中国柑桔主产区柑桔木虱细菌多样性及内共生菌Wolbachia系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑桔木虱(Diaphorina citri Kuwayama)主要取食危害九里香、柑桔嫩梢等芸香科植物,是柑桔黄龙病(Citrus huanglongbing,HLB)传播的主要媒介昆虫。昆虫体内是一个复杂的微生态系统,存在大量的微生物。这些微生物对宿主发育,营养物质的消化吸收和防御方面都起着重要的作用。本研究利用基于16S rRNA基因作为分子标记的变性梯度凝胶电泳(denaturing gradient gel electrophoresis, DGGE)的方法和基于16S rRNA基因的RFLP指纹图谱法对我国部分地区野外采集的柑桔木虱体内的微生物群落的多样性进行了研究,并对共生菌Wolbachia进行了检测及系统发育分析,期望找出对柑桔木虱的生长发育起着重要影响的细菌,为柑桔木虱的防治提供新的思路和理论依据。
     主要研究结果如下:
     采用基于细菌16SrDNA的RFLP(Restriction Fragment Length Polymorphism )方法对柑桔木虱体内细菌多样性进行了分析。使用细菌通用引物对柑桔木虱体内的细菌基因组DNA进行PCR扩增,扩增得到的16S rDNA序列连接到pMD19-T载体中,将连接产物转化到大肠杆菌JM109中,建立16S rDNA的全长克隆文库。挑取的185个阳性克隆子经过三种限制性内切酶RsaⅠ、MspⅠ和HaeⅢ消化后产生31个不同的片断长度多态性(restriction fragment length polymorphism)图谱。将31种有差异的16S rRNA酶切图谱进行测序,与GenBank中的数据进行比对,结果表明:柑桔木虱体内存在Pseudomonadaceae, Enterobacteriaceae, Xanthomonadaceae, Burkholderiaceae, Rickettsiaceae, Rhizobiaceae等6个科的微生物,能够鉴定到属种的包括:Pseudomonas sp, Ralstonia sp, Pantoea sp, Serratia sp, Wolbachia sp, Stenotrophomonas sp, Carsonellia ruddii以及Candidatus Liberibacter asiaticus(柑桔黄龙病菌),Syncytium endosymbiont(胞内共生体),Secondary endosymbiont(初级共生体)。另外还有7个不同的不可培养细菌。Syncytium endosymbiont占16SrDNA克隆文库的31%,为柑桔木虱体内的优势菌群。
     以基于细菌16S rRNA基因的变性梯度凝胶电泳(Denaturing Gradient Gel Electrophoresis,DGGE)的方法对来自于不同地区及不同寄主的柑桔木虱体内细菌多样性进行了分析。提取细菌基因组DNA,经细菌16SrRNA可变区基因的通用引物PCR扩增,DGGE分离后,回收测序了17条DGGE条带。与GenBank中数据进行了比对和系统进化树分析,得到Pseudomonadaceae, Rickettsiaceae, Enterobcteriaceae, Xanthomonadaceae, Staphylococceae和Bacillaceae等科的微生物,能够鉴定到属的细菌有Bacillus sp, Staphylococcus sp, Wolbachia sp, Pantoea sp,Pseudomonas sp以及Syncytium endosymbiont (胞内共生体)。Syncytium endosymbiont(胞内共生体)在所有柑桔木虱样品中普遍存在且在DGGE图谱中条带最亮,是主要的优势菌群。DGGE图谱显示不同寄主植物及不同地区的柑桔木虱体内细菌存在差异,而DGGE图谱的聚类分析表明来自相同寄主植物的柑桔木虱体内细菌群落差异相对较小。
     使用Wolbachia的16SrRNA(核糖体基因),ftsZ(细胞分裂基因)和wsp(细胞表面蛋白基因)的特异引物检测了我国5个不同柑桔主产区来源的柑桔木虱受Wolbachia的感染情况,将获得的3段基因序列克隆测序,在GenBank中比对分析建立系统发育树,结果进一步验证了5个不同来源的柑桔木虱体内都有Wolbachia感染,3段基因的序列分析和系统发育树均表明我国柑桔木虱体内感染的Wolbachia属于B大组,以wsp基因建立的系统发育树还进一步表明其Wolbachia属于B大组的Con亚组。且不同地区来源的柑桔木虱体内的Wolbachia的16SrRNA,ftsZ和wsp基因同源性都分别高达99%以上,差异非常小。表明在不同地区的柑桔木虱体内Wolbachia几乎没有差异。
     本研究的结果显示了柑桔木虱体内存在着大量的微生物,且不同地区及不同寄主植物的柑桔木虱体内的细菌种类和数量存在一定的差异。我国各地柑桔木虱体内均有Wolbachia感染,其感染的Wolbachia属于B组的Con亚组并与灰飞虱和稻飞虱感染的有极高的同源性。这些结果可望能够为分析内共生菌与昆虫之间的关系,柑桔木虱体内微生物与柑桔黄龙病菌之间的相互作用提供理论基础,并为柑桔木虱的综合防治提供新的途径。
The citrus psyllids (Diaphorina citri Kuwayama) is the main insect vectors of the HLB (Citrus huanglongbing) pathogens, which mainly damage the Rutaceous plants. The internal of insects is a complex micro-ecosystem, in which a large and varied microbial community inhabits. This community plays important roles in evelopment, digestion and absorption of nutrition of their host, and colonization resistance against invasion of exotic microbes and so on. In this study, We did some research on the microbial diversity of citrus psyllids (Diaphorina citri) collected from some wild lands in my country which vectors Liberibacter sp, Using 16S rDNA-based molecular approaches of denaturing gradient gel-electrophoresis(DGGE) and restriction fragment length polymorphism(RFLP). We try to detect andanalyse phylogenetic relationship of the endosymbiont Wolbachia in Diaphorina citri, expecting to find out the bacteria which may play an important influence on the growth of citrus psyllids,and provide a new ideas and theoretical basis for the prevention and treatment of citrus psyllids.
     The primary results were as follows:
     The analysis of microbial diversity of citrus psyllids was conducted using 16S rDNA-based of restriction fragment length polymorphism (RFLP) method with bacterial universal primers.And ligation of the 16SrDNA fragement to the pMD19-T, then tranfor it to E.coli strain JM109 competent cell.The 16S rDNA clone librarys were constructed. The 16SrDNA fingerprints of the microorganisms were analyzed by isolated plasmid and digested with HaeⅢ, MspI and RsaI enzymes respectively. A total of 185 postive clones were analyzed by RFLP, and 31 unique RFLP patterns were obtained with three restriction enzyme (HaeⅢ, MspⅠand RsaⅠ).Sequenced the 31 clones, and aligned the sequences with GenBank database. It showed that they were belonged to six different families of bacteria, including Pseudomonadaceae, Enterobact -eriaceae, Xanthomonadaceae, Burkholderiaceae, Rickettsiaceae, Rhizobiaceae. The microorganisms can be identified to bacterial genera bacteria including Pseudomonas sp, Ralstonia sp, Pantoea sp, Serratia sp, Wolbachia sp, Stenotrophomonas sp, and Carsonellia ruddii, Candidatus Liberibacter asiaticus, Syncytium endosymbiont, Secondary endosymbiont. There are also seven different uncultured bacterias. The dominant bacteria in the citrus psyllids belonged to Syncytium endosymbiont and accounted for 31 % of the total 16S rRNA clones.
     The molecular method of PCR of denaturing gradient gel electrophoresis (PCR-DGGE) analysis based on the sequence of 16S rRNA V3 region gene was used to the microflora analysis of the psyllids citrus from different geography and different host plants. By 16S rRNA V3 region gene DGGE method, seventeen distinct bands were obtained from 16S rDNA amplificons. The bands were purified and sequenced.The sequences were aligned with GenBank database and the result showed that they were Pseudomonadaceae, Rickettsiaceae, Enterobcteriaceae,Xanthomonadaceae, Staphylo- cocceae and Bacillaceae family microorganisms. The microorganisms can be identified to genera bacteria including Bacillus sp, Staphylococcus sp, Wolbachia sp, Pantoea sp, Pseudomonas sp and Syncytium endosymbiont. Syncytium endosymbiont is the dominant bacteria group based on the strength of the bands from DGGE, existing in all citrus psyllids samples in this study. Wolbachia and Pantoea sp also exist in all the samples. The Cluster dendrogram analysis of DGGE bands showed that the difference of the bacterial community is relatively small in the citrus psyllids come from the same host plants.
     The endosymbiont Wolbachia infection of Diaphorina citri from five regions was detected with PCR amplification using primer pairs designed from the 16S rDNA, ftsZ and the wsp gene of Wolbachia,three genes were cloned and sequenced, aligned the sequences with GenBank database.Then phylogenetic analysised the three genes information of Wolbachia.The result confirmed the five regions citrus psyllids were infected by Wolbachia.The three genes phylogenetic trees show that the Wolbachia infecting citrus psyllids in our country belong to the supergroup B.The wsp gene phylogenetic further showed that the Wolbachia belong to the Con strain. The homology of 16SrRNA, ftsZ and wsp gene sequences in different geography populations is up to 99%, which indicated Wolbachia in different geography Diaphorina citri almost have no remarkable difference.
     The result showed that the rich microbiota diversity existed in the citrus psyllids and the species and amount of the bacteria are different in the citrus psyllids of different host plants and different geography.The result confirmed citrus psyllids were infected by Wolbachia, and which belong to the Con strain of supergroup B. The result expected to provide a theoretical foundation about the relationship between endosymbiont and insect, the interaction between the microorgnism and candidatus Liberibacter in citrus psyllids.And expected to provide a new ideas about control of citrus psyllids.
引文
[1]褚栋,丛斌,张友军,徐宝云,吴青君,朱国仁.不同生物型烟粉虱体内Wolbachia共生菌的检测及其系统树分析[J].昆虫学报. 2005b, 48(4) : 518– 525.
    [2]邓崇岭,白先进,邓光宙,赵小龙,陈国平,肖远辉,李贤良,陈传武. 9种药剂防治柑桔木虱成虫药效评价[J].广西农业科学.2009,40(4):370-372.
    [3]邓明学,陈贵峰,唐明丽,陈腾土.正常管理果园柑桔木虱种群数量年消长规律调查及与次年黄龙病发生率的相关性分析[J].中国农学通报. 2009, 25(18):360-363.
    [4]邓明学,石晓雨.柑桔木虱有效防治药剂田简筛选试验[J].农药. 2006, (7):486-490.
    [5]邓明学,石晓雨.20%哒虱威乳油等15种农药防治柑桔木虱田间药效试验[J].中国农学通报. 2007, (11):313-317.
    [6]邓明学,谭有龙,唐美欣,陈贵峰,唐明丽.联苯菊酯等6种农药对柑桔木虱成虫室内毒力测定及田间药效试验[J].中国农学通报. 2009, 25(15):169-173.
    [7]邓明学,唐美欣.吡蚜酮等13种农药防治柑桔木虱田间药效试验[J].中国农学通报. 2009, (08):233-237.
    [8]邓铁军.广西部分地区柑橘黄龙病为害加重原因及持续控制对策[J].中国植保导刊. 2005, (12) :24 26.
    [9]甘波谊,周伟国,冯丽冰,沈大棱,李昌本.沃尔巴克氏体在中国三种稻飞虱中的感染[J].昆虫学报. 2002, 45(1):14-17.
    [10]胡水泉,许渭根,何刚国,李建忠,蒋峥,魏有明.浙西地区柑橘木虱的发生规律与防控对策[J].中国植保导刊. 2008, 28(2):27-28.
    [11]林孔湘.柑橘黄梢(黄龙)病的进一步研究[J].植物保护学报. 1963, 3(2): 234~251.
    [12]李正西,李定旭.桃蚜自然种群初级和次级共生菌的分子鉴定[J].昆虫学报. 2005, 48(5): 810- 814.
    [13]刘莉,王中康,俞和韦,夏玉先,殷幼平.贡嘎蝠蛾幼虫肠道细菌多样性研究[J].微生物学报. 2008, 48(5):616-622.
    [14]罗海峰,齐鸿雁,薛凯,王晓谊,王川,张洪勋.在PCR-DGGE研究土壤微生物多样性中应用GC发卡结构的效应[J].生态学报. 2003, 23(10):2170-2175.
    [15]孟幼青,赵琳,林云彪,蒋自珍,顾云琴,许渭根.浙江柑橘木虱田间发生调查、带毒检测和药剂防治试验[J].中国植保导刊. 2005, 25(1):20.
    [16]韦党扬,赵琦,黄琼,李兴忠.红基盘瓢虫对柑桔木虱捕食作用的研究.昆虫天敌[J]. 1995, 17(2):59-63.
    [17]相辉,李木旺,赵勇等.家蚕幼虫中肠细菌群落多样性的PCR-DGGE和16S rDNA文库序列分析[J].昆虫学报,2007,50(3):222-233.
    [18]袁志辉,蓝希钳,杨廷,肖杰,周泽扬.家蚕肠道细菌群体调查与分析[J].微生物报.2006, 46 (2) :285~291.
    [19]章玉苹,李敦松,黄少华,张宝鑫.柑桔木虱的生物防治[J].中国生物防治. 2009,25(2):160 -164.
    [20] Aubert B. Trioza erytreae Del Guercio and Diaphorina citri Kuwayama (Homoptera: Psylloide- -a), the two vectors of citrus greening disease: biological aspects and possible control strategies[J]. Fruits 1987,42: 149-162.
    [21] Bandi C, Anderson TJC, Genchi C, Blaxter ML. Phylogeny of Wolbachia in filarial nematodes [J]. Proc Biol Sci. 1998, 265(1413): 2407-2413.
    [22] Baumann PL, Lai C, Rouhbakhsh D, Moran NA, Clark MA. Genetics, physiology and evolutionary relationships of the genus B uchnera: intracellular symbionts of aphids [J]. Annu . Rev . Microbio1. 1995, 49: 55~94.
    [23] Baumann P. Moran N.A. Non-cultivable microorganisms from symbiotic associations of insects and other hosts[J]. Antonie von Leeuwenhoek. 1997,72, 39–48.
    [24] Beard C B, O’Neill SL, Tesh RB, Richards FF, Aksoy S. Modification of arthropod vector competence via symbiotic bacteria[J]. Prasitol .Today. 1993, 9: 179 - 183.
    [25] Birkle LM, Minto LB, DouglasAE. Relating genotype and phenotype for tryp tophan synthesis in an aphid bacterial symbiosis[J]. Physiological Entomology. 2002, 27 : 1~5
    [26] Bordenstein SR, Rosengaus RB. Discovery of a novel Wolbachia supergroup in Isoptera[J]. Curr Microbiol. 2005, 51: 393-398.
    [27] Boucias DG, Pendland JC, Principles of Insect Pathology.Kluwer Academic Press, Boston. 1998.
    [28] Bourtzis, K., Miller, T.A. Insect Symbiosis. CRC Press, Boca Raton, FL. 2003.
    [29] BovéJM, and Garnier M. Phloem-and xylem-restricted plant pathogenic bacteria[J]. Plant Science. 2002, 163: 1083-1098.
    [30] Braig HR, Zhou W, Dobson S, O'Neill SL. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis[J]. J Bacteriol. 1998, 180(9): 2373-2378.
    [31] Brummel T, Ching A, Seroude L, Simon AF, Benzer S. Drosophila lifespan enhancement by exogenous bacteria[J]. PNAS. 2004, 101(35): 12 974~12 979.
    [32] Campbell BC. On the role of microbial symbiotes in herbivorous insects. In: Bernays Eed.Insect Plant Interactions. Boca Raton: CRC Press.1989, 1-44.
    [33] Catling HD. Distribution of the psyllid vectors of citrus greening disease, with notes on the biology and bionomics of Diaphorina citri[J]. FAO Plant Protection Bulletin. 1970, 18: 8–15.
    [34] Curtis CF, Adak T. Population replacement in Culex fatigans by means of cytoplasmicincompatibility. 1. Laboratory experiments with nonoverlapping generations[J].Bull. WHO.1974, 51: 249-255.
    [35] Curtis CF. Population replacement in Culex fatigans by means of cytoplasmic incompatibility. 2. Field cage experiments with overlapping generations[J]. Bull . WHO. 1976, 53 : 107-119.
    [36] Czarnetzki AB, Tebbe CC. Detection and phylogenetic analysis of Wolbachia in Collembota[J]. Environ Microbiol. 2004, 6 (1): 35-44.
    [37] da Gra?a JV. Citrus greening disease[J]. Annual Review of Phytopathology. 1991, 29: 109-136.
    [38] da Gra?a JV and Korsten L. Citrus huanglongbing: review, present status and furture strategies. In:“Diseases of Fruits and Vegetables, Volume I”, S.A.M.H. Naqvi, ed., Kluwer Academic Publishers, pp. 2004,229-245.
    [39] Dillon RJ, Charnley AK. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota[J]. Research in Microbiology.2002, 153 (8): 503?509.
    [40] Dillon RJ, Vennard CT, Charnley AK. A note: Gut bacteria produce components of a locust cohesion pheromone[J]. J Appl Microbiol. 2002, 92: 759?763.
    [41] Douglas AE. Nutritional interactions in insect microbial symbioses: aphids and their symbiotic bacteria B uchnera [J]. Annu .Rev . Entomol. 1998, 43: 17~37.
    [42] Douglas AE. Phloem-sap feeding by animals: problems and solutions[J]. J. Experimental Botany.2006, 57 ( 4 ) : 747~754.
    [43] Fukatsu T, Kondo N, Ljichi N, Nikoh N. Discovery of symbiont-host horizontal genome transfer : a beetle carrying two bacterial and one chromosomal Wolbachia endosymbionts In: Insect Symbiosis,Bourtzis K, Miller TA eds. CRC Press, New York.2003, 305-324.
    [44] Garnier M, Danel N, BovéJM. Aetiology of citrus greening disease. Ann. Inst. Pasteur/Microbiol 1984a, 135 A: 169-179.
    [45] Gottwald TR, Graham JH, Schubert TS. Citrus canker: The pathogen and its impact. Online. Plant Health Progress doi:10.1094/PHP-2002-0812-01-RV.
    [46] Halbert SE and Manjunath KL. Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida[J]. Florida Entomologist.2004, 87: 330-353.
    [47] Heddi A, Grenier AM, Khatchadourian C, Charles H, Nardon P, Four intracellular genomes direct weevil biology: Nuclear, mitochondrial, principal endosymbiont and Wolbachia[J]. Proc. Natl .Acad. Sci. 1999, 96: 6814-68191
    [48] Jagoueix S, BovéJM, Garnier M. The phloem-limited bacterium of greening disease of citrus is a member of theαsubdivision of the proteobacteria: International[J]. J. Systematic Bacteriology. 1994, 44 379–386.
    [49] Jeyaprakash A, Hoy MA. Long PCR improves Wolbachia DNA amplifications : wsp sequencesfound in 76 % of 63 arthropod species[J]. Insect Mol Biol. 2000, 9: 393– 4051.
    [50] Knighten C, Redding J, Feiber D, Compton E. Department press release. U.S. Department of Agriculture and Florida Department of Agriculture confirm detection of citrus greening. 2005, http://www.doacs.state.fl.us/press/2005/09022005_2.html.
    [51] Laven H. Eradication of Culex pipiens fatigans through cytoplasmic in compatibility[J]. Nature. 1967, 261: 383—384.
    [52]Laven H, Aslamkhan M. Control of Culex pipiens and C. p. fatigans with integrated genetical systems[J]. Pak. J . Sci. 1970, 22 : 303—312.
    [53] Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C. How many Wolbachia supergroups exist? Mol Biol Evol. 2002, 19(3): 341—346.
    [54] Masui S, Sasaki T, Ishikawa H. groE homologous operon of Wolbachia, an intracellular symbiont of arthropods: a new approach for their phylogeny[J]. Zool Sci. 1997, 14(4): 701– 7061.
    [55] Meyer JM, Hoy MA, Boucias DG. Morphological and molecular characterization of a Hirsutella species infecting the Asian citrus psyllid,Diaphorina citri Kuwayama (Hemiptera: Psyllidae) in Florida[J]. J. Invertebr.Pathol. 2007, 95:101–109.
    [56] Meyer JM, Hoy MA, Boucias DG. Isolation and characterization of an Isaria fumosorosea isolate infecting the Asian citrus psyllid in Florida[J].2008, journal homepage: www. elsevier. com/locate/yjipa
    [57] Moran NA, Plague GR, Sandstrom JP, Wilcox JL. A genomic perspective on nutrient provisioning by bacterial symbionts of insects.Proc[J]. Natl . Acad. Sci. 2003, 100: 14543– 145481.
    [58] Muyzer G, De Waal EC, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Appl. Environ. Microbiol. 1993, 59: 695-700.
    [59] Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M. The 160-kilobase genome of the bacterial endosymbion Carsonella[J]. Science. 2006,314(5797):267
    [60] Nirgianaki A, Banks GK, Rrohlich SR , Veneti Z , Braig HR , Miller TA , Bedford ID, Markham PG, Savakis C, Bourtzis K. Wolbachia infections of the whitefly Bemisia tabaci[J]. Current Microbiology. 2003 , 47 (2) :93– 1011.
    [61] Ohtaka C, Ishikawa H. Effects of heat treatment on the symbiotic system of an aphid mycetocyte. Symbiosis.1991, 11: 19– 301.
    [62] Oliver KM, Russell JA, Moran NA, Hunter MS, Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc[J]. Natl .Acad. Sci. 2003, 100: 1803-18071
    [63] O’Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM. 16SrRNA phylogenetic analysisof the bacterial endosymbionts associated with cytoplasmic incompatibility in insects[J]. Proc Natl Acad Sci USA. 1992, 89: 2699-2702.
    [64] O’Neill SL, Hoffmann AA, Werren JH (Eds.) . Influential Passengers. New York: Oxford University Press. 1997.
    [65] Rae DJ, Liang WG, Waston DM, Beattie GAC, Huang MD. Evaluation of petroleum spray oils for control of the Asian citrus psylla, Diaphorina citri (Kuwayama) (Hemiptera: Psyllidae), in china[J]. International Journal of Pest Management.1997,43: 71-75.
    [66] Rasgon JL, Scott TW. Phylogenetic characterization of Wolbachia symbionts infecting Cimex lectularius L.and Oeciacus vicarious Horvath (Hemiptera:Cimicidae). J.Med Entomo. 2004, 41: 1175-1178.
    [67] Reinking OA. Diseases of economic plants in South China[J].Philippine Agriculture, 1919, 109~1351.
    [68] Rousset F, Bouchon D, Pintureau B, Juchault P, Soliganc M. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods[J]. Proc R. Soc Lond. B. 1992, 250: 91– 981.
    [69] Sinkins SP, Braig HR, O’Neill SL.Wolbachia superinfection and the experession of cytoplasmic incompatibility[J]. Proc. Roy . Soc. B.1995,261:325-330.
    [70] Stouthamer R, Breeuwer JA, Hurst GD. Wolbachia pipientis microbial manipulator of arthropod reproduction[J]. Annu.Rev Microbiol. 1999, 53: 71-102.
    [71] Subandiyah S, Nikoh N, Tsuyumu S, Somowiyarjo S, Fukatsu T. Complex Endosymbiotic Microbiota of the Citrus Psyllid Diaphorina citri (Homoptera: Psylloidea)[J]. ZOOLOGICAL SCIENCE. 2000, 17: 983–989 .
    [72] Sakamoto JM, Feinstein J, Rasgon JL. Wolbachia Infection in the Cimicidae:museum specimens as an untapped resource for endosymbiont surveys[J]. App Environ Microbiol. 2006, 72(5): 3161-3167.
    [73] Tamames J, Gil R, Latorre A, Pereto J, Silva FJ, Moya A. The frontier between cell and organelle: genomeanalysis of Candidatus Carsonella ruddii[J]. BMC Evol. Biol. 2007,7:18.
    [74] Teixeira DC, Ayres J, Kitajima EW, Danet L, Jagoueix-Eveillard S, Saillard C, Bove JM. 1st report of a Huanglongbing-like disease of citrus in Sao Paulo State, Brazil and association of a new Liberibacter species,“Candidatus Liberibacter americanus”, with the disease[J]. Plant Disease. 2005a, 89: 107.
    [75] Thao ML, Baumann L, Hess JM, Falk BW, Ng JCK, Gullan PJ, Baumann P. Phylogenetic evidence for two new insect associated Chlamydia of the family Simkaniaceae[J]. Curr. Microbiol. 2003, 47: 46 -501.
    [76] Thao ML, Baumann P. Evolutionary relationships of primary prokaryotic endosymbionts ofwhiteflies and their hosts[J]. Appl . Envir.Microbiol. 2004a, 70 (6): 3401-34061.
    [77] Thao ML, Baumann P. Evidence of multiple acquisition of Arsenophonus by whitefly species (Sternorryncha : Aleyrodidae)[J]. Curr.Microbiol. 2004b, 48: 140– 1441.
    [78] Tokuda G, Watanabe H, Matsumoto T, Noda H. Cellulose digestion in the wood-eating higher termite Nsutiterme takasafoensis (Shiraki): distribution of cellulase and properties of Endo-β-1,4- glucanase[J]. Zoological Science. 1997, 14: 83?97.
    [79] Vandekercknove TT, Watteyene S, Willems A. Phylogenetic analysis of the 16SrDNA of the cytoplasmic bacterium Wobachia from the novel host Folsomia candida(Hexapoda,Collembola) and its implications for Wolbachial taxonomy[J]. FEMS Microbiol Lett. 1999, 180(2): 279-286.
    [80] Van Meer MMM, Witteveldt J, Stouthamer R. Phylogeny of the arthropod endosymbiont Wolbachia , based on the wsp gene[J]. Insect Mol Biol. 1999, 8: 399– 4081.
    [81] Vergin, K. L., Rappé, M. S., Giovannoni, S. J. Streamlined method to analyze 16S rRNA gene clone libraries[J]. BioTechniques, 2001, 30: 938-944.
    [82] Wang ZK, Sun XY, Yin YP, Zhou CY, Xia YX. Comparison of PCR, DIA and pathogenicity assay for detection of Xanthomonas axonopodis pv. citri, the causal agent of citrus bacterial canker disease[J]. Agricultural Science in China. 2004, 3(6): 442-447.
    [83] Wang ZK,Yin YP,Hu H,Yuan Q,Peng GX,Xia YX.2006.Development and application of mole- -cular-based diagnosis for'Candidatus Liberibacter asiaticus',the causal pathogen of citrus huanglongbing[J].Plant Pathology,55(5):630-638.
    [84] Weisburg WG, Barns SM, Pelletier DA and Lane DJ. 16S Ribosomal DNA Amplification for Phylogenetic Study[J]. Journal of Bacteriology.1991, 173(2): 697-703.
    [85] Wernegreen JJ. Genome evolution in bacterial endosymbionts of insects[J]. Nat. Genet. 2002,3:850–861.
    [86] Werren JH. Biology of Wolbachia[J]. Ann Rev Entomol. 1997, 42: 587-609.
    [87] Werren JH, Zhang W, Guo LR. Evolution and phylogeny of Wolbachia:reproductive parasites of arthropods[J]. Proc R Soc Lond. 1995a, B267: 1277-1285.
    [88] Zchori-Fein E, Brown JK. Diversity of prokaryotes associated with Bemisia tabaci (Genn) (Hemiptera: Aleyrodidae)[J]. Ann. Entom.Soc. Am. 2002, 95: 711– 7181.
    [89] Zhou W, Rousset F, O’Neil S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences[J]. Proc.Biol Sci. 1998, 265(1395): 509-515.
    [90] Zhao XY, 1981. Citrus yellow shoot disease (Huanglongbing)-a review[J]. Proc. Int. Soc. Citricult. 1: 466-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700