266,545-551.
    [19]Liu,B.;Zeng,H.C.Fabrication of ZnO "Dandelions" via a Modified Kirkendall Process,J.Am.Chem.Soc.2004,126,16744-16746.
    [20](a)Luo,T.J.M.;MacDonald,J.C.;Palmore,G.T.R.Fabrication of Complex Crystals Using Kinetic Control,Chemical Additives,and Epitaxial Growth,Chem.Mater.2004,16,4916-4927.
    (b)Penn,R.L.Kinetics of Oriented Aggregation,J.Phys.Chem.B 2004,108,12707-12712.
    (c)Oliveira,A.P.A.;Hochepied,J.F.;Grillon,F.;Berger,M.H.Controlled Precipitation of Zinc Oxide Particles at Room Temperature,Chem.Mater.2003,15,3202-3207.
    [21]Nakamoto,K.Infrared Spectra of Inorganic and Coordination Compound(in Chinese);Huang,D.,Wang,R.,Translators;4th Chemical Industry Press:Beijing,1991;p 251.
    [22]Nakamoto,K.(Infrared Spectra of Inorganic and Coordination Compound(in Chinese);Huang,D.,Wang,R.,Translators;4th Chemical Industry Press:Beijing,1991;p 237.
    [23]Nyquist,R.A.;Kagel,R.O.Infrared Spectra of Inorganic Compounds;Academic Press:New York and London,1971;p 220.
    [24]Cotton,F.A.;Wise,J.J.Assignment of the electronic absorption spectra of bis(.beta.-ketoenolate)complexes of copper(Ⅱ)and nickel(Ⅱ),Inorg.Chem.1967,6,917-924.
    [25]Chen,S.C.;Tang,C.Y.;Ding,Z.D.Important Inorganic Reaction(in Chinese);Science and Technology Press of Shanghai:Shanghai,1994;p 1351.
    [26]Penn,R.L.;Banfield,J.F.Imperfect Oriented Attachment:Dislocation Generation in Defect-Free Nanocrystals,Science 1998,281,969-971.
    [27]Kuz' menko,A.B.;Marel,D.V.;Bentum,P.J.M.V.;Tishchenko,E.A.;Presura,C.;Bush,A.A.Infrared spectroscopic study of CuO:Signatures of strong spin-phonon interaction and structural distortion,Phys.Rev.B 2001,63,094303(1-15).
    [28](a)Peng,X.G.Mechanisms for the Shape-Control and Shape-Evolution of Colloidal Semiconductor Nanocrystalsm,Adv.Mater.2003,15,459-463.
    (b)Lee,S.M.;Cho,S.N.;Cheon,J.Anisotropic Shape Control of Colloidal Inorganic Nanocrystals,Adv.Mater.2003,15,441-444.
    [1]Huang,M.H.;Mao,S.;Feick,H.;Yan,H.;Wu,Y.;Kind,H.;Weber,E.;Russo,R.;Yang,P.Room-Temperature Ultraviolet Nanowire Nanolasers,Science 2001,292,1897-1899.
    [2]Huang,Y.;Duan,X.F.;Wei,Q.Q.;Lieber,C.M.Directed Assembly of One-Dimensional Nanostructures into Functional Networks,Science 2001,291,630-633.
    [3]Yonezawa,T.;Onoue,S.;Kimizuka,N.Self-Organized Superstructures of Fluorocarbon-Stabilized Silver Nanoparticles,Adv.Mater.2001,13,140-142.
    [4]Park,S.;Lim,J.H.;Chung,S.W.;Mirkin,C.A.Self-Assembly of Mesoscopic Metal-Polymer Amphiphiles,Science 2004,303,348-351.
    [5]Ewers,T.D.;Sra,A.K.;Norris,B.C.;Cable,R.E.;Cheng,C.H.;Shantz,D.F.;Schaak,R.E.Spontaneous Hierarchical Assembly of Rhodium Nanoparticles into Spherical Aggregates and Superlattices,Chem.Mater.2005,17,514-520.
    [6]Chen,S.J.;Liu,Y.C.;Shao,C.G.;Mu,R.;Lu,Y.M.;Zhang,J.Y.;Shen,D.Z.;Fan,X.W.Structural and Optical Properties of Uniform ZnO Nanosheets,Adv.Mater.2005,17,586-590.
    [7]Yu,S.H.;Yoshimura,M.Shape and Phase Control of ZnS Nanocrystals:Template Fabrication of Wurtzite ZnS Single-Crystal Nanosheets and ZnO Flake-like Dendrites from a Lamellar Molecular Precursor ZnS·(NH_2CH_2CH_2NH_2)__(0.5),Adv.Mater.2002,14,296-300.
    [8]Sakai,N.;Ebina,Y.;Takada,K.;Sasaki,T.Photocurrent Generation from Semiconducting Manganese Oxide Nanosheets in Response to Visible Light,J.Phys.Chem.B 2005,109,9651-9655.
    [9]Yui,T.;Mori,Y.;Tsuchino,T.;Itoh,T.;Hattori,T.;Fukushima,Y.;Takagi,K.Synthesis of Photofunctional Titania Nanosheets by Electrophoretic Deposition,Chem.Mater.2005,17,206-211.
    [10]Peng,X.;Manna,L.;Yang,W.;Wickham,J.;Scher,E.;Kadavanich,A.;Alivisatos A.P.,Shape control of CdSe nanocrystals Nature 2000,404,59-61.
    [11]Wang,Z.L.;Gao,R.P.;Gole,J.L.;Stout,J.D.Silica Nanotubes and Nanofiber Arrays,Adv.Mater.2000,12,1938-1940.
    [12]Yuan,J.K.;Laubernds,K.;Zhang,Q.H.;Suib,S.L.Self-Assembly of Microporous Manganese Oxide Octahedral Molecular Sieve Hexagonal Flakes into Mesoporous Hollow Nanospheres,J.Am.Chem.Soc.2003,125,4966-4967.
    [13]Yan,C.L.;Xue,D.F.Novel Self-Assembled MgO Nanosheet and Its Precursors,J.Phys.Chem.B 2005,109,12358-12361.
    [14]Zhang,Z.P.;Shao,X.Q.;Yu,H.D.;Wang,Y.B.;Han,M.Y.Morpho-synthesis and Ornamentation of 3D Dendritic Nanoarchitectures,Chem.Mater.2005,17,332-336.
    [15]Ohgi,H.;Maeda,T.;Hosono,E.;Fujihara,S.;Imai,H.Evolution of Nanoscale SnO_2 Grains,Flakes,and Plates into Versatile Particles and Films through Crystal Growth in Aqueous Solutions,Cryst.Growth Des.2005,5,1079-1083.
    [16]Hu,G.;Ma,D.;Liu,L.;Cheng,M.J.;Bao,X.H.In Situ Assembly of Zeolitic Building Blocks into High-Order Structures,Angew.Chem.,Int.Ed.Engl.2004,43,3452-3456.
    [17]Musa,A.O.;Akomolafe,T.;Carter,M.J.Production of cuprous oxide,a solar cell material,by thermal oxidation and a study of its physical and electrical properties,Sol.Energy Mater.Sol.Cells 1998,51,305-316.
    [18]Wu,M.K.;Ashburn,J.R.;Torng,C.J.;Hor,P.H.;Meng,R.L.;Gao,L.;Huang,Z.J.;Wang,Y.Q.;Chu,C.W.Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure,Phys.Rev.Lett.1987,58,908-910.
    [19]Rakhshni,A.E.Preparation,characteristics and photovoltaic properties of cuprous oxide—a review,Solid State Electron.1986,29,7-17.
    [20]Gao,X.P.;Bao,J.L.;Pan,G.L.;Zhu,H.Y.;Huang,P.X.;Wu,F.;Song,D.Y.Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery,J.Phys.Chem.B 2004,108,5547-5551.
    [21]Lee,S.H.;Her,Y.S.;Matijevic,E.Preparation and Growth Mechanism of Uniform Colloidal Copper Oxide by the Controlled Double-Jet Precipitation,J.Colloid Interface Sci.1997,186,193-202.
    [22]Cao,M.H.;Hu,C.W.;Wang,Y.H.;.Guo,Y.H;Guo,C.X.;Wang,E.B.A controllable synthetic route to Cu,Cu_2O,and CuO nanotubes and nanorods,Chem.Commun.2003,1884-1885.
    [23]Lu,C.H.;Qi,L.M.;Yang,J.H.;Zhang,D.Y.;Wu,N.Z.;Ma,J.M.Simple Template-Free Solution Route for the Controlled Synthesis of Cu(OH)_2 and CuO Nanostructures,J.Phys.Chem.B 2004,108,17825-17831.
    [24]Du,G.H.;Van Tendeloo,G.Cu(OH)_2 nanowires,CuO nanowires and CuO nanobelts,Chem.Phys.Lett.2004,393,64-69.
    [25]Wen,X.G.;Zhang,W.X.;Yang,S.H.Synthesis of Cu(OH)_2 and CuO Nanoribbon Arrays on a Copper Surface,Langmuir 2003,19,5898-5903.
    [26]Wang,W.Z.;Varghese,O.K.;Ruan,C.;Paulose,M.;Grimesa,C.A.Synthesis of CuO and Cu_2O crystalline nanowires using Cu(OH)_2 nanowire templates,J.Mater.Res.2003,18,2756-2759.
    [27]Liu,J.P.;Huang,X.T.;Li,Y.Y.;Sulieman,K.M.;He,X.;Sun,F.L.Self-Assembled CuO Monocrystalline Nanoarchitectures with Controlled Dimensionality and Morphology,Cryst.Growth Des.2006,6,1690-1696.
    [28]Zou,G.F.;Li,H.;Zhang,D.W.;Xiong,K.;Dong,C.;Qian,Y.T.Well-Aligned Arrays of CuO Nanoplatelets,J.Phys.Chem.B 2006,110,1632-1637.
    [29]Liu,Y.;Chu,Y.;Li,M.Y.;Li,L.L.;Dong,L.H.In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process,J.Mater.Chem.2006,16,192-198.
    [30]Liu,B.;Zeng,H.C.Fabrication of ZnO "Dandelions" via a Modified Kirkendall Process,J.Am.Chem.Soc.2004,126,16744-16746.
    [31]Xu,Y.Y.;Chen,D.R.;Jiao,X.L.Fabrication of CuO Pricky Microspheres with Tunable Size by a Simple Solution Route,J.Phys.Chem.B 2005,109,13561-13566.
    [32](a)Liu,Z.;Yang,Y.;Liang,J.;Hu,Z.;Li,S.;Peng,S.;Qian,Y.Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process,J.Phys.Chem.B 2003,107,12658-12661.
    (b)Liu,Z.P.;Li,S.;Yang,Y.;Peng,S.;Hu,Z.K.;Qian,Y.T.Complex-Surfactant-Assisted Hydrothermal Route to Ferromagnetic Nickel Nanobelts,Adv.Mater.2003,15,1946-1948.
    [33]Hou,Y.L.;Kondoh,H.;Ohta,T.Self-Assembly of Co Nanoplatelets into Spheres:Synthesis and Characterization,Chem.Mater.2005,17,3994-3996.
    [34]Zhang,M.;Fan,H.;Xi,B.;Wang,X.;Dong,C.;Qian,Y.Synthesis, Characterization, and Luminescence Properties of Uniform Ln~(3+)-Doped YF3 Nanospindles, J. Phys. Chem. C. 2007, 111,6652-6657.
    
    [35] K. Nakamoto, in: D. Huang, R.Wang (Eds.), Infrared Spectra of Inorganic and Coordination Compound, fourth ed., Chemical Industry Press, Beijing, 1991 , p. 251 (in Chinese).
    
    [36] R.A. Nyquist, R.O. Kagel, Infrared Spectra of Inorganic Compounds, Academic Press, Inc., New York and London, 1971, pp. 220.
    
    [37] Tang, Z.; Kotov, N. A.; Giersig, M. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires, Science 2002, 297, 237-240.
    
    [38] Zhang, Z.; Sun, H.; Shao, X.; Li, D.; Yu, H.; Han, M. Three-Dimensionally Oriented Aggregation of a Few Hundred Nanoparticles into Monocrystalline Architectures,Adv. Mater. 2005, 17, 42-47.
    
    [39] Adachi, M.; Murata, Y.; Takao, J.; Jiu, J.; Sakamoto, M.; Wang, F. Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO_2 Nanowires Made by the "Oriented Attachment" Mechanism, J. Am. Chem. Soc. 2004, 726, 14943-14949.
    
    [40] Cho, K. S.; Talapin, D. V.; Gaschler, W. G.; Murray, C. B. Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles, J. Am. Chem. Soc. 2005, 727, 7140-7147.
    
    [41] Wen, X.; Zhang, W.; Yang, S.; Dai, Z. R.; Wang, Z.L. Solution Phase Synthesis of Cu(OH)_2 Nanoribbons by Coordination Self-Assembly Using Cu_2S Nanowires as Precursors, Nano Lett. 2002,2, 1397-1401.
    
    [42] Zhang, W. X.; Wen, X. G.; Yang, S. H.; Berta, Y.; Wang, Z. L. Single-Crystalline Scroll-Type Nanotube Arrays of Copper Hydroxide Synthesized at Room Temperature, Adv. Mater. 2003, 75, 822-825.
    
    [43] Cudennec, Y.; Lecerf, A. The transformation of Cu(OH)_2 into CuO, revisited, Solid-State Sci. 2003, 5, 1471-1474.
    
    [44] Jacobs, P. W. M.; Whitehead, H. M. Decomposition and combustion of ammonium perchlorate, Chem. Rev. 1969, 69, 551-590.
    [45]陈爱四,李凤生,马振叶,刘宏英 纳米CuO/AP复合粒子的制备及催化性能研究,固体火箭技术 2004,27,123-125.
    [46]罗元香,陆路德,刘孝恒,杨绪杰,汪信纳米CuO的制备及对NH_4ClO_4热分解的催化性能,无机化学学报 2002,18,1211-1214.
    [47]朱俊武,陈海群,郝艳霞,杨绪杰,陆路德,汪信 针状纳米CuO的制备及其催化性能研究,材料科学与工程学报 2004,22,333-336.
    [1](a)Jiang,Z.;Zuo,Y.Synthesis of Porous Titania Microspheres for HPLC Packings by Polymerization-Induced Colloid Aggregation(PICA),Anal Chem.2001,73,686-688.
    (b)Dong,A.;Ren,N.;Tang,Y.;Wang,Y.;Zhang,Y.;Hua,W.;Gao,Z.General Synthesis of Mesoporous Spheres of Metal Oxides and Phosphates,J.Am.Chem.Soc.2003,125,4976-4977.
    (c)Botterhuis,N.E.;Sun,Q.;Magusin,P.C.M.M.;van Santen,R.A.;Sommerdijk,N.A.J.M.Hollow Silica Spheres with an Ordered Pore Structure and Their Application in Controlled Release Studies,Chem.Eur.J.2006,12,1448-1456.
    [2]Caruso,F.;Caruso,R.A.;Mohwald,H.Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating Science 1998,282,1111-1114.
    [3](a)Djojoputro,H.;Zhou,X.F.;Qiao,S.Z.;Wang,L.Z.;Yu,C.Z.;Lu,G.Q.Periodic Mesoporous Organosilica Hollow Spheres with Tunable Wall Thickness,J.Am.Chem.Soc.2006,128,6320-6321.
    (b)Yeh,Y.Q.;Chen,B.C.;Lin,H.P.;Tang,C.Y.Synthesis of Hollow Silica Spheres with Mesostructured Shell Using Cationic-Anionic-Neutral Block Copolymer Ternary Surfactants,Langmuir 2006,22,6-9.
    [4](a)Schacht,S.;Huo,Q.;Voigt-Martin,I.G.;Stucky,G.D.;Schuth,F.Oil-Water Interface Templating of Mesoporous Macroscale Structures,Science 1996,273,768-771.
    (b)Sun,Q.;Kooyman,P.J.;Grossmann,J.G.;Bomans,P.H.H.;Frederik, P.M.;Magusim,P.;Beelen,T.P.M.;van Santen,R.A.;Sommerdijk,N.A.J.M.The Formation of Well-Defined Hollow Silica Spheres with Multilamellar Shell Structure,Adv.Mater.2003,15,1097-1100.
    [5](a)Bang,J.H.;Suslick,K.S.Sonochemical Synthesis of Nanosized Hollow Hematite,J.Am.Chem.Soc.2007,129,2242-2243.
    (b)Yin,Y.;Rioux,R.M.;Erdonmez,C.K.;Hughes,S.;Somorjai,G.A.;Alivisatos,A.P.Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect,Science 2004,304,711-714.
    [6]Katcho,N.A.;Urones-Garrote,E.;Avila-Brande,D.;Gomez-Herrero,A.;Urbonaite,S.;Csillag,S.;Lomba,E.;Agullo-Rueda,F.;Landa-Canovas,A.R.;Otero-Diaz,L.C.Carbon Hollow Nanospheres from Chlorination of Ferrocene,Chem.Mater.2007,19,2304-2309.
    [7]Sertchook,H.;Elimelech,H.;Makarov,C.;Khalfin,R.;Cohen,Y.;Shuster,M.;Babonneau,F.;Avnir,D.Composite Particles of Polyethylene @ Silica,J.Am.Chem.Soc.2007,129,98-108.
    [8](a)Zhang,J.;Liu,J.;Peng,Q.;Wang,X.;Li,Y.Nearly Monodisperse Cu_2O and CuO Nanospheres:Preparation and Applications for Sensitive Gas Sensors,Chem.Mater.2006,18,867-871.
    (b)Li,X.;Gao,H.;Murphy,C.J.;Gou,L.Nanoindentation of Cu_2O Nanocubes,Nano Lett.2004,4,1903-1907.
    (c)Laik,B.;Poizot,P.;Tarascon,J.M.The Electrochemical Quartz Crystal Microbalance as a Means for Studying the Reactivity of Cu_2O toward Lithium,J.Electrochem.Soc.2002,149,A251-A255.
    [9](a)Wang,W.;Wang,G.;Wang,X.;Zhan,Y.;Liu,Y.;Zheng,C.Synthesis and Characterization of Cu_2O Nanowires by a Novel Reduction Route,Adv.Mater.2002,14,67-69.
    (b)Orel,Z.C.;Anzlovar,A.;Drazic,G.;Zigon,M.Cuprous Oxide Nanowires Prepared by an Additive-Free Polyol Process,Cryst.Growth Des.2007,7,453-458.
    [10](a)Gou,L.;Murphy,C.J.Solution-Phase Synthesis of Cu_2O Nanocubes,Nano Lett.2003,3,231-234.
    (b)Gou,L.;Murphy,C.J.Controlling the size of Cu_2O nanocubes from 200 to 25 nm,J.Mater.Chem.2004,14,735-738.
    [11]Liu,R.;Oba,F.;Bohannan,E.W.;Ernst,F.;Switzer,J.A.Shape Control in Epitaxial Electrodeposition: Cu_2O Nanocubes on InP(OOl), Chem. Mater. 2003, 75, 4882-4885.
    
    [12] Ng, C. H. B.; Fan, W. Y. Shape Evolution of CU_2O Nanostructures via Kinetic and Thermodynamic Controlled Growth, J. Phys. Chem. B 2006,110,20801-20807.
    
    [13] (a) Chen, S.; Chen, X.; Xue, Z.; Li, L.; You, X. Solvothermal preparation of Cu_2O crystalline particles, J. Cryst. Growth 2002, 246, 169-175. (b) Wang, D.; Yu, D.; Mo, M.; Liu, X.; Qian, Y. Seed-mediated growth approach to shape-controlled synthesis of Cu_2O particles, J. Colloid Interface Sci. 2003,261, 565-568.
    
    [14] Xu, H.; Wang, W.; Zhu, W. A facile strategy to porous materials: Coordination-assisted heterogeneous dissolution route to the spherical Cu_2O single crystallites with hierarchical pores, Microporous Mesoporous Mater. 2006, 95, 321-328.
    
    [15] Li, X.; Tao, F.; Jiang, Y.; Xu, Z. 3-D ordered macroporous cuprous oxide: Fabrication, optical, and photoelectrochemical properties, J. Colloid Interface Sci. 2007, 308,460-465.
    
    [16] Lu, C.; Qi, L.; Yang, J.; Wang, X.; Zhang, D.; Xie, J.; Ma, J. One-Pot Synthesis of Octahedral Cu_2O Nanocages via a Catalytic Solution Route, Adv. Mater. 2005,17, 2562-2567.
    
    [17] (a) Teo, J. J.; Chang, Y.; Zeng, H. C. Fabrications of Hollow Nanocubes of Ou_2O and Cu via Reductive Self-Assembly of CuO Nanocrystals, Langmuir 2006, 22, 7369-7377. (b) Chang, Y.; Teo, J. J.; Zeng, H. C. Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu_2O Nanospheres, Langmuir 2005, 21,1074-1079.
    
    [18] Lai, X.; Li, X.; Geng, W.; Tu, J.; Li, J.; Qiu, S. Ordered Mesoporous Copper Oxide with Crystalline Walls, Angew. Chem., Int. Ed. 2007, 46, 738-741.
    
    [19] (a) Li, Z.; Xiong, Y.; Xie, Y. Selected-Control Synthesis of ZnO Nanowires and Nanorods via a PEG-Assisted Route, Inorg. Chem. 2003, 42, 8105-8109. (b) Zhang, D.; Fu, H.; Shi, L.; Pan, C.; Li, Q.; Chu, Y.; Yu, W. Synthesis of CeO_2 Nanorods via Ultrasonication Assisted by Polyethylene Glycol, Inorg. Chem. 2007, 46, 2446-2541. (c) Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J. Crystallographically Oriented Mesoporous WO_3 Films: Synthesis, Characterization, and Applications, J. Am. Chem. Soc. 2001, 123, 10639-10649. (d) Zhu, Y.; Zhang, L.; Wang, L.; Fu, Y.; Cao, L. The preparation and chemical structure of TiO_2 film photocatalysts supported on stainless steel substrates via the sol-gel method, J. Mater. Chem. 2001, 11, 1864-1868. (e) Xu, Y.; Chen, D.; Jiao, X.; Ba, L. PEG-Assisted Fabrication of Single-Crystalline Cul Nanosheets: A General Route to Two-Dimensional Nanostructured Materials, J. Phys. Chem. C 2007, 111, 6-9.
    
    [20] Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y. Polyol Synthesis of Silver Nanoparticles: Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons, Nano Lett. 2004,4,1733-1739.
    
    [21] Feng, Z. V.; Li, X.; Gewirth, A. A. Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths: A Surface-Enhanced Raman Study, J. Phys. Chem. B 2003,107, 9415-9423.
    
    [22] Borgohain, K.; Murase, N.; Mahamuni, S. Synthesis and properties of Cu_2O quantum particles, J. Appl. Phys. 2002, 92, 1292-1297.
    
    [23] Bernson, A.; Lindgren, G.; Huang, W.; Freeh, R. Coordination and conformation in PEO, PEGM and PEG systems containing lithium or lanthanum triflate, Polymer 1995,36,4471-4478.
    
    [24] Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds (in Chinese; Huang, D., Wang, R., Translators); 4th Chemical Industry Press: Beijing, 1991; p 251.
    
    [25] Goltner, C. G.; Henke, S.; Weissenberger, M. C; Antonietti, M. Mesoporous Silica from Lyotropic Liquid Crystal Polymer Templates, Angew. Chem., Int. Ed. 1998, 37, 613-616.
    
    [26] Ghijsen, J.; Tjeng, L. H.; van Elp, J.; Eskes, H.; Westerink, J.; Sawatzky, G. A.; Czyzyk, M. T. Electronic structure of Cu_2O and CuO, Phys. Rev. B 1988, 38, 11322-11330.
    
    [27] Cotton, F. A.; Wise, J. J. Assignment of the electronic absorption spectra of bis(.beta.-ketoenolate) complexes of copper(II) and nickel(II), Inorg. Chem. 1967, 6, 917-924.
    [28](a)Tasaki,K.Poly(oxyethylene)-Water Interactions:A Molecular Dynamics Study,J.Am.Chem.Soc.1996,118,8459-8469.
    (b)Derkaoui,N.;Said,S.;Grohens,Y.;Olier,R.;Privat,M.PEG400 novel phase description in water,J.Colloid Interface Sci.2007,305,330-338.
    [29](a)Kerker,M.The optics of colloidal silver:something old and something new,J.Colloid Interface Sci.1985,105,297-314.
    (b)Dobryszycki,J.;Biallozor,S.On some organic inhibitors of zinc corrosion in alkaline media,Corros.Sci.2001,43,1309-1319.
    [30](a)He,T.;Chen,D.;Jiao,X.Controlled Synthesis of Co_3O_4 Nanoparticles through Oriented Aggregation,Chem.Mater.2004,16,737-743.
    (b)Meng,Y.;Chen,D.;Jiao,X.Fabrication and Characterization of Mesoporous Co_3O_4 Core/Mesoporous Silica Shell Nanocomposites,J.Phys.Chem.B 2006,110,15212-15217.
    [31]He,T.;Chen,D.;Jiao,X.;Xu,Y.;Gu,Y.Surfactant-Assisted Solvothermal Synthesis of Co_3O_4 Hollow Spheres with Oriented-Aggregation Nanostructures and Tunable Particle Size,Langmuir 2004,20,8404-8408.
    [32]Yin,M.;Wu,C.;Lou,Y.;Burda,C.;Koberstein,J.T.;Zhu,Y.;O'Brien,S.Copper Oxide Nanocrystals,J.Am.Chem.Soc.2005,127,9506-9511.
    [33](a)Ko,E.;Choi,J.;Okamoto,K.;Tak,Y.;Lee,J.Cu_2O Nanowires in an Alumina Template:Electrochemical Conditions for the Synthesis and Photoluminescence Characteristics,Chem.Phys.Chem.2006,7,1505-1509.
    (b)Fernando,C.A.N.;Wetthasinghe,S.K.Investigation of photoelectrochemical characteristics of n-type Cu_2O films,Sol.Energy Mater.Sol.Cells 2000,63,299-308.
    [34]Zhou,G.;Lu,M.;Xiu,Z.;Wang,S.;Zhang,H.;Zhou,Y.;Wang,S.Controlled Synthesis of High-Quality PbS Star-Shaped Dendrites,Multipods,Truncated Nanocubes,and Nanocubes and Their Shape Evolution Process,J.Phys.Chem.B 2006,110,6543-6548.
    [35]Xu,H.;Wang,W.;Zhu,W.Shape Evolution and Size-Controllable Synthesis of Cu_2O Octahedra and Their Morphology-Dependent Photocatalytic Properties,J.Phys.Chem.B 2006,110,13829-13834.
    [1](a)Jiang,Z.;Xie,Z.;Zhang,X.;Lin,S.;Xu,T.;Xie,S.;Huang,R.;Zheng,L.Synthesis of Single-Crystalline ZnO Polyhedral Submicrometer-Sized Hollow Beads Using Laser-Assisted Growth with Ethanol Droplets as Soft Templates,Adv.Mater.2004,16,904-907.
    (b)Yu,J.;Yoon,S.B.;Lee,Y.J.;Yoon,K.B.Fabrication of Bimodal Porous Silicate with Silicalite-1 Core/Mesoporous Shell Structures and Synthesis of Nonspherical Carbon and Silica Nanocases with Hollow Core/Mesoporous Shell Structures,J.Phys.Chem.B 2005,109,7040-7045.
    (c)Cao,H.;Qian,X.;Wang,C.;Ma,X.;Yin,J.;Zhu,Z.High Symmetric 18-Facet Polyhedron Nanocrystals of Cu_7S_4 with a Hollow Nanocage,J.Am.Chem.Soc.2005,127,16024-16025.
    (d)Yang,H.;Zeng,H.Self-Construction of Hollow SnO_2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites,Angew.Chem.,Int.Ed.2004,43,5930-5933.
    (e)Yang,J.;Qi,L.;Lu,C.;Ma,J.;Cheng,H.Morphosynthesis of Rhombododecahedral Silver Cages by Self-Assembly Coupled with Precursor Crystal Templating,Angew.Chem.,Int.Ed.2005,44,598-603.
    (f)Lu,C.;Qi,L.;Yang,J.;Wang,X.;Zhang,D.;Xie,J.;Ma,J.One-Pot Synthesis of Octahedral Cu_2O Nanocages via a Catalytic Solution Route,Adv.Mater.2005,17,2562-2567.
    [2](a)Petrova,H.;Lin,C.;Hu,M.;Chen,J.;Siekkinen,A.R.;Xia,Y.;Sader,J.E.;Hartland,G.V.Vibrational Response of Au-Ag Nanoboxes and Nanocages to Ultrafast Laser-Induced Heating,Nano Lett.2007,7,1059-1063.
    (b)Chen.J.;Wiley,B.;Li.Z.;Campbell,D.;Saeki,F.;Cang,H.;Au,L.;Lee,J.;Li,X.;Xia,Y.Gold Nanocages:Engineering Their Structure for Biomedical Applications,Adv.Mater.2005,17,2255-2261.
    (c)Lu,X.;Au,L.;McLellan,J.;Li,Z.-Y.;Marquez,M.;Xia,Y.Fabrication of Cubic Nanocages and Nanoframes by Dealloying Au/Ag Alloy Nanoboxes with an Aqueous Etchant Based on Fe(NO_3)_3 or NH_4OH,Nano Lett.2007,7,1764-1769.
    [3]Wang,W.;Poudel,B.;Wang,D.;Ren,Z.Synthesis of PbTe Nanoboxes Using a Solvothermal Technique,Adv.Mater.2005,17,2110-2114.
    [4](a)He,T.;Chen,D.;Jiao,X.;Wang,Y.Co_3O_4 Nanoboxes:Surfactant-Templated Fabrication and Microstructure Characterization,Adv.Mater.2006,18,1078-1082.
    (b)Teo,J.J.;Chang,Y.;Zeng,H.C.Fabrications of Hollow Nanocubcs of Cu_2O and Cu via Reductive Self-Assembly of CuO Nanocrystals,Langmuir 2006,22,7369-7377.
    [5]Borgohain,K.;Murase,N.;Mahamuni,S.Synthesis and properties of Cu_2O quantum particles,J.Appl.Phys.2002,92,1292-1297.
    [6]Nakamoto,K.Infrared and Raman Spectra of Inorganic and Coordination Compounds(in Chinese;Huang,D.,Wang,R.,Translators);4th Chemical Industry Press:Beijing,1991;p 251.
    [7](a)Bernson,A.;Lindgren,G.;Huang,W.;Frech,R.Coordination and conformation in PEO,PEGM and PEG systems containing lithium or lanthanum triflate,Polymer 1995,36,4471-4478.
    (b)He,T.;Chen,D.;Jiao,X.;Wang,Y.;Duan,Y.Solubility-Controlled Synthesis of High-Quality Co_3O_4 Nanocrystals,Chem.Mater.2005,17,4023-4030.
    [8](a)Chen,Q.;Shen,X.;Gao,H.Formation of solid and hollow cuprous oxide nanocubes in water-in-oil microemulsions controlled by the yield of hydrated electrons,J.Colloid Inter.Sci.2007,312,272-278.
    (b)Luo,F.;Wu,D.;Gao,L.;Lian,S.;Wang,E.;Kang,Z.;Lan,Y.;Xu,L.Shape-controlled synthesis of Cu_2O nanocrystals assisted by Triton X-100,J.Cryst.Growth 2005,285,534-540.
    [9](a)Chen,Z.;Shi,E.;Zheng,Y.;Li,W.;Xiao,B.;Zhuang,J.Growth of hex-pod-like Cu_2O whisker under hydrothcrmal conditions,J.Crystal Growth 2003,249,294-300.
    (b)Wang,D.;Mo,M.;Yu,D.;Xu,L.;Li,F.;Qian,Y.Large-Scale Growth and Shape Evolution of Cu_2O Cubes,Cryst.Growth Des.2003,3,717-720.
    [10]Wang,X.;Yu,L.;Hu,P.;Yuan,F.Synthesis of Single-Crystalline Hollow Octahedral NiO,Cryst.Growth Des.2007,7,2415-2418.
    [11]Yin,M.;Wu,C.;Lou,Y.;Burda,C.;Koberstein,J.T.;Zhu,Y.;O'Brien,S.Copper Oxide Nanocrystals,J.Am.Chem.Soc.2005,127,9506-9511.
    [12] P. He, X. Shen, H. Gao, Size-controlled preparation of Cu_2O octahedron nanocrystals and studies on their optical absorption, J. Colloid Interface Sci. 2005, 254,510-515.
    
    [13] Chang, Y.; Teo, J. J.; Zeng, H. C. Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu_2O Nanospheres, Langmuir 2005, 21, 1074-1079.
    [1]Tian,Z.;Voigt,J.;Liu,J.;Mckenzie,B.;Mcdermott,M.J.;Rodriguez,M.A.;Konishi,H.;Xu,H.Complex and oriented ZnO nanostructures,Nat.Mater.2003,2,821-826.
    (b)Wang,W.Z.;Poudel,B.;Yang,J.;Wang,D.Z.;Ren,Z.F.High-Yield Synthesis of Single-Crystalline Antimony Telluride Hexagonal Nanoplates Using a Solvothermal Approach,J.Am.Chem.Soc.2005,127,13792-13793.
    [2] (a) Chen, S. H.; Carroll, D. L. Synthesis and Characterization of Truncated Triangular Silver Nanoplates, Nano Lett. 2002, 2, 1003-1007. (b) Mo, M. S.; Yu, J. C; Zhang, L. Z.; Li, S. K. A. Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres, Adv. Mater. 2005,17, 756-760. (c) Sun, Y. G; Xia, Y. N. Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science 2002, 298,2176-2179.
    
    [3] (a) Kim, J. U.; Cha, S. H.; Shin, K.; Jho, J. Y; Lee, J. C. Preparation of Gold Nanowires and Nanosheets in Bulk Block Copolymer Phases under Mild Conditions Adv. Mater. 2004, 16, 459-464. (b) Song, Y.; Yang, Y; Medforth, C. J.; Pereira, E.; Singh, A. K.; Xu, H.; Jiang, Y; Brinker, C. J.; van Swol, F.; Shelnutt, J. A. Controlled Synthesis of 2-D and 3-D Dendritic Platinum Nanostructures, J. Am. Chem. Soc. 2004, 126, 635-645. (c) Kan, C. X.; Zhu, X. G; Wang, G G Single-Crystalline Gold Microplates: Synthesis, Characterization, and Thermal Stability, J. Phys. Chem. B 2006,110, 4651-4654. (d) Pastoriza-Santos, I.; Liz-Marza'n, L. M. Synthesis of Silver Nanoprisms in DMF, Nano Lett. 2002, 2, 903-905.
    
    [4] (a) Chen, S. J.; Liu, Y. C.; Shao, C. G.; Mu, R.; Lu, Y. M.; Zhang, J. Y; Shen, D. Z.; Fan, X. W. Structural and Optical Properties of Uniform ZnO Nanosheets, Adv. Mater. 2005, 17, 586-590. (b) Liu, Z. P.; Ma, R. Z.; Osada, M.; Takada, K.; Sasaki, T. Selective and Controlled Synthesis of α- and β-Cobalt Hydroxides in Highly Developed Hexagonal Platelets, J. Am. Chem. Soc. 2005, 127, 13869-13874; (c) Liang, Z. H.; Zhu, Y J.; Hu, X. L. β-Nickel Hydroxide Nanosheets and Their Thermal Decomposition to Nickel Oxide Nanosheets, J. Phys. Chem. B 2004,108, 3488-3491. (d) Dai, Z. R.; Pan, Z. W.; Wang, Z. L. Growth and Structure Evolution of Novel Tin Oxide Diskettes, J. Am. Chem. Soc. 2002, 124, 8673-8680. (e) Hou, Y. L.; Kondoh, H.; Shimojo, M.; Kogure, T.; Ohta, T. High-Yield Preparation of Uniform Cobalt Hydroxide and Oxide Nanoplatelets and Their Characterization, J. Phys. Chem. B 2005,109, 19094-19098.
    
    [5] Fang, X. S.; Ye, C. H.; Zhang, L. D.; Wang, Y. H.; Wu, Y C. Temperature-Controlled Catalytic Growth of ZnS Nanostructures by the Evaporation of ZnS Nanopowders, Adv. Funct. Mater. 2005,15, 63-68.
    [6]Taubert,A.CuCl Nanoplatelets from an Ionic Liquid-Crystal Precursor,Angew.Chem.,Int.Ed.2004,43,5380-5382.
    [7]Guo,Y.G.;Lee,J.S.;Maier,J.AgI Nanoplates with Mesoscopic Superionic Conductivity at Room Temperature,Adv.Mater.2005,17,2815-2819.
    [8]Chahid,A.;McGreevy,R.L.Disorder in the fast ion conductor CuI,Physica B 1997,234-236,87-88.
    [9]Feraoun,H.;Aourag,H.;Certier,M.Theoretical studies of substoichiometric CuI,Materials Chemistry and Physics 2003,82,597-601.
    [10]Katdare,S.P.;Deshpande,R.M.;Kashalkar,R.V.;Sathaye,S.D.;Bhave,A.S.A new chemical method of formation of silver iodide thin films,J.Mater.Sci.Lett.1997,16,398-401.
    [11]陈红兵,华仁忠,朱从善,干福熹 碘化亚铜微晶掺杂硅酸盐玻璃的制备及其光学性质,物理化学学报 1997,13,497-502.
    [12]王逸君,杨庆,沈新元,陈道江PAN-CuI导电纤维的研制,合成纤维 1998,27,3-6.
    [13](a)Ogawa,T.;Usuki,N.;Ono,N.A new synthesis of π-electron conjugated phosphonates and phosphonic bis(diethylamides)and their SHG activities,J.Chem.Soc.Perkin Trans.1,1998,2953-2958.
    (b)Zhu,W.;Ma,D.Formation of Arylboronates by a CuI-Catalyzed Coupling Reaction of Pinacolborane with Aryl Iodides at Room Temperature,Org.Lett.2006,8,261-263.
    (c)Chen,C.Y.;Dormer,P.G.Synthesis of Benzo[b]furans via CuI-Catalyzed Ring Closure,J.Org.Chem.2005,70,6964-6967.
    (d)Ackermann,L.General and Efficient Indole Syntheses Based on Catalytic Amination Reactions,Org.Lett.2005,7,439-442.
    [14](a)Kumara,G.R.A.;Konno,A.;Shiratsuchi,K.;Tsukahara,J.;Tennakone,K.Dye-Sensitized Solid-State Solar Cells:Use of Crystal Growth Inhibitors for Deposition of the Hole Collector,Chem.Mater.2002,14,954-955.
    (b)Sirimannea,P.M.;Sogab,T.;Kunst,M.Observation of microwave conductivity in copper iodide films and relay effect in the dye molecules attached to CuI photocathode J.Solid State Chem.2005,178,3010-3013.
    (c)Zhang,X.T.;Liu,H.W.;Taguchi,T.;Meng,Q.B.;Sato,O.;Fujishima,A.Slow interracial charge recombination in solid-state dye-sensitized solar cell using Al_2O_3-coated nanoporous TiO_2 films,Solar Energ.Mater.Solar C 2004,81,197-203.
    [15](a)Hsiao,G.S.;Anderson,M.G.;Gorer,S.;Harris,D.;Penner,R.M.Hybrid Electrochemical/Chemical Synthesis of Supported,Luminescent Semiconductor Nanocrystallites with Size Selectivity:Copper(Ⅰ)Iodide,J.Am.Chem.Soc.1997,119,1439-1448.
    (b)Hsu,C.T.;Chung,H.H.;Kumar,A.S.;Zen,J.M.Novel Preparation and Photoelectrochemical Properties of γ-CuI Semiconductor Nanocrystallites on Screen-Printed Carbon Electrodes,Electroanalysis 2005,17,1822-1827.
    (c)Yang,M.;Xu,J.Z.;Xu,S.;Zhu,J.J.;Chen,H.Y.Preparation of porous spherical CuI nanoparticles,Inorg.Chem.Commun.2004 7,628-630.
    (d)Sirimanne,P.M.;Rusop,M.;Shirata,T.;Soga,T.;Jimbo,T.Characterization of transparent conducting CuI thin films prepared by pulse laser deposition technique,Chem.Phys.Lett.2002,366,485-489.
    [16]Kong,X.Y.;Ding,Y.;Yang,R.;Wang,Z.L.Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts,Science 2004,303,1348-1351.
    [17]Jin,R.C.;Cao,Y.W.;Mirkin,C.A.;Kelly,K.L.;Schatz,G.C.;Zheng,J.G.Photoinduced Conversion of Silver Nanospheres to Nanoprisms,Science 2001,294,1901-1903.
    [18]Perera,V.P.S.;Tennakone,K.Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector,Sol.Energy Matter Sol.Cells 2003,79,249-255.
    [19](a)Sirimanne,P.M.;Rusop,M.;Shirata,T.;Soga,T.;Jimbo,T.Characterization of CuI thin films prepared by different techniques,Mater.Chem.Phys.2003,80,461-465.
    (b)Tanaka,T.;Kawabata,K.;Hirose,M.Transparent,conductive CuI films prepared by rf-dc coupled magnetron sputtering,Thin Solid Films 1996,281-282,179-181.
    [20]Caruntu,D.;Remond,Y.;Chou,N.H.;Jun,M.J.;Caruntu,G.;He,J.B.;Goloverda,G.;O'Connor,C.;Kolesnichenko,V.Reactivity of 3d Transition Metal Cations in Diethylene Glycol Solutions:Synthesis of Transition Metal Ferrites with the Structure of Discrete Nanoparticles Complexed with Long-Chain Carboxylate Anions,Inorg.Chem.2002,41,6137-6146.
    [21]Kerker,M.The optics of colloidal silver:something old and something new,J.Colloid Interface Sci.1985,105,297-314.
    [22](a)Dobryszycki,J.;Biallozor,S.On some organic inhibitors of zinc corrosion in alkaline media,Corros.Sci.2001,43,1309-1319.
    (b)Liu,X.H.;Yang,J.;Wang,L.;Yang,X.J.;Lu,L.D.;Wang,X.An improvement on sol-gel method for preparing ultrafine and crystallized titania powder,Mater.Sci.Eng.A 2000,289,241-245.
    [23]Liu,Z.P.;Yang,Y.;Liang,J.B.;Hu,Z.K.;Li,S.;Peng,S.;Qian,Y.Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process,J.Phys.Chem.B 2003,107,12658-12661.
    [24]Wang,L.Y.;Chen,X.;Zhan,J.;Chai,Y.C.;Yang,C.J.;Xu,L.M.;Zhuang,W.C.;Jing,B.Synthesis of Gold Nano-and Microplates in Hexagonal Liquid Crystals,J.Phys.Chem.B 2005,109,3189-3194.
    [25]Wang,G.;Olofsson,G.Titration Calorimetric Study of the Interaction between Ionic Surfactants and Uncharged Polymers in Aqueous Solution,J.Phys.Chem.B 1998,102,9276-9283.
    [26](a)Silvert,P.Y.;Herrera-Urbina,R.;Duvauchelle,N.;Vijayakrishnan,V.;Tekaia-Elhsissen,K.Preparation of colloidal silver dispersions by the polyol process.Part 1—Synthesis and characterization,J.Mater.Chem.1996,6,573-577.
    (b)Silvert,P.Y.;Herrera-Urbina,R.;Tekaia-Elhsissen,K.Preparation of colloidal silver dispersions by the polyol process,J.Mater.Chem.1997,7,293-299.
    (1)Chen,S.H.;Fan,Z.Y.;Carroll,D.L.J.Phys.Chem.B 2002,106,10777.
    (b)Ewers,T.D.;Sra,A.K.;Norris,B.C.;Cable,R.E.;Cheng,C.H.;Shantz,D.F.;Schaak,R.E.Chem.Mater.2005,17,514.
    (c)Yang,H.G.;Zeng,H.C.Angew.Chem.,Int.Ed.Engl.2004,43,5930.
    (d)Yang,X.J.;Makita,Y.;Liu,Z.H.;Sakane,K.;Ooi,K.Chem.Mater.2004,16,5581.
    (2)(a)Ma,Y.R.;Qi,L.M.;Ma,J.M.;Cheng,H.M.Cryst.Growth Des.2004,4,351.
    (b)Chen,X.Y.;Wang,X.;Wang,Z.H.;Yang,X.G.;Qian,Y.T.Cryst.Growth Des.2005,5,347.
    (c)Shi,H.T.;Qi,L.M.;Ma,J.M.Cheng,H.M.J.Am Chem.Soc.2003,125,3450.
    (d)Zhang,J.;Sun,L.D.;Yin,J.L.;Su,H.L.;Liao,C.S.;Yan,C.H.Chem.Mater.2002,14,4172.
    (3)Mann,S.Angew.Chem.,Int.Ed.Engl.2000,39,3392.
    (4)Gao,F.;Lu,Q.Y.;Xie,S.H.;Zhao,D.Y.Adv.Mater.2002,14,1537.
    (5)(a)Jun,Y.W.;Lee,S.M.;Kang,N.J.;Cheon,J.J.Am.Chem.Soc.2001,123,5150.
    (b)Lu,Q.Y.;Gao,F.;Zhao,D.Y.Angew.Chem.,Int.Ed.Engl.2002,41, 1932.
    (c)Qin,A.M.;Fang,Y.P.;Ou,H.D.;Liu,H.Q.;Su,C.Y.Cryst.Growth Des.10.1021/cg049736o.
    (d)Lu,Q.Y.;Gao,F.;Zhao,D.Y.Nano Lett.2002,2,725.
    (6)(a)Wu,C.Z.;Xie,Y.;Wang,D.;Yang,J.;Li,T.W.J.Phys.Chem.B 2003,107,13583.
    (b)Ohgi,H.;Maeda,T.;Hosono,E.;Fujihara,S.;Imai,H.Cryst.Growth Des.2005,5,1079.
    (c)Lou,X.W.;Zeng,H.C.J.Am.Chem.Soc.2003,125,2697.
    (7)(a)Jana,N.R.;Gearheart,L.;Murphy,C.J.Adv.Mater.2001,13,1389.
    (b)Chen,J.Y.;Herricks,T.;Geissler,M.;Xia,Y.N.J.Am.Chem.Soc.2004,126,10854.
    (c)Qu,L.T.;Shi,G.Q.;Wu,X.F.;Fan,B.AdV.Mater.2004,16,1200.
    (8)(a)Bigi,A.;Boanini,E.;Walsh,D.;Mann,S.Angew.Chem.,Int.Ed Engl.2002,41,2163.
    (b)Yu,S.H.;Collfen,H.;Antonietti,M.J.Phys.Chem.B 2003,107,7396.
    (c)Yu,S.H.;Colfen,H.;Xu,A.W.;Dong,W.F.Cryst.Growth Des.2004,4,33.
    (d)Yu,S.H.;Antonietti,M.;Collfen,H.;Hartmann,J.Nano Lett.2003,3,379.
    (9)(a)Musa,A.O.;Akomolafe,T.;Carter,M.J.Sol.Energy Mater.Sol.Cells 1998,51,305.
    (b)Wu,M.K.;Ashburn,J.R.;Torng,C.J.;Hor,P.H.;Meng,R.L.;Gao,L.;Huang,Z.J.;Wang,Y.Q.;Chu,C.W.Phys.Rev.Lett.1987,58,908.
    (c)Zheng,X.G.;Xu,C.N.;Tomokiyo,Y.;Tanaka,E.;Yamada,H.;Soejima,Y.Phys.Rev.Lett.2000,85,5170.
    (d)Prabhakaran,D.;Subramanian,C.;Balakumar,S.;Ramasamy,P.Phys.C 1999,319,99.
    (e)Borgohain,K.;Mahamuni,S.J.Mater.Res.2002,17,1220.
    (10)(a)Maruyama,T.Sol.Energy Mater.Sol.Cells 1998,56,85.
    (b)Rakhshni,A.E.Solid State Electron.1986,29,7.
    (11)(a)Lanza,F.;Feduzi,R.;Fuger,J.Mater.Res.1990,5,1739.
    (b)Gao,X.P.;Bao,J.L.;Pan,G.L.;Zhu,H.Y.;Huang,P.X.;Wu,F.;Song D.Y.J.Phys.Chem.B 2004,108,5547.
    (12)(a)Lee,S.H.;Her,Y.S.;Matijevic,E.J.Colloid Interface Sci.1997,186,193.
    (b)Chen,D.;Shen,G.Z.;Tang,K.Z.;Qian,Y.T.J.Cryst.Growth 2003,254,225.
    (c)Hong,Z.S.;Cao,Y.;Deng,J.F.Mater.Lett.2002,52,34.
    (d)Yang,R.; Gao,L.Chem.Lett.2004,33,1194.
    (e)Kumar,R.V.;Diamant,Y.;Gedanken,A.Chem.Mater.2000,12,2301.
    (f)Liangy,Z.H.;Zhu,Y.J.Chem.Lett.2004,33,1314.
    (13)(a)Xu,C.K.;Liu,Y.K.;Xu,G.D.;Wang,G.G.Mater.Res.Bull.2002,37,2365.
    (b)Cao,M.H.;Hu,C.W.;Wang,Y.H.;Guo,Y.H.;Guo,C.X.;Wang,E.B.Chem.Commun.2003,1884.
    (14)(a)Chang,Y.;Zeng,H.C.Cryst.Growth Des.2004,4,397.
    (b)Zhu,C.L.;Chen,C.N.;Hao,L.Y.;Hu,Y.;Chen,Z.Y.J.Cryst.Growth 2004,263,473.
    (c)Zhu,C.L.;Chen,C.N.;Hao,L.Y.;Hu,Y.;Chen,Z.Y.Solid State Commun.2004,130,681.
    (d)Lu,C.H.;Qi,L.M.;Yang,J.H.;Zhang,D.Y.;Wu,N.Z.;Ma,J.M.J.Phys.Chem.B 2004,108,17825.
    (e)Song,X.Y.;Sun,S.X.;Zhang,W.M.;Yu,H.Y.;Fan,W.L.J.Phys.Chem.B 2004,108,5200.
    (f)Du,G.H.;Van Tendeloo,G.Chem.Phys.Lett.2004,393,64.
    (g)Gao,X.P.;Bao,J.L.;Pan,G.L.;Zhu,H.Y.;Huang,P.X.;Wu,F.;Song,D.Y.J.Phys.Chem.B 2004,108,5547.
    (h)Hou,H.W.;Xie,Y.;Li,Q.Cryst.Growth Des.2005,5,201.
    (15)Zhao,Y.;Zhu,J.J.;Hong,J.M.;Bian,N.S.;Chen,H.Y.Eur.J.Inorg.Chem.2004,4072.
    (16)Zhang,L.Z.;Yu,J.C.;Xu,A.W.;Li,Q.;Kwong,K.W.;Yu,S.H.J Cryst.Growth 2004,266,545.
    (17)Liu,B.;Zeng,H.C.J.Am.Chem.Soc.2004,126,16744.
    (18)(a)Luo,T.J.M.;MacDonald,J.C.;Palmore,G.T.R.Chem.Mater.2004,16,4916.
    (b)Penn,R.L.J.Phys.Chem.B 2004,108,12707.
    (c)Oliveira,A.P.A.;Hochepied,J.F.;Grillon,F.;Berger,M.H.Chem.Mater.2003,15,3202.
    (19)Nakamoto,K.Infrared Spectra of Inorganic and Coordination Compound(in Chinese);Huang,D.,Wang,R.,Translators;4th Chemical Industry Press:Beijing,1991;p251.
    (20)Nakamoto,K.(Infrared Spectra of Inorganic and Coordination Compound(in Chinese);Huang,D.,Wang,R.,Translators;4th Chemical Industry Press:Beijing,1991;p 237.
    (21)Nyquist,R.A.;Kagel,R.O.Infrared Spectra of Inorganic Compounds; Academic Press:New York and London,1971;p 220.
    (22)(a)Cotton,F.A.;Wise,J.J.Inorg.Chem.1967,6,917.
    (23)Chen,S.C.;Tang,C.Y.;Ding,Z.D.Important Inorganic Reaction(in Chinese);Science and Technology Press of Shanghai:Shanghai,1994;p 1351.
    (24)Penn,R.L.;Banfield,J.F.Science 1998,281,969.
    (25)Kuz'menko,A.B.;Marel,D.V.;Bentum,P.J.M.V.;Tishchenko,E.A.;Presura,C.;Bush,A.A.Phys.Rev.B 2001,63,094303.
    (26)(a)Peng,X.G.Adv.Mater.2003,15,459.
    (b)Lee,S.M.;Cho,S.N.;Cheon,J.Adv.Mater.2003,15,441.
    (1) (a) Jiang, Z.; Zuo, Y. Anal. Chem. 2001, 73, 686. (b) Dong, A.; Ren, N.; Tang, Y.; Wang, Y.; Zhang, Y.; Hua, W.; Gao, Z. J. Am. Chem. Soc. 2003, 125, 4976. (c) Botterhuis, N. E.; Sun, Q.; Magusin, P. C. M. M.; van Santen, R. A.; Sommerdijk, N. A. J. M. Chem. Eur. J. 2006,12, 1448.
    
    (2) (a) Tang, B.; Rankin, S. E. Langmuir 2005, 21, 8180. (b) Zhang, Y.; Li, G.; Wu, Y.; Luo, Y.; Zhang, L. J. Phys. Chem. B 2005, 109, 5478. (c) Arnal, P. M.; Weidenthaler, C; Schuth, F. Chem. Mater. 2006, 18, 2733. (d) Arnal, P. M.; Schuth, F.; Kleitz, F. Chem. Commun. 2006, 1203.
    
    (3) (a) Djojoputro, H.; Zhou, X. F.; Qiao, S. Z.; Wang, L. Z.; Yu, C. Z.; Lu, G. Q. J. Am. Chem. Soc. 2006,128, 6320. (b) Yeh, Y. Q.; Chen, B. C; Lin, H. P.; Tang, C. Y. Langmuir 2006, 22, 6.
    
    (4) (a) Schacht, S.; Huo, Q.; Voigt-Martin, I. G.; Stucky, G. D.; Schuth, F. Science 1996, 273, 768. (b) Li, Y.; Shi, J.; Hua, Z.; Chen, H.; Ruan, M.; Yan, D. Nano Lett. 2003, 3, 609. (c) Sun, Q.; Kooyman, P. J.; Grossmann, J. G.; Bomans, P. H. H.; Frederik, P. M.; Magusim, P. C. M. M.; Beelen, T. P. M.; van Santen, R. A.; Sommerdijk, N. A. J. M. Adv. Mater. 2003, 75, 1097. (d) Wang, J.; Xiao, Q.; Zhou, H.; Sun, P.; Yuan, Z.; Li, B.; Ding, D.; Shi, A.; Chen, T. Adv. Mater. 2006, 18, 3284. (e)Zhang, H.; Wu, J.; Zhou, L.; Zhang, D.; Qi, L. Langmuir 2007, 23, 1107.
    
    (5) (a) Bang, J. H.; Suslick, K. S. J. Am. Chem. Soc. 2007, 129, 2242. (b) Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Science 2004, 304, 711. (c) Liu, Q.; Liu, H.; Han, M.; Zhu, J.; Liang, Y.; Xu, Z.; Song,Y.Adv.Mater.2005,17,1995.
    (d)Zhou,P.;Li,Y.;Sun,P.;Zhou,J.;Bao,J.Chem.Commun.2007,1418.
    (e)Hu,Y.;Jiang,X.;Ding,Y.;Chen,Q.;Yang,C.Adv.Mater.2004,16,933.
    (f)Latham,A.H.;Wilson,M.J.;Schiffer,P.;Williams,M.E.J.Am.Chem.Soc.2006,128,12632.
    (g)Dhas,N.A.;Suslick,K.S.J.Am.Chem.Soc.2005,127,2368.
    (6)Katcho,N.A.;Urones-Garrote,E.;Avila-Brande,D.;Gomez-Herrero,A.;Urbonaite,S.;Csillag,S.;Lomba,E.;Agullo-Rueda,F.;Landa-Canovas,A.R.;Otero-Diaz,L.C.Chem.Mater.2007,19,2304.
    (7)(a)Sertchook,H.;Elimelech,H.;Makarov,C.;Khalfm,R.;Cohen,Y.;Shuster,M.;Babonneau,F.;Avnir,D.J.Am.Chem.Soc.2007,129,98.
    (b)Munoz-Espi,R.;Jeschke,G.;Lieberwirth,I.;Gomez,C.M.;Wegner,G.J.Phys.Chem.B 2007,111,697.
    (c)Li,D.;He,Q.;Cui,Y.;Li,J.Chem.Mater.2007,19,412.
    (8)(a)Zhang,J.;Liu,J.;Peng,Q.;Wang,X.;Li,Y.Chem.Mater.2006,18,867.
    (b)Li,X.;Gao,H.;Murphy,C.J.;Gou,L.Nano Lett.2004,4,1903.
    (c)Laik,B.;Poizot,P.;Tarascon,J.M.J.Electrochem.Soc.2002,149,A251.
    (d)Yu,H.;Yu,J.;Liu,S.;Mann,S.Chem.Mater.10.1021/cm070386d.
    (9)(a)Wang,W.;Wang,G.;Wang,X.;Zhan,Y.;Liu,Y.;Zheng,C.Adv.Mater.2002,14,67.
    (b)Orel,Z.C.;Anzlovar,A.;Drazic,G.;Zigon,M.Cryst.Growth Des.2007,7,453.
    (c)Singh,D.P.;Neti,N.R.;Sinha,A.S.K.;Srivastava,O.N.J.Phys.Chem.C2007,111,1638.
    (10)(a)Gou,L.;Murphy,C.J.Nano Lett.2003,3,231.
    (b)Wang,D.;Mo,M.;Yu,D.;Xu,L.;Li,F.;Qian,Y.Cryst.Growth Des.2003,3,717.
    (c)Gou,L.;Murphy,C.J.J.Mater.Chem.2004,14,735.
    (d)Zhang,H.;Ren,X.;Cui,Z.J.Cryst.Growth 2007,in press.
    (11)Liu,R.;Oba,F.;Bohannan,E.W.;Ernst,F.;Switzer,J.A.Chem.Mater.2003,15,4882.
    (12)(a)He,P.;Shen,X.;Gao,H.J.Colloid Interface Sci.2005,284,510.
    (b)Ng,C.H.B.;Fan,W.Y.J.Phys.Chem.B 2006,110,20801.
    (13)(a)Chen,S.;Chen,X.;Xue,Z.;Li,L.;You,X.J.Cryst.Growth 2002,246,169.
    (b)Wang,D.;Yu,D.;Mo,M.;Liu,X.;Qian,Y.J.Colloid Interface Sci.2003,261,565.
    (14)Xu,H.;Wang,W.;Zhu,W.Microporous Mesoporous Mater.2006,95,321.
    (15)Li,X.;Tao,F.;Jiang,Y.;Xu,Z.J.Colloid Interface Sci.2007,308,460.
    (16) Lu, C; Qi, L.; Yang, J.; Wang, X.; Zhang, D.; Xie, J.; Ma, J. Adv. Mater. 2005, 77,2562.
    
    (17) (a) Teo, J. J.; Chang, Y.; Zeng, H. C. Langmuir 2006, 22, 7369. (b) Chang, Y.; Teo, J. J.; Zeng, H. C. Langmuir 2005, 21, 1074.
    
    (18) Lai, X.; Li, X.; Geng, W.; Tu, J.; Li, J.; Qiu, S. Angew. Chem., Int. Ed. 2007, 46, 738.
    
    (19) (a) Li, Z.; Xiong, Y.; Xie, Y. Inorg. Chem. 2003, 42, 8105. (b) Zhou, X.; Zhang, D.; Zhu, Y.; Shen, Y.; Guo, X.; Ding, W.; Chen, Y. J. Phys. Chem. B 2006, 110, 25734. (c) Zhang, D.; Fu, H.; Shi, L.; Pan, C; Li, Q.; Chu, Y.; Yu, W. Inorg Chem. 2007, 46, 2446. (d) Wolcott, A.; Kuykendall, T. R.; Chen, W.; Chen, S.; Zhang, J. Z. J. Phys. Chem. B 2006, 110, 25288. (e) Krishnan, C. V.; Chen, J.; Burger, C; Chu, B. J. Phys. Chem. B 2006, 110, 20182. (f) Zhu, Y.; Zhang, L.; Wang, L.; Fu, Y.; Cao, L. J. Mater. Chem. 2001, 11, 1864. (g) Xu, Y.; Chen, D.; Jiao, X.; Ba, L. J. Phys. Chem. C 2007, 111, 6. (h) Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J. J. Am. Chem. Soc. 2001,123, 10639.
    
    (20) (a) Xiong, Y.; Washio, I.; Chen, J.; Cai, H.; Li, Z.; Xia, Y. Langmuir 2006, 22, 8563. (b) Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y. Nano Lett. 2004, 4, 1733. (c) Im, S. H.; Lee, Y. T.; Wiley, B.; Xia, Y. Angew. Chem., Int. Ed. 2005, 44, 2154.
    
    (21) (a) Feng, Z. V.; Li, X.; Gewirth, A. A. J. Phys. Chem. B 2003, 107, 9415. (b) Liu, S.; Li, T.; Chen, C; Shieh, J.; Dai, B.; Hensen, K.; Cheng, S. Jpn. J. Appl. Phys. 2006, 45, 3976.
    
    (22) Borgohain, K.; Murase, N.; Mahamuni, S. J. Appl. Phys. 2002, 92, 1292.
    
    (23) (a) Bernson, A.; Lindgren, G.; Huang, W.; Frech, R. Polymer 1995, 36, 4471.(b)He, T.; Chen, D.; Jiao, X.; Wang, Y.; Duan, Y. Chem. Mater. 2005, 77, 4023.
    
    (24) Nakamoto, K. 77? Spectra of Inorg. and Coord. Comps. (in Chinese, D. Huang, R. Wang, Translators) 4th Chemical Industry Press: Beijing, 1991, p251.
    
    (25) Goltner, C. G.; Henke, S.; Weissenberger, M. C; Antonietti, M. Angew. Chem., Int. Ed. 1998,37,613.
    
    (26) Ghijsen, J.; Tjeng, L. H.; van Elp, J.; Eskes, H.; Westerink, J.; Sawatzky, G. A.; Czyzyk, M. T. Phys. Rev. B 1988, 38, 11322.
    
    (27) (a) He, T.; Chen, D.; Jiao, X. Chem. Mater. 2004, 16, 737. (b) Meng, Y.; Chen, D.; Jiao, X. J. Phys. Chem. B 2006, 770, 15212.
    
    (28) Cotton, F. A.; Wise, J. J. Inorg. Chem. 1967, 6, 917.
    (29)(a)Tasaki,K.J.Am.Chem.Soc.1996,118,8459.
    (b)Derkaoui,N.;Said,S.;Grohens,Y.;Olier,R.;Privat,M.J.Colloid Interface Sci.2007,305,330.
    (30)(a)Kerker,M.J.Colloid Interface Sci.1985,105,297.
    (b)Dobryszycki,J.;Biallozor,S.Corros.Sci.2001,43,1309.
    (c)Liu,X.H.;Yang,J.;Wang,L.;Yang,X.J.;Lu,L.D.;Wang,X.Mater.Sci.Eng.A 2000,289,241.
    (d)Chen,D.H.;Huang,Y.W.J.Colloid Interface Sci.2002,255,299.
    (31)He,T.;Chen,D.;Jiao,X.;Xu,Y.;Gu,Y.Langmuir 2004,20,8404.
    (32)Yin,M.;Wu,C.;Lou,Y.;Burda,C.;Koberstein,J.T.;Zhu,Y.;O'Brien,S.J.Am.Chem.Soc.2005,127,9506.
    (33)(a)Ko,E.;Choi,J.;Okamoto,K.;Tak,Y.;Lee,J.ChemPhysChem.2006,7,1505.
    (b)Fernando,C.A.N.;Wetthasinghe,S.K.Sol.Energy Mater.Sol.Cells 2000,63,299.
    (34)Zhou,G.;Lu,M.;Xiu,Z.;Wang,S.;Zhang,H.;Zhou,Y.;Wang,S.J.Phys.Chem.B 2006,110,6543.
    (35)Xu,H.;Wang,W.;Zhu,W.J.Phys.Chem.B 2006,110,13829.
    (1)Tian,Z.;Voigt,J.;Liu,J.;Mckenzie,B.;Mcdermott,M.J.;Rodriguez,M.A.;Konishi,H.;Xu,H.Nat.Mater.2003,2,821.
    (2)Chen,S.J.;Liu,Y.C.;Shao,C.G.;Mu,R.;Lu,Y.M.;Zhang,J.Y.;Shen,D.Z.;Fan,X.W.Adv.Mater.2005,17,586.
    (3)Kim,J.U.;Cha,S.H.;Shin,K.;Jho,J.Y.;Lee,J.C.Adv.Mater.2004,16,459.
    (4)Li,C.;Cai,W.;Cao,B.;Sun,F.;Li,Y.;Kan,C.;Zhang,L.Adv.Funct.Mater.2006,16,83.
    (5)Pastoriza-Santos,I.;Liz-Marzan,L.M.Nano.Lett.2002,2,903.
    (6)Chen,S.;Carroll,D.L.J..Phys.Chem.B 2004,108,5500.
    (7)Hou,Y.L.Kondoh,H.;Shimojo,M.;Kogure,T.;Ohta,T.J.Phys.Chem.B 2005,109,19094.
    (8)Taubert,A.Angew.Chem.,Int.Ed.2004,43,5380.
    (9)Guo,Y.G.;Lee,J.S.;Maier,J.Adv.Mater.2005,17,2815.
    (10)Kumara,G.R.A.;Konno,A.;Shiratsuchi,K.;Tsukahara,J.;Tennakone,K.Chem.Mater.2002,14,954.
    (11)Zhu,W.;Ma,D.Org.Lett.2006,8,261.
    (12)Hsiao,G.S.;Anderson,M.G.;Gorer,S.;Harris,D.;Penner,R.M.J.Am.Chem.Soc.1997,119,1439.
    (13) Hsu, C. T.; Chung, H. H.; Kumar, A. S.; Zen, J. M. Electroanalysis 2005, 17, 1822.
    
    (14) Yang, M.; Xu, J. Z.; Xu, S.; Zhu, J. J.; Chen, H. Y. Inorg. Chem. Commun. 2004, 7, 628.
    
    (15) Kong, X. Y.; Ding, Y.; Yang, R.; Wang, Z. L. Science 2004, 303, 1348.
    
    (16) Jin, R. C; Cao,Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C; Zheng, J. G. Science 2001, 294, 1901.
    
    (17) Perera, V.P.S; Tennakone, K.Sol. Energ. Mat. Sol.C. 2003, 79, 249.
    
    (18) Sirimanne, P. M.; Rusop, M.; Shirata, T.; Soga, T.; Jimbo, T. Mater. Chem. Phys. 2003,50,461.
    
    (19)Tanaka, T.; Kawabata, K.; Hirose, M. Thin Sol. Filmsl996,281-282, 179.
    
    (20) Kerker, M. J. Colloid Interface Sci. 1985,105, 297.
    
    (21) Dobryszycki, J.; Biallozor, S. Corros. Sci. 2001, 43, 1309; Liu, X. H.; Yang, J.; Wang, L.; Yang, X. J.; Lu, L. D.; Wang, X. Mater. Sci. Eng. A 2000, 289, 241.
    
    (22) Liu, Z. P.; Yang,Y.; Liang, J. B.; Hu, Z. K.; Li, S.; Peng, S.; Qian, Y. J. Phys. Chem. 5 2003, 107, 12658.
    
    (23) Wang, L. Y.; Chen, X.; Zhan, J.; Chai, Y. C.; Yang, C. J.; Xu,L. M.; Zhuang, W. C.; Jing, B. J. Phys. Chem. B 2005,109, 3189.
    (
    24) Wang, G.; Olofsson, G. J. Phys. Chem. B 1998,102, 9276.
    (1)Caruntu,D.;Remond,Y.;Chou,N.H.;Jun,M.J.;Caruntu,G.;He,J.B.;Goloverda,G.;O'Connor,C.;Kolesnichenko,V.Inorg.Chem.2002,41,6137.
    (2)Silvert,P.Y.;Herrera-Urbina,R.;Duvauchelle,N.;Vijayakrishnan,V.;Tekaia-Elhsissen,K.J.Mater.Chem.1996,6,573;Silvert,P.Y.;Herrera-Urbina,R.;Tekaia-Elhsissen,K.J.Mater.Chem.1997,7,293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700