小麦异源六倍化过程及其在遗传育种中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多倍化在真核生物的进化中发挥了重要作用。可以通过同一染色体组加倍产生同源多倍体,或由不同物种杂交后染色体组加倍产生异源多倍体。普通小麦(Triticum aestivum L.,染色体组为AABBDD,2n=6x=42)是异源多倍体物种的一个典型代表。它是一个异源六倍体,由A、B、D三个具有部分同源关系的染色体组组成,每个染色体组由7条染色体构成。普通小麦的起源,曾经历了两次异源多倍化过程。第一次异源多倍化过程产生了四倍体小麦(T. turgidum),第二次异源多倍化是以栽培四倍体小麦为母本与节节麦(Aegilops tauschii)为父本天然杂交,然后通过染色体自然加倍,形成具有42条染色体和AABBDD染色体组的新兴异源六倍体小麦。人们可以模拟小麦的起源过程,合成新六倍体小麦(人工合成小麦)。近年来,围绕人工合成小麦进行的相关研究,为异源多倍化遗传机制探讨和异源多倍体作物种质资源开发及遗传育种研究提供了十分重要的参考价值。
     尽管普通小麦起源、进化的基本轮廓已比较清楚,但是许多细节问题还有待于进一步研究。普通小麦的异源六倍化起源包括两个重要过程:一是杂交过程(杂交世代),通过在共同分布区的四倍体小麦和节节麦远缘杂交,产生天然杂种F_1,从而把不同、但亲缘关系较近的A、B和D染色体组(异源染色体组)聚合在同一个细胞核内,实现“异源”,形成具有ABD染色体组的异源三倍体;二是染色体加倍过程(加倍世代),杂种F_1的染色体发生了自然加倍,产生了具有AABBDD染色体组的六倍体小麦(F_2或S_1代),从而实现“六倍化”(Hexaploidization)。本文围绕这两个过程进行相关研究。在不使用幼胚培养等辅助条件下,在大田自然环境中,通过属间杂交研究了四倍体小麦与节节麦之间的可杂交性及杂种F_1植株染色体自然加倍过程;以微卫星(Microsatellite,SSR)产物为例,研究了异源六倍化过程对基因组的影响及其在分子标记应用中的参考价值;通过该研究发现了一些新的自然加倍种质,包括我国的两份蓝麦地方品种AS2255和AS313,并利用它们为小麦遗传研究和育种改良创制了一批新材料。主要结果如下:
     1.利用属于7个不同亚种(波斯小麦ssp.carthlicum、硬粒小麦ssp.durum、波兰小麦ssp.polonicum、东方小麦ssp.turanicum、圆锥小麦ssp.turgidum、栽培二粒小麦ssp.dicoccon、野生二粒小麦ssp.dicoccoides)的196份四倍体小麦与13份节节麦配制了372个杂交组合。从66220朵授粉小花中,获得了3713粒杂交种子,杂交结实率平均为5.61%(0~75%)。许多杂种能够发芽并成长为植株。不同的四倍体小麦亚种与节节麦的可杂交性存在差异,野生二粒小麦亚种和栽培二粒小麦亚种与节节麦的可杂交性最高,而波兰小麦最低。在13份节节麦中,AS2405和AS2404与四倍体小麦的杂交结实率高于10%,而AS65、AS77和AS82的杂交结实率低于2%。利用硬粒小麦品种Langdon以及Langdon的D-染色体组代换系对可杂交性进行了遗传研究。代换系Langdon 7D(7A)和Langdon 4D(4B)的杂交结实率显著高于对照,表明Langdon的7A和4B染色体携带可杂交性的抑制基因。
     2.未经幼胚拯救及激素处理,获得了圆锥小麦(T.turgidum ssp.turgidum)与节节麦的F_1杂种。该杂种高度可育,F_1植株的平均自交结实率达25%。大约96%的F_2代种子能够正常发芽,其中,大约67%的F_2植株为自发双二倍体(2n=42,AABBDD)。对F_1植株雄配子形成的细胞学分析表明,一种“类有丝分裂减数分裂”途径产生了未减数配子,使得F_1杂种高度可育。圆锥小麦-节节麦(T.t.turgidum-Ae.tauschii)双二倍体与易变山羊草(Ae.variabilis)和黑麦(rye)的测交表明,“类有丝分裂减数分裂”受核基因控制并在其衍生后代起作用。这一发现暗示着该基因在加倍单倍体方面有重要的潜在应用价值。
     3.四倍体小麦与节节麦自发产生的三倍体F_1杂种产生有功能的配子是普通小麦起源的关键性步骤。第一次分裂核再组(first-division restitution,FDR)或发生在第一次分裂过程中的单次减数分裂(single division meiosis,SDM),导致了有功能的未减数配子产生。未使用幼胚拯救和激素处理,得到了硬粒小麦Langdon及二体代换系Langdon 1D(1B)与节节麦的杂种F_1,这些杂种F_1都高度可育。观察了F_1植株未减数雄配子的产生,同时预测了F_1未减数雌配子的产生。SDM是未减数配子产生的主要减数分裂途径。环境、基因型或环境与基因型互作都会影响未减数配子的产生。除整倍单倍体配子外,SDM产生了许多非整倍单倍体配子。
     4.以异源六倍体小麦为例,比较了四倍体小麦与节节麦合成六倍体小麦前后,位于普通小麦D染色体组不同染色体臂上的特异性引物揭示的微卫星位点变化特点。结果表明,在从四倍体小麦与节节麦杂交,将A、B与D染色体组结合在一起并加倍得到AABBDD的六倍体小麦这一异源六倍化过程中:(1)微卫星的侧翼序列发生了变化导致:出现了供体物种没有的新带纹或供体物种的带纹消失。其中,供体物种的带纹消失是主要的。(2)供体物种的带纹消失不是随机的,而是四倍体小麦消失频率远高于节节麦的频率,即发生在A、B染色体组的消失频率比发生在D染色体组的频率高得多。(3)微卫星侧翼序列的变化在多倍化的早期(F_1代或S_1代)就开始发生。由此看来,微卫星两边的侧翼区域在多倍化过程中很活跃,是容易发生变化的区域。微卫星的生物学功能可能与多倍体进化过程有关,微卫星两边的侧翼区域在多倍化过程的早期迅速发生有方向性的改变可能有利于新形成异源多倍体的迅速进化,从而使不同染色体组在遗传上迅速达到协调。
     5.微卫星分子标记已广泛用于普通小麦遗传和进化研究。由于人工合成小麦与小麦品种之间存在高的遗传多样性,人工合成小麦已被大量应用于小麦分子标记工作中。但是,目前还缺乏人工合成小麦的异源六倍化过程对微卫星影响的研究。本研究直接比较了四倍体小麦与节节麦远缘杂交并经染色体加倍获得人工合成小麦前后,位于普通小麦A/B染色体组不同染色体臂上的66个特异引物揭示的微卫星位点的保守性和可转移性。结果表明,除了一个引物在新合成小麦中扩增出供体亲本没有的新带,一个引物在节节麦扩增出的产物在新合成小麦中消失,其它的所有微卫星引物的扩增产物在小麦合成前后是保守的,没有变异发生。所有的引物能够在四倍体小麦中扩增出微卫星产物,四倍体小麦中的扩增产物也出现在新的人工合成小麦中;有70%的引物能够在节节麦扩增出产物,其中的绝大多数产物也出现在新的人工合成小麦中。因此,普通小麦A/B染色体组的这些微卫星引物除了在人工合成小麦的A/B染色体组中扩增出产物,还能在其D染色体组中扩增出产物,也就是说,这些引物对人工合成小麦而言,并非是A/B染色体组特异的。根据该研究结果,讨论了小麦微卫星的可转移性和特异性问题,重点讨论了在应用人工合成小麦构建的遗传群体进行微卫星分子标记中的应用价值及其应该注意的问题。
     6.利用5个四倍体小麦与节节麦杂交,通过形成未减数配子进行染色体自然加倍,得到了新合成六倍体材料,并通过形态学和细胞学观察对这些材料进行了鉴定。创制了编号为Syn-SAU-N-X-Y的231个新合成小麦株系。除了遗传育种研究价值,这些材料的创制过程中未使用幼胚培养及秋水仙碱染色体加倍处理技术等可能诱发遗传变异的化学药品,因此它们是小麦异源多倍化过程研究的理想材料。这套材料为准确和精确地进行相关研究提供了基础。
     7.利用Langdon D-染色体组代换系与节节麦杂交,通过形成未减数配子进行染色体自然加倍,得到了6个新的缺体-四体材料(Syn-SAU N1AT1D、Syn-SAU N1BT1D、Syn-SAU N2BT2D、Syn-SAU N3AT3D、Syn-SAU N4BT4D和Syn-SAU N7AT7D)。通过形态学、细胞学和分子标记对这些材料进行了鉴定。这些缺体-四体材料与中国春对应的缺体-四体不同,是一种新型的遗传工具材料。主要表现在:(1)对某一四体中的4条D染色体,2条来自节节麦,2条来自中国春;(2)用人工合成小麦途径获得,除了涉及相应四体的1对D染色体来自中国春外,其它遗传背景全部来自四倍体小麦和节节麦。
     8.通过使用秋水仙碱处理圆锥小麦与节节麦的杂种植株,人工合成了一个具有56条染色体的可育小麦材料(SHW-L2)。在花粉母细胞减数分裂中期Ⅰ,新合成小麦SHW-L2的56条染色体的配对构型为2.82个单价体、6.18个棒状二价体、19.39个环状二价体、0.5个三价体和0.14个四价体。细胞学分析表明,除了普通小麦的42条染色体外,SHW-L2还有7对染色体分别来自于A和D染色体组。SHW-L2特殊的染色体构成可能源自秋水仙碱处理幼苗进行染色体加倍和随后的雌雄配子自然加倍。对目前的结果及其在理论及应用方面的特殊价值进行了讨论。
     9.运用中国四倍体蓝麦AS2255与中东节节麦AS60创制的SHW-L1进行了小麦育种改良的应用研究,初步表明节节麦和蓝麦在小麦产量性状育种上有价值。
Polyploidy has been found to be very common in plants. Polyploids can be formed viathe duplication of genomes, either of the same genomes (autopolyploid) or of divergedgenomes with homoeologous relationships (allopolyploid). Bread or common wheat(Triticum aestivum L., 2n=42) is a good example of allopolyploid made up of three diploidgenomes A, B and D. Bread wheat has undergone two polyploidizations during itsevolution. T. turgidum L. (2n=28, AABB) was formed in the first intercrossingbetween T. urartu and Aegilops speltoides. Then bread wheat was formed bysecond polyploidization after the intercrossing between T. turgidum (maternal) andAe. tauschii followed by chromosome doubling. By the mimic of common wheatevolution, many synthetic hexaploid wheats have been produced. The syntheticwheat is very useful for genetic improvement of modern wheat. Moreover,common wheat has many distinctive scientific characteristics which make it aninteresting model for the study of the organization and evolution of plant genomes.
     Allopolyploidization generates two "shocks". One is hybridity, by which twodiverged genomes are joined together to form one nucleus. The other is polyploidy,resulting in duplicated genomes. Allohexaploidization of wheat also include thetwo events, hybridization between T. turgidum and Ae. tauschii andautoduptication of the hybrid. However, some details about the events are stillunclear. In this study, we studied the allohexaploidization by analyzing the processof artificially synthetic hexaploid wheat with emphasis on its application in genetics and breeding. The results were as follows:
     1. Two experiments to investigate the crossability of Triticum turgidum with Aegilopstauschii are described. In the first, 372 wide hybridization combinations were done bycrossing 196 T. turgidum lines belonging to seven subspecies with 13 Ae. tauschiiaccessions. From the 66220 florets pollinated, 3713 seeds were obtained, with a meancrossability percentages of 5.61% ranged from 0 to 75%. A lot of hybrid seeds couldgerminate and produce plants. Out of 372 combinations, 272 (73.12%) showed a very lowcrossability lower than 5%, 87 (23.39%) showed the crossability of 5-30%, ten (2.69%)showed the crossability of 30-50%, three (0.81%) showed hitch crossability more than 50%,respectively. All the crossability percentages more than 30% were obtained from thecrossing of ssp. dicoccoides or dicoccon with Ae. tauschii. Among the seven T. turgidumsubspecies, there were significant differences in crossability. The ssp. dicoccoides anddicoccon showed the highest crossability, while polonicum showed the lowest. Among the13 Ae. tauschii accessions, AS2405 and AS2404 showed a crossability more than10%,while AS65, AS77 and AS82 showed a crossability less than 2%, respectively. Thegenetics of crossability was investigated using T. turgidum ssp. durum cultivar Langdonand the D-genome chromosome substitution lines of Langdon. The higher crossabilitiescompared with the control in lines 7D(7A) and 4D(4B) suggested that 7A and 4B intetraploid wheat cv. Langdon carried dominant crossability alleles inhibiting crossabilitywith Ae. tauschii. The relationships of present results with previously reported crossabilitygenes of wheat are discussed.
     2. Highly fertile F_1 hybrids were made between Triticum turgidum L. ssp. turgidum(2n=28, AABB) and Aegilops tauschii Coss. (2n=14, DD) without embryo rescue andhormone treatment. The F_1 plants had an average seedset of 25%. Approximately 96% ofthe F_2 seeds were able to germinate normally and about 67% of the F_2 plants werespontaneous amphidiploid (2n=42, AABBDD). Cytological analysis of malegametogenesis of the F_1 plants showed that meiotic restitution is responsible for the highfertility. It seems that a mitosis-like meiosis led to meiotic restitution at either of the twomeiotic divisions resulting in unreduced gametes. Test crosses of the T. t. turgidum-Ae. tauschii amphidiploid with Ae. variabilis and rye suggested that the mitosis-like meiosis iscontrolled by nuclear gene(s) that are functional in the derived lines. This discoveryimplicates a potential application of such genes in production of double haploids.
     3. The production of functional gametes in the triploid F_1 hybrids between Triticumturgidum L. (2n=28, AABB) and Aegilops tauschii Coss. (2n=14, DD) was a significantbiological step that led to the emergence of bread wheat. The meiotic restitution at either offirst-division restitution (FDR) or single equational division at the first division (SDM) isthe cytological mechanism responsible for the production of functional gametes. In thisstudy, highly fertile F_1 hybrids were made between T. turgidum L. ssp. durum cultivarLangdon and its disomic substitution 1D(1B) and Ae. tauschii without embryo rescue andhormone treatment. Observation of male gametogenesis and prediction of female gameteof the F_1 plants showed that the production of unreduced gametes was responsible for thehigh fertility. SDM was the major meiotic pathways for the production of unreducedgametes. Environments or genotypes, or both affected the production of unreducedgametes. Besides euhaploids, SDM produced a lot of aneuhaploid gametes. Therelationships between FDR and SDM and the implications of present results for the originstatus of bread wheat in cytology were discussed.
     4. It was suggested that the rapid changes of DNA sequence and gene expressionoccurred at the early stages of allopolyploid formation. In this study, we revealed themicrosatellite (SSR) differences between newly formed allopolyploids and their donorparents by using 21 primer sets specific for D genome of wheat. It was indicated that rapidchanges had occurred in the "shock" process of the allopolyploid formation betweentetraploid wheat and Aegilops tauschii. The changes of SSR flanking sequence resulted inappearance of novel bands or disappearance of parental bands. The disappearance of theparental bands showed much higher frequencies in comparison with that of appearance ofnovel bands. Disappearance of the parental bands was not random. The frequency ofdisappearance in tetraploid wheat was much higher than in Ae. tauschii, i. e. thedisappearance frequency in AABB genome was much higher than in D genome. Changesof SSR flanking sequence occurred at the early stage of F_1 hybrid or just after chromosomedoubling. From the above results, it can be inferred that SSR flanking sequence region was very active and was amenable to change in the process of polyploidization. This suggestedthat SSR flanking sequence probably had special biological function at the early stage ofpolyploidization. The rapid and directional changes at the early stage of polyploidizationmight contribute to the rapid evolution of the newly formed allopolyploid and allow thedivergent genomes to act in harmony.
     5. Microsatellites or SSRs as powerful genetic markers have widely been used ingenetics and evolutionary biology in common wheat. Because of the high polymorphism,newly synthesized hexaploid wheat has been used in the construction of geneticsegregation-population for SSR markers. However, data on the evolution of microsatellitesduring the polyploidization event of hexaploid wheat are limited.
     In this study, 66 pairs of primers specific to A/B genome SSR patterns among newlysynthesized hexaploid wheat, the donor tetraploid wheat and Ae. tauschii were compared.The results indicated that most SSR markers were conserved during the polyploidizationevents of newly synthetic hexaploid wheat, from T. turgidum and Ae. tauschii. Over 70%A/B genome specific SSR markers could amplify the SSR sequences from the D genomeof Ae. tauschii. Most amplified fragments from Ae. tauschii were detected in synthetichexaploid at corresponding positions with the same sizes and patterns as in its parental Ae.tauschii. This suggested that these SSR markers, specific for A/B genome in commonwheat, could amplify SSR products of D genome besides A/B gen0me in the newlysynthesized hexaploid wheat, that is, these SSR primers specific for A/B genome incommon wheat were nonspecific for the A/B genome in the synthetic hexaploid wheat. Inaddition, one amplified Ae. tauschii product was not detected in the newly synthetichexaploid wheat. An extra-amplified product was found in the newly synthetic hexaploidwheat. These results suggested that caution should be taken when using SSR marker togenotype newly synthetic hexaptoid wheat.
     6. New synthetic hexaptoid wheats were obtained from crosses of five T. turgidum L.lines with Ae. tauschii, which were formed by chromosome autoduplication throughunreduced gametes. Identifications were made by morphological and cytologicalobservation. Two hundred and thirty-one new synthetic wheat lines were coded by "Syn-SAU-N-X-Y". Besides the values in wheat improvement, they are desirable materials for study of allohexaploidization due to without the using of chemical materials, such asembryo rescue and colchicine treatment during the synthetic process.
     7. Six new nullisomic-tetrasomic lines (Syn-SAU N1AT1D, Syn-SAU N1BT1D, Syn-SAU N2BT2D, SYn-SAU N3AT3D, SYn-SAU N4BT4D and Syn-SAU N7AT7D) wereobtained from crosses of Langdon D-genome substitution lines with Ae. tauschii, whichwere formed by chromosome autoduplication through unreduced gametes. Identificationswere made by morphological, cytological and molecular analysis. They are different fromprevious Chinese Spring nullisomic-tetrasomic lines. The main differences were as follows:(1) for each of tetrasomics, there were four D chromosomes, two from Ae. tauschii and twofrom Chinese Spring; (2) they were obtained by manner of synthetic wheat, other geneticbackgrounds were from T. turgidum L. and Ae. tauschii except that their two Dchromosomes of the corresponding tetrasomics were from Chinese Spring.
     8. By colchicine treatment of the hybrid plants between Triticum turgidum andAegilops tauschii, a fertile wheat plant (SHW-L2) carrying 56 chromosomes wasartificially synthesized. At metaphaseⅠof pollen mother cells, the 56 chromosomes of newwheat SHW-L2 showed a pairing configuration of 2.82 univalents, 6.18 rod bivalents,19.39 ring bivalents, 0.5 trivalents and 0.14 quadrivalents. Cytological analysis suggestedthat SHW-L2 had additional 7 pairs of chromosomes from A and D genome besides the 42chromosomes as common wheat has. The special chromosome constitute of SHW-L2 maybe derived from the chromosome doubling by colchicine treatment for seedlings and thenspontaneous doubling for gametes. Present results were discussed with reference to specialvalues at both the theoretical and applied levels.
     9. The primary utilization of synthetic wheat SHW-L1 between T. turgidum ssp.turgidum line AS2255 and Ae. tauschii AS60 on bread wheat improvement indicated thepotential usefulness of synthetic wheat for yield characters, 1000-grain weight and spikeletnumber.
引文
1.董玉琛,许树军,周荣华等1990.小麦-山羊草双二倍体的合成与利用.植物细胞工程与育种,178-183
    2.董玉琛,郑殿升主编1999.中国小麦遗传资源.北京:中国农业出版社,pp43-44
    3.董玉琛2000.小麦的基因源.麦类作物学报,20(3):78-81
    4.董玉柱,刘振兰,董英山等2004.异源DNA导入水稻诱发活跃反转子Tos17发生可遗传DNA甲基化变异.植物学报,46(1):100-109
    5.韩敬花,任贤,樊路等1996.普通小麦(T. aestivum)与黑麦(Secale cereale)、山羊草(Aegilops)可交配性的比较研究.宁夏农学院学报,17(1):35-39
    6.孔令让,董玉琛,贾继增1999.小麦-山羊草双二倍体抗白粉病基因定位及其遗传转移.植物保护学报,26(2):116-120
    7.兰秀锦,颜济1992.中国四倍体地方小麦品种矮兰麦与中国产节节麦的双二倍体及其在育种上的利用.四川农业大学学报,10(4):581-585
    8.廖晓虹,杨武云1999.四川圆锥小麦地方品种(兰麦)品质特性分析.种子,5:23-24
    9.刘大钧,陈佩度,吴沛良等1986.硬粒小麦-簇毛麦双二倍体.作物学报,12(3):155-162
    10.刘登才,颜济,杨俊良1997.节节麦5D染色体随体多态性的证据.遗传,19(4):4-6
    11.刘登才,彭正松,颜济等1998.四倍体小麦“简阳矮兰麦”与黑麦可杂交性及其在六倍体水平上的遗传特性.遗传,20(6):26-29
    12.刘登才,兰秀锦,杨足君等2002.远缘杂交不需幼胚培养的节节麦基因型.植物学报,44(6):708-713
    13.罗明诚,颜济,杨俊良1989.四川小麦地方品种与节节麦和黑麦的可杂交性.四川农业大学学报,7(2):71-76
    14.马渐新,周荣华,董玉琛等1999.用微卫星标记定位一个未知的小麦抗条锈病基因.科学通报,14:1513-1517
    15.倪中福,张义荣,梁荣奇等2002.从CIMMYT引进的人工合成六倍体小麦D染色体组微卫星分子标记的遗传差异.遗传学报,29(6):542-548
    16.唐启义,冯明光2007.DPS数据处理系统:实验设计、统计分析及数据挖掘.北京:科学出版社.
    17.许树军,董玉琛1989.波斯小麦×节节麦杂种F_1直接形成双二倍体的细胞遗传学研究.作物学报,15(3):251-259
    18.徐勇,沈福成,王三根等2001.小麦缺体-四体的SSR辅助鉴定.西南农业大学学报,23(3):202-204
    19.颜济,杨俊良主编1999.小麦生物系统学 第一卷 小麦-山羊草复合群.北京:中国农业出版社,pp102-104
    20.颜济,杨俊良,颜旸2005.木原均,A.洛夫与小麦族(禾本科)的现代遗传学属的概念.植物分类学报,43:82-93
    21.张顒,杨武云,胡晓蓉等2004.源于硬粒小麦-节节麦人工合成种的高产抗病小麦新品种川麦42主要农艺性状分析.西南农业学报,2:141-145
    22.朱振东,周荣华,董玉琛等2003.几个四倍体小麦-山羊草双二倍体及其部分亲本的抗小麦白粉病基因分析.植物遗传资源学报,4(2):137-143
    23. Aase HC, 1930. Cytology of Triticum, Secale, and Aegilops hybrids with reference to phylogeny. Res Stud State Coll Wash, 2:5-60
    24. Adams KL, Wendel JF, 2005. Polyploidy and genome evolution in plants. Curr Opin Plant Biol, 8: 135-141
    25. Assefa S, Fehrmann H, 2000. Resistance to wheat leaf rust in Aegilops tauschii Coss. and inheritance of resistance in hexaploid wheat. Genet Resources and Crop Evolution, 47:135-140
    26. Ayal S, Ophir R, Levy AA, 2005. Genomics of tetraploid wheat domestication. In: Tsunewaki K, ed. Frontiers of Wheat Bioscience, the 100th Memorial Issue of Wheat Information Service, Kihara Memorial Foundation for the Advancement of Life Sciences, Yokohama, Japan: 185-203
    27. Backhouse WO, 1916. Note on inheritance of crossability. J Genet, 6:91-94
    28. Balatero CH, Darvey NL, 1993. Influence of selected wheat and rye genotypes on the direct synthesis of hexaploid triticale. Euphytica, 66:179-185
    29. Blanco IA, Rajaram S, Kronstad WE, et al., 2000. Physiological performance of synthetic hexaploid wheat-derived populations. Crop Science, 40:1257-1263
    30. Borner A, Schumann E, Furste A, et al. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 105: 921-936
    31. Brooks SA, See DR, Brown-Guedira G, et al., 2006. SNP-based improvement of a microsatellite marker associated with Karnal Bunt resistance in wheat. Crop Science, 46:1467-1470
    32. Bryan GJ, Collins AJ, Stephenson P, et al, 1997. Isolation and characterization of microsateilites from hexaploid bread wheat. Theor Appl Genet, 94:557-563
    33. Calderini DF, Ortiz-Monasterio I, 2003. Are synthetic hexaploids a means of increasing grain element concentrations in wheat. Euphytica, 134:169-178
    34. Chauhan KPS, Patel MZ, 1978. Crossability of wheat-rye haploids with hexaploid triticale. In: Proceedings of the Fifth International Wheat Genetics Symposium, New Delhi, India, 23-28 February, pp1154-1160
    35. Coghlan A, 2006. Synthetic wheat offers hope to the world. NewScientist, 2538
    36. Comai L, 2000. Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol, 43: 387-399
    37. Cox TS, Sears RG, Bequette RK, et al., 1995. Germplasm enhancement in winter wheat x Triticum tauschii backcross populations. Crop Science, 35:913-919
    38. Darvey NL, Durvasula S, 1980. Chromosome pairing and restitution in wheat-rye amphihaploids. In: Proceedings of the Second International Conference on Rye and Triticale, Poznan, Poland, 11-14 May 1980, pp67-68 (Abstact)
    39. David JL, Benavente E, Bres-Patry C, et al, 2004. Are neopolyploids a likely route for a transgene walk to the wild? The Aegilops ovata×Triticum turgidum durum case. Biol J Linn Soc, 82: 503-510
    40. Devos KM, Sorrells ME, Anderson JA, et al., 1999. Chromosome aberrations in wheat nullisomic-tetrasomic and ditelosomic lines. Cereal Res Comm, 27:231-239
    41. Dhaliwal HS, Singh H, Gill KS, et al., 1993. Evaluation and cataloguing of wheat germplasm for disease resistance and quality. In: Damania AB, ed. Biodiversity and wheat improvement. John Wiley & Sons pub, Chichester, UK, pp103-109
    42. Doebley JF, Gaut BS, Smith BD, 2006. The molecular genetics of crop domestication. Cell, 127: 1309-1321
    43. Dvorak J, Pantaleo DT, Zhang HB, et al., 1993. The evolution of polyploid wheats: identification of the A genome donor species. Genome, 36:21-31
    44. Dvorak J, 1998a. Genome analysis in the Triticum-Aegilops alliance. In: Slinkard AE, ed. Proceedings of the 9th International Wheat Genetics Symposium (Saskatoon, Saskatchewan, Canada). University Extension Press, University of Saskatchewan, pp8-11
    45. Dvorak J, Luo MC, Yang ZL, et al., 1998b. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet, 97:657-670
    46. Dvorak J, Akhunov ED, 2005. Tempos of deletions and duplications of gene loci. in relation to recombination rate during diploid and polyploid evolution in the. Aegilops-Triticum alliance. Genetics, 171: 323-332
    47. Falk DE, Kasha M, 1981. Comparison of the crossability of rye (Secale cereale) and Hordeum bulbosum onto wheat(Triticum aestivum). Can J Genet Cytol, 23:81-88
    48. Fedak G, Jui Y, 1982. Chromosomes of Chinese Spring wheat carrying genes for crossability with Betzes barley. Can J Genet Cytol, 24:227-233
    49. Feldman M, Liu B, Segal G, et al., 1997. Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics, 147:1381-1387
    50. Feldman M, 2001. The origin of cultivated wheat. In: Bonjean AP, Angus WJ, eds. The World Wheat Book. Lavoisier Publishing, Paris, pp1-56
    51. Feldman M, Levy AA, 2005. Allopolyploidy-a shaping force in the evolution of wheat genomes. Cytogenet Genome Res, 109:250-258
    52. Feuillet C, Penger A, Gellner K, et al., 2001. Molecular evolution of receptor-like kinase genes in hexaploid wheat: independent evolution of orthologs after polyploidization and mechanisms of local rearrangements, at paralogous loci. Plant Physiol, 125: 1304-1313
    53. Fukuda K, Sakamoto S, 1992a. Studies on the factors controlling the formation of unreduced gametes in hybrids between tetraploid emmer wheats and Ae. squarrosa L. Jpn J Breed, 42: 747-760
    54. Fukuda K, Sakamoto S, 1992b. Cytological studies on unreduced male gamete formation in hybrids between tetraploid emmer wheats and Ae. squarrosa L. Jpn J Breed, 42:255-266
    55. Gaut BS, Doebley JF, 1997. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA, 94:6809-6814
    56. Gautier MF, Cosson P, Guirao A, et al., 2000. Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraptoid Triticum species. Plant Sci, 153:81-91
    57. Genc I, Ozkan H, Yagbasanlar T, 1996. Crossability of D-genome chromosomes substitution lines of durum wheat (Trincum turgidum ssp. turgidum concv. durum) with Secale cereale and Aegilops squarrosa. Wheat Inf Serv, 83:1-6
    58. Gill BS, Friebe B, Endo TR, 1991. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome, 34:830-839
    59. Gorham J, 1990. Salt tolerance in the Triticeae: K/Na discrimination in synthetic hexaploid wheats. J Exper Bot, 41:623-627
    60. Gororo NN, Eagles HA, Eastwood RF, et al. 2002, Use of Triticum tauschii to improve yield of wheat in low-yielding environments. Euphytica, 123:241-254
    61. Gupta PK, Priyadarshan PM, 1982. Triticale: present status and furore prospects. Adv Genet, 21: 255-345.
    62. Guyomare'h H, Sourdille P, Charmer G, et al., 2002a. Characterisation of polyrnorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet, 104:1164-1172
    63. Guyomare'h H, Sourdille P, Edwards JK, et al., 2002b. Studies of the transferability of microsatellites derived from Triticum tauschii to hexapolid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet, 105:736-744
    64. Halloran MG, 1981. Tetraploid wheat crossability with rye (Secale cereale). Genetica, 55:191-194
    65. Han FP, Fedak G, Quellet T, et al., 2003. Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae. Genome, 46:716-723
    66. Han FP, Liu B, Fedak G, et al., 2004. Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet, 109:1070-1076
    67. Harberd NP, Bartels D, Thompson RD, 1985. Analysis of the gliadin multigene loci in bread wheat using nullisomic-tetrasomic lines. Mol Gen Genet, 198:234-242
    68. Harlan JR, De Wet JMJ, 1975. On O. Winge and a prayer: The origins of polyploidy. Bot Rev, 41: 361-390
    69. He P, Friebe BR, Gill BS, et al., 2003. Allopolyploid alters gene expression in the highly stable hexaploid wheat. Plant Mol Biol, 52:401-414
    70. Heun M, Schafer-Pregl R, Klawan D, et al., 1997. Site of the einkom wheat domestication identified by DNA fingerprinting. Science, 278: 1312-1314
    71. Hoisington D, Khairallah M, Reeves T, et al., 1999. Plant genetic resources: What can they contribute toward increased crop? Proc Natl Acad Sci, 96:5937-5943
    72. Huang S, Sirikhachomkit A, Su X, et al., 2002. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of wheat. Proc Natl Acad Sci USA, 99:8133-8138
    73. Huang XQ, Coster H, Ganal MW, et al., 2003. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 106:1379-1389
    74. Huang XQ, Kempf H, Ganal MW. et al., 2004. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet, 109:933-943
    75. Inagaki MN, Pfeiffer WH, Mergoum M, et al., 1998. Variation of the crossability of durum wheat with maize. Euphytica, 104:17-23
    76. Innes RL, Kerber ER, 1994. Resistance to wheat leaf rust and stem rust in Triticum tauschii and inheritance in hexaploid wheat of resistance transferred from T. tauschii. Genome, 37:813-822
    77. Islam AKMR, Shepherd KW, 1980. Meiotic restitution in wheat barley hybrids. Chromosoma, 68: 252-261
    78. Jantasuriyarat C, Vales MI, Watson CJW, et al., 2004. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet, 108:261-273
    79. Jauhar PP, Dogramaci-Altuntepe M, Peterson TS, et al., 2000. Seedset on synthetic haploid of durum wheat: cytological and molecular investigations. Crop Sci, 40:1742-1749
    80. Jauhar PP, 2003. Formation of 2n gametes in durum wheat haploids: sexual polyploidization. Euphytica, 133:81-94
    81. Joppa LR, Williams ND, et al., 1983. The Langdon durum D-genome disomic substitution: development, characteristics and uses. Agron Abstr, 68
    82. Joppa LR, Williams ND, 1988. Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome, 30:222-228
    83. Kashkush K, Feldman M, Levy AA., 2002. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics, 160:1651-1659
    84. Kashkush K, Feldman M, Levy AA., 2003. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet, 33:102-106
    85. Kema GHJ, Lange W, Silfhout CH, 1995. Differential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp, dicoccoides and Aegilops squarrosa. Phytopathology, 85:425-429
    86. Kihara H, 1944. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic(Tokyo), 19:889-890
    87. Kihara H, Lilienfetd F, 1949. A new synthesized 6x-wheat. Hereditas(suppl), 307-319
    88. Kihara H, Yamashita K, Tanaka M, 1965. Morphological, physiological, genetical and cytological studies in Aegilops and Triticum collected from Pakistan, Afghanistan and Iran. In: Yamashita K ed. Results of the Kyoto University Scientific Expedition to the Karakoram and Hindukush. Kyoto Unversity, Kyoto. vol 1, pp1-118
    89. Kilian B, Ozkan H, Deusch O, et al., 2007. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol, 24:217-227
    90. Koba T, Shimada T, 1993. Crossability of common wheat with Aegilops squarrosa. Wheat Inf Serv, 77:7-12
    91. Krowlow KD, 1970. Untersuchungen uber die Kreuzbarkeit zwischen Weizen und Roggen. Z Pflanzenzucht, 64:44-72
    92. Kuleung C, Baenziger PS, Dweikat I, 2004. Transferability of SSR markers among wheat, rye, and triticale. Theor Appl Genet, 108:1147-1150
    93. Lage J, Warburton ML, Crossa J, et al., 2003a. Assessment of genetic diversity in synthetic hexaploid wheats and their Triticum dicoccum and Aegilops tauschii parents using AFLPs and agronomic traits. Euphtytica, 134:305-317
    94. Lage J, Skovmand B, Andersen SB, et al., 2003b. Expression and suppression of resistance to Greenbug (Homoptera: Aphididae) in synthetic hexaploid wheats derived from Triticum dicoccum×Aegilops tauschii crosses. J Econ Entomol, 96:202-206
    95. Lage J, Skovmand B, Andersen SB, et al., 2004a. Field evaluation of emmer wheat derived synthetic hexaploid wheats for resistance to Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol, 97:1065-1070
    96. Lage J, Skovmand B, Andersen SB, et al., 2004b. Resistance categories of synthetic hexaploid wheats resistant to the Russian wheat aphid (Diuraphis noxia). Euphytica, 136:291-296
    97. Lage J, Pena R J, et al., 2006. Grain quality of emmer wheat derived synthetic hexaploid wheats. Genet Resour Crop Evol, 53:955-962
    98. Lan XJ, Liu DC, Wang ZR, 1997. Inheritance in synthetic hexaploid wheat 'RSP' of sprouting tolerance derived from Aegilops tauschii Cosson. Euphytica, 95:321-323
    99. Lange W, Jochemsen G, 1992a. Use of the gene pools of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa for the breeding of common wheat (T. aestivum), through chromosome-doubled hybrids Ⅰ. Two strategies for the production of the amphiploids. Euphytica, 59:197-212
    100. Lange W, Jochemsen G, 1992b. Use of the gene pools of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa for the breeding of comrnon wheat (T. aestivum), through chromosome-doubled hybrids Ⅱ. Morphology and meiosis of the amphiploids. Euphytica, 59:213-220
    101. Langridge P, Lagudah ES, Holton TA, et al., 2001. Trends in genetic and genome analyses in wheat: a review. Aust J Agric Res, 52:1043-1077
    102. Lee HS, Chen ZJ, 2001. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad Sci USA, 98:6753-6758
    103. Lein A, 1943. Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen. I Ind Abst Vererb Lehre, 81: 28-61
    104. Levy AA, Feldman M, 2004. Genetic and epigenetic reprogramming of wheat genome upon allopolyploidization. Biol J Linn Soc, 82: 607-613
    105. Li WL, Fans JD, Chittoor JM, et al., 1999. Genomic mapping of defense response genes in wheat. Theor Appl Genet, 98: 226-233
    106. Li ZF, Zheng TC, He ZH, et al., 2006. Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B. Theor Appl Genet, 112: 1098-1103
    107. Limin AE, Fowler DB, et al., 1993. Inheritance of cold hardiness in Triticum aestivum × synthetic hexaploid wheat crosses. Plant Breed, 110: 103-108
    108. Litt M, Luty JA, 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet, 44: 397-401
    109. Liu B, Vega JM, Segal G, et al., 1998a. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome, 41: 271-277
    110. Liu B, Vega JM, Feldman M, 1998b. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. Genome, 41: 535-542
    111. Liu B, Hu B, Dong YZ, et al., 2000. Speciation-induced heritable cytosine methylation changes in ployploid wheat. Progress in Natural Science, 10: 601-606
    112. Liu B, Brubaker CL, Mergeai G, et al., 2001. Polyploid formation in cotton is not accompanied by rapid genome changes. Genome, 44: 321-330
    113. Liu B, Wendel JF, 2002. Non-Mendelian phenomena in allopolyploid genome evolution. Curr Genomics 3: 489-506
    114. Liu DC, Yen C, Yang JL, 1997. C-banding analysis of D-genome chromosome in Chinese landrace of Triticum tauschii (Coss.) Schmalh and Triticum aestivum L. cv. Chinese Spring. Wheat Inf Serv, 84:33-39
    115. Liu DC, Yen C, Yang JL, et al., 1998c. The chromosome distribution of crossability gene in durum wheat cv. Langdon. Wheat Inf Serv, 87: 1-4
    116. Liu DC, Yen C, Yang JL, et al., 1998d. Chromosome distribution of genes in diploid Lophopyrum elongata (Host) Nevski that influences crossability of wheat with rye. Wheat Inf Serv, 86: 13-18
    117. Liu DC, Lan XJ, Zheng YL, et al., 1998e. Evaluation of Aegilops tauschii Cosson for preharvest sprouting tolernace. Genet Resour Crop Evol, 45: 495-498
    118. Liu DC, Yen C, Yang JL, et al., 1999. The chromosomal distribution of crossability genes in tetraploid wheat Triticum turgidum L. cv. Ailanmai native to Sichuan, China. Euphytica, 108: 79-82
    119. Liu SB, Zhou RH, Dong YC, et al., 2006. Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet, 112: 1360-1373
    120. Luo MC, Yen C, Yang JL, 1992. Crossability percentages of bread wheat landraces from Sichuan Province, China with rye. Euphytica, 61:1-7
    121. Luo MC, Yen C, Yang JL, 1993a. Crossability percentages of bread wheat landraces from Shaanxi and Henan provinces, China with rye. Euphytica, 67: 1-8
    122. Luo MC, Yen C, Yang JL, 1993b. Crossability percentages of bread wheat collections from Tibet, China with rye. Euphytica, 70: 127-129
    123. Luo MC, Yen C, Yang JL, 1994. Crossability percentages of bread wheat landraces from Hunan and Hubei Provinces, China with rye. Wheat Inf Serv, 78: 34-38
    124. Luo MC, Yang ZL, You FM, et al., 2007. The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor Appl Genet, 114: 947-959
    125. Ma H, Singh RP, Mujeeb-Kazi A, 1995a. Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica, 82: 117-124
    126. Ma H, Singh RP, Mujeeb-Kazi A, 1995b. Suppression/expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum × T. tauschii). Euphytica, 83: 87-93
    127. Ma R, Zheng DS, Fan L, 1996a. The crossability of 96 bread wheat landraces and cultivars from Japan with rye. Euphytica, 92: 301-303
    128. Ma ZQ, Roder MS, Sorrells ME, 1996b. Frequencies and sequence characteristics of di-, tri-, and tetra-nucleotide microsatellites in wheat. Genome, 39: 123-130
    129. Ma JX, Zhou RH, Dong YS, et al., 2001. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica, 120: 219-226
    130. Ma XF, Fang P, Gustafson JP, 2004. Polyploidization-induced genome variation in triticale. Genome, 47: 839-848
    131. Ma XF, Gustafson JP, 2005. Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res, 109: 236-249
    132. Maan SS, Sasakuma T, 1977. Fertility of amphihaploids in Triticinae. J Hered, 57: 76-83
    133. Marino CL, Nelson JC, Lu YH, et al., 1996. RFLP-based linkage maps of the homoeologous group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell.). Genome, 39: 359-366
    134. Matsuoka Y, Nasuda S, 2004. Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F_1 hybrid with Aegilops tauschii Coss. Theor Appl Genet, 109: 1710-1717
    135. May CE, Lagudah ES, 1992. Inheritance in hexaploid wheat of Septoria tritici blotch resistance and other characteristics derived from Triticum tauschii. Aust J Agric Res, 43: 433-442
    136. McClintock B, 1984. The significance of responses of the genome to challenge. Science, 226: 792-801
    137. McFadden ES, Sears ER, 1944. The artificial synthesis of Triticum spleta. Rec Genet Soc Am, 13: 26-27
    138. Mello-Sampayo T, 1971. Genetic regulation of meiotic chromosome pairing by chromosome 3D of Triticum aestivum. Nature New Biol, 230: 22-23
    139. Miller TE, Reader SM, Gale MD, 1983. The effect of homoeologous 3 chromosomes on chromosome paring and crossability in Triticum aestivum. Can J Genet Cytol, 25: 634-641
    140. Mori N, Liu YG, Tsunewaki K, 1995. Wheat phylogeny determined by RFLP analysis nuclear DNA. 2. Wild tetraploid wheats. Theor Appl Genet, 90: 29-134
    141.Moxon ER, Wills C, 1999. DNA microsatellites: agents of evolution? Scientific American, Jan, pp72-77
    142. Mujeeb-Kazi A, Rosas V, Roldan S, 1996. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s. lat. × T. tauschii; 2n=6x=42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol, 43: 129-134
    143. Multani D, Dhaliwal HS, Singh P, et al., 1988. Synthetic amphiploids of wheat as a source of resistance to Karnal Bunt (Neovossia Indica). Plant Breed, 101: 122-125
    144. Narasimhamoorthy B, Gill BS, Fritz AK, et al., 2006. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet, 112: 787-796
    145. Nelson JC, Sorrels ME, Van Deynze AE, et al., 1995a. Molecular mapping of wheat: Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics, 141: 721-731
    146. Nelson JC, Van Deynze AE, Autrique E, et al., 1995b. Molecular mapping of wheat. Homoeologous group 2. Genome, 38: 516-524
    147. Nelson JC, Van Deynze AE, Autrique E, et al., 1995c. Molecular mapping of wheat. Homoeologous group 3. Genome, 38: 525-533
    148. Nelson JC, Andreescu C, Breseghello F, et al., 2006. Quantitative trait locus analysis of wheat quality traits. Euphytica, 149: 145-159
    149. Nicholson P, Rezanoor HN, Worland AJ, et al., 1993. Chromosomal location of resistance to Septoria nodorum in a synthetic hexaploid wheat determined by the study of chtomosomal substitution lines in Chinese Spring' wheat. Plant Breed, 110: 177-184
    150. O'Donoughue SL, Bennett MD, 1994. Comparative responses of tetraploid wheats pollinated with zea mays L. and Hordeum bulbosum L. Theor Appl Genet, 87: 673-680
    151. Ogbonnaya FC, Halloran GM, Lagudah ES, 2005. D genome of wheat - 60 years on from Kihara, Sears and McFadden. In: Tsunewaki K, ed. Frontiers of Wheat Bioscience, the 100th Memorial Issue of Wheat Information Service, Kihara Memorial Foundation for the Advancement of Life Sciences, Yokohama, Japan, pp205-220
    152. Okamoto M, 1957. Asynaptic effect of chromosome V. Wheat Inf Serv, 5: 6
    153. Ozkan H, Levy AA, Feldman M, 2001. Allopolyploidy -induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell, 13: 1735-1747
    154. Payne PI, Lawrence GJ, 1983. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res Comm, 11:2935
    155. Peloquin SJ, Boiteux LS, Carputo D, 1999. Meiotic mutants in potato: valuable variants. Genetics, 153: 1493-1499
    156. Pena RJ, Zarco-Hernandez J, Mujeeb-Kazi A, 1995. Glutenin subunit compositions and bread-making quality characteristics of synthetic hexaploid wheats derived from Triticum turgidum × Triticum tauschii (coss.) Schmal crosses. J Cereal Sci, 21: 15-23
    157. Peng ZS, Liu DC, Yen C, et al., 1998. Crossability of tetraploid wheat landraces native to Sichuan, Shaanxi, Gansu and Xinjiang, China with rye. Genet Resour Crop Evol, 44: 1-6
    158. Pestsova E, Ganal MW, Roder MS, 2000. Isolation and mapping of microsatellite markes specific for the D genome of bread wheat. Genome, 43: 689-697
    159. Pestsova E, Borner A, Roder MS, 2006. Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. Theor Appl Genet, 112: 634-647
    160. Petersen G, Seberg O, Yde M, et al., 2006. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol, 39: 70-82
    161. Pfluger LA, D'ovidio RD, Margiotta B, et al., 2001. Characterisation of high- and low-molecular weight glutenin subunits associated to the D genome of Aegilops tauschii in a collection of synthetic hexaploid wheats. Theor Appl Genet, 103: 1293-1301
    162. Pignone D, 1993. Non-reductional meiosis in Triticum durum × Aegilops Longissima hybrid and in backcross of its amphiploid with T. turgidum (Poaceae). Plant Sys Evol, 187: 127-134
    163. Pikaard CS, 1999. Nucleolar dominance and silencing of transcription. Trends Plant Sci, 4: 478-483
    164. Plaschke J, Bonier A, Wendehake K, et al., 1996. The use of wheat aneuploids for the chromosomal assignment of microsatellite loci. Euphytica, 89: 33-40
    165. Ramsey J, Schemske DW, 2002. Neopolyploidy in flowering plants. Annu Rev Ecol Syst, 33: 589-639
    166. Reif JC, Zhang P, Dreisigacker S, et al., 2005. Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet, 110: 859-864
    167. Riede CR, Francl LJ, Anderson JA, et al., 1996. Additional sources of resistance to tan spot of wheat. Crop Sci, 36: 771-777
    168. Riley R, Chapman V, 1958. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature, 192:713-715
    169. Riley R, Chapman V, 1967. The inheritance in wheat of crossability with rye. Genet Res, 9: 259-267
    170. Roder MS, Korzun V, Wendehake K, et al., 1998. A microsatellite map of wheat. Genetics, 149: 2007-2023
    171. Rosenberg O, 1927. Die Semiheterotypische Teilung und Ihre Bedeutung fur die Entstehung verdoppelter Chromozomenzahlen. Hereditas, 8: 305-358
    172. Sakamoto S, 1973. Patterns of phylogenetic differentiation in the tribe Triticeae. Seiken Ziho, 24:11-31
    173. Salamini F, Ozkan H, Brandolini A, et al., 2002. Genetics and geography of wild cereal domestication in the Near East. Nat Rev Genet, 3: 429-441
    174. Salina EA, Numerova OM, Ozkan H, 2004. Alterations in subtelomeric tandem repeats during early stages of allopolyploidy in wheat. Genome, 47: 860-867
    175. Sasakuma T, Ogihara Y, Tsujimoto H, 1995. Genome rearrangement of repetitive sequences in processes of hybridization and amphiploidization in Triticinae. In 8th International Wheat Genetics Symposium, Li Z & Xin Z, eds. (Beijing: China Agricultural Scientech Press), pp563-566
    176. Schug MD, Mackay TF, Aquadro CF, 1997. Low mutation rates of microsatellite loci in Drosophila melanogaster. Nature Genet, 15: 99-102
    177. Sears ER, 1939a. Cytogenetic studies with polyploidy species of wheat. I. Chromosomal aberrations in the progeny of a haploid of Triticum Vulgare. Genetics, 124: 509-523
    178. Sears ER, 1939b. Amphidiploids in the Triticinae induced by colchicine. J Hered, 30: 38-43
    179. Sears ER, 1954. The aneuploids of Common Wheat. Missouri Agricultural Experiment Station Research Bulletin, 572: 1-58
    180. Sears ER, 1965. Nullisomic-tetrasomic combinations in hexaploid wheat. Heredity (suppl): 29-45
    181. Shaked H, Kashkush K, Ozkan H, et al., 2001. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell, 13: 1749-1759
    182. Sharma HC, 1995. How wide can a wide cross be? Euphytica, 82: 43-46
    183. Sharma S, Balyan HS, Kulwai PL, et al., 2002. Study of interspecific SSR polymorphism among 14 species from Triticum-Aegilops group. Wheat Inf Serv, 95: 23-28
    184. Sharp PJ, Kreis M, Shewry PR, et al., 1988. Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet, 75: 286-290
    185. Shoemaker RC, Polzin K, Labate J, et al., 1996. Genome duplication in soybean (Glycine subgenus soja). Genetics, 144: 329-338
    186. Simon MR, Worland AJ, Cordo CA, et al., 2001. Chromosomal location of resistance to Septoria tritici in seedlings of a synthetic hexaploid wheat, Triticum spelta and two cultivars of Triticum aestivum. Euphytica. 119: 151-155
    187. Sitch LA, Snape JW, 1986. Allelic variations at the crossability loci in wheat (Triticum aestivum). Wheat Inf Serv, 63: 11-15
    188. Snape JW, Chapman V, Moss J, et al., 1979. The crossability of wheat varieties with Hordeum bulbosum. Heredity, 42: 291-298
    189. Soltis PS, Soltis DE, 2000. The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA, 97: 7051-7057
    190. Soltis DE, Soltis PS, Tate JA, 2004. Advances in the study of polyploidy since plant speciation. New Phytol, 167: 173-192
    191. Somers DJ, Isaac P, Edwards K, 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 109: 1105-1114
    192. Song K, Lu P, Tang K, et al., 1995. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA, 92: 7719-7723
    193. Sourdille P, Tavaud M, Charmet G, et al., 2001. Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet, 103: 346-352
    194. Stefani A, Meletti P, Onnis A, 1983. New data on the experimental intergeneric hybrid Triticum durum Desf. × Haynaldia villosa (L.) Schur. Z. Pfianzenzuecht, 90: 236-242
    195. Taketa S, Kato J, Takeda K, 1995. High crossability of wild barley (Hordeum spontaneum C. Koch) with bread wheat and the differential elimination of barley chromosomes in the hybrids. Thoer Appl Genet, 91: 1203-1209
    196. Taketa S, Takahashi H, Takeda K, 1998. Genetic variation in barley of crossability with wheat and its quantitative trait loci analysis. Euphytica, 103: 187-193
    197. Tanaka M, 1959. Newly synthesized amphidiploids from the hybrids, Emmer wheats x Aegilops squarrosa varieties. Wheat Inf Serv, 8:8
    198. Tanaka M, 1961. New amphidiploids, synthesized 6x-wheats, derived from Emmer wheat x Aegilops squarrosa. Wheat Inf Serv, 12: 11
    199. Tanner DG, Falk DE, 1981. The interaction of genetically controlled crossability in wheat and rye. Can J Genet Cytol, 23: 27-32
    200. Tautz D, Trick M, Dover GA, 1986. Cryptic simplicity in DNA is a major source of genetic variation. Nature, 322: 652-656
    201. The Arabidopsis Genome Initiative, 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408: 796-815
    202. Thomas JB, Kaltsikes PJ, Anderson G, 1980. Relation between wheat-rye crossability and seed set of common wheat after pollination with other species in the Hordeae. Euphytica, 30: 121-127
    203. Tixier MH, Sourdille P, Charmet G, et al., 1998. Detection of QTLs for crossability in wheat using a doubled-haploid population. Theor Appl Genet, 97: 1076-1082
    204. Van Deynze AE, Dubcovsky J, Gill KS, et al., 1995. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome, 38: 45-59
    205. Van Ginkel M, Ogbonnaya F, 2006. Using synthetic wheats to bread wheat cultivars better adapted to changing production conditions (invited paper). Turner NC, Acuna T and Johnson RC. "Groundbreaking stuff. Proceedings of the 13th Australian Agronomy Conference, 10-14 September, 2006, Perth, Western Australia. Australian Society of Agronomy. The Regional Institue Ltd Publisher, March 2006, ISBN 1 920842 31 4
    206. Van Slageren MW, 1994. Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub and Spach) Eig (Poaceae). Wageningen Agricultural University, Wageningen, pp88-94
    207. Villareal RL, Mujeeb-Kazi A, Fuentes-Davila G, et al., 1994a. Resistance to Karnal Bunt (Tilletia indica Mitra) in synthetic hexaploid wheats derived from Triticum turgidum × T. tauschii. Plant Breed, 112:63-69
    208. Villareal RL, Mujeeb-Kazi A, Del Toro E, et al., 1994b. Agronomic variability in selected Triticum turgidum × T. tauschii synthetic hexaploid wheats. J Agron Crop Sci, 173: 307-317
    209. Villareal RL, Fuentes-Davila G, Mujeeb-Kazi A, et al., 1995. Inheritance of resistance to Tilletia indica (Mitra) in synthetic hexaploid wheat × Triticum aestivum crosses. Plant Breed, 114: 547-548
    210. Wan Y, Liu K, Wang D, et al., 2000. High-molecular-weight glutenin subunits in the cylindropyrum and Vertebrata section of the Aegilops genus and identification of subunits related to those encoded by the Dx alleles of common wheat. Theor Appl Genet, 101: 879-884
    211. Warburton ML, Crossa J, Franco J, et al., 2006. Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica, 149: 289-301
    212. Weber JL, Wong C, 1993. Mutation of human short tandem repeats. Hum Mol Genet, 2: 1123-1128
    213. Wendel JF, 2000. Genome evolution in polyploidy. Plant Mol Biol, 42: 225-249
    214. Werner JE, Peloquin SJ, 1991. Occurrence and mechanisms of 2n egg formation in 2x potato. Genome, 34: 975-982
    215. Wicker T, Yahiaoui N, Guyot R, et al., 2003. Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and A~m genomes of wheat. The Plant Cell, 15: 1186-1197
    216. Wieser H, Hsam Sai LK, Zeller FJ, 2003. Relationship between the qualitative and quantitative compositions of gluten protein types and technological properties of synthetic hexaploid wheat derived from Triticum durum and Aegilops tauschii. Cereal Chem, 80: 247-251
    217. William MDHM, Pena RJ, Mujeeb-Kazi A, 1993. Seed protein and isozyme variations in Triticum tauschii (Aegilops squarrosa). Theor Appl Genet, 87: 257-263
    218. Wolfe KH, 2001. Yesterday's polyploids and the mystery of diploidization. Nat Rev Genet, 2: 333-341
    219. Xu SJ, Dong YS, 1992. Fertility and meiotic mechanisms of hybrids between chromosome autoduplication tetraploid wheats and Aegilops species. Genome, 35: 379-384
    220. Xu SJ, Joppa LR, 1995. Mechanisms and inheritance of first division restitution in hybrids of wheat, rye, and Aegilops squarrosa. Genome, 38: 607-615
    221. Xu SJ, Joppa LR, 2000. First division restitution in hybrids of Langdon durum disomic substitution lines with rye and Aegilops squarrosa. Plant Breed, 119: 233-241
    222. Xu SS, Friesen TL, Mujeeb-Kazi A, 2004a. Seedling resistance to Tan Spot and Stagonospora Nodorum Blotch in synthetic Hexaploid wheat. Crop Sci, 44: 2238-2245
    223. Xu SS, Kindworth DL, Fans JD, 2004b. Chromosomal location of genes for novel glutenin subunits and gliadins in wild emmer wheat (Triticum turgidum L. var. dicoccoides). Theor Appl Genet, 108: 1221-1228
    224. Zeven AC, 1987. Crossability percentages of some 1400 bread wheat varieties and lines with rye. Euphytica, 36:299-319
    225. Zhang LQ, Liu DC, Yan ZH, et al., 2004. Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Sci in China Ser C Life Scinece, 47: 553-561
    226. Zhang PZ, Dreisigacker S, Melchinger AE, et al., 2005. Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheats and their backcross-derived lines using SSR markers. Mol Breed, 15: 1-10
    227. Zheng YL, Luo MC, Yen C, et al., 1992. Chromosome location of a new crossability gene in common wheat. Wheat Inf Serv, 75: 36-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700