生防细菌的农药降解特性及其降解机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,植物病虫害防治中大量化学农药的使用造成的病原菌和害虫的抗药性以及土壤和作物中的农药残留,给人类健康和生态环境造成了严重的危害。近年来,生物防治以其无毒无害,不污染环境,不易引起抗药性等特点备受社会各界的广泛关注,许多生防菌剂已得到成功地应用,与此同时,利用微生物进行土壤修复的研究也取得了很大的进展。据报道,有些生防细菌也具有农药降解作用,若能分离到兼具生防和农药降解作用的微生物,将对农业的可持续发展具有重要意义。而目前国内外在此领域的研究却少有开展。
     为此,我们以多种土传植物病原真菌为靶标,以3种常用的杀虫剂为筛选底物,从花生根际土壤中筛选到对多种植物病原真菌具有拮抗作用且对多种农药具有降解作用的细菌,并对其降解特性和降解机制进行了初步研究,具体结果如下:
     1.从山东泰安的花生根际土壤中分离到54株细菌,从中筛选到对棉花枯萎病菌(Fusarium oxysporum f.sp. vasinfectum)等多种植物病原真菌具有明显拮抗作用的生防细菌B3、H10,通过形态特征、生理生化及16S rDNA同源性序列分析,将其分别鉴定为多粘类芽孢杆菌(Paenibacillus polymyxa)、苍白杆菌(Ochrobactrum spp.)。
     2.抑菌实验发现,H10发酵液及其80%硫酸铵饱和度的粗蛋白质沉淀对西瓜枯萎病菌(Fusarium oxysporum f. sp. niveum)和黄瓜枯萎病菌(Fusarium oxysporum f. sp. cucumerinum)的生长均具有明显的抑制作用。镜检发现,病原菌菌丝严重扭曲、变形膨大成珠状、原生质浓缩,并在粗蛋白质沉淀中检测到了蛋白酶、几丁质酶和β-1,3-葡聚糖酶活力,表明H10产生的胞外水解酶破坏了病原真菌的细胞壁。
     3.为了研究生防菌的农药降解特性,本研究采用紫外分光光度法分别测定生防细菌B3、H10对3种常用杀虫剂(合成拟除虫菊酯类的高效氯氰菊酯、有机磷类的毒死蜱、烟碱类的吡虫啉)的降解率。在原药含量为100 mg/L时,菌株B3对3种农药7 d的降解率分别为54.42%、57.44%和49.24%,菌株H10对3种农药60 h的降解率分别为83.51%、79.82%、59.12%,当高效氯氰菊酯浓度在400mg/L时降解率达到最大,为75.55%,但底物浓度高至700mg/L,大多数微生物不能忍受,而该菌仍可生长,降解率达60.05%;接种量为5%时降解率最高,达89.61%;在农药培养基中添加少量碳源或氮源,均有利于菌株H10对高效氯氰菊酯的降解。
     4.为了深入研究生防菌的农药降解机制,本实验对H10拟除虫菊酯降解酶进行了分离纯化。采用超声波细胞破碎、DEAE-Sepharose Fast Flow离子交换层析、Sephadex G-75凝胶过滤层析,纯化出一种拟除虫菊酯降解酶。经SDS-PAGE电泳染色后呈单带,分子量约为65.0 kD。降解实验发现,150μL该酶液在30 min内可将10 mL 50 mg/L的高效氯氰菊酯完全降解。
     5.为进一步研究该酶的性质,本实验以对硝基苯乙酸酯为底物测定了温度、pH、金属离子对酶活性的影响。结果表明:酶作用的最适温度为40℃,在40℃以下稳定性良好;最适pH为8.0,在pH 6.0~9.0之间具有较高的稳定性,酶活力维持在70%以上;Na~+、EDTA对酶活无影响,Ca~(2+)、Mg~(2+)能够降低酶的活性,而过渡态金属离子Zn~(2+)、Fe~(3+)、Cu~(2+)有强烈的抑制作用。
Chemical insecticides have been used widely all over the world to control a wide range of plant diseases and insect pests. Extensive application of these pesticides results in insects and pathogens resistance to these insecticides, pollution of soil and crops, potential hazards to environment and human health. While biological control has attracted wide attention, as it's non-toxic and harmless, nonexistent pollution to the environment, unlikely to cause drug resistance, etc. Some biocontrol preparations have been successfully applied in production. On the other hand, the research of soil remediation by microorganisms has made great progress. Many biocontrol bacteria have been reported to also degrade pesticides. It will be of great significance to isolate microorganism that can be applied in biological control and soil bioremediation for continuable development of agriculture. However, study in this field is rarely carried out both in China and abroad.
     Therefor, bacteria were isolated from peanut rhizosphere soil which antagonize against various phytopathogenic fungi with a variety of soil-borne plant pathogens as targets, and among them pesticide-degradation bacteria were screened with three kinds of pesticides used extensively as substrates. The pesticide-degradation characteristics and mechanisms were studied further. The main results and conclusions are as follows:
     1. 54 isolates were obtained from peanut rhizosphere at Taian, Shandong Province of China. Strains B3 and H10 were two potential biocontrol bacteria against broad-spectrum plant pathogenic fungi. According to the characteristics of morphology, physiology, biochemistry tests and the comparison of 16S rDNA sequence, strains B3 and H10 were identified as Paenibacillus polymyxa, Ochrobactrum spp. respectively.
     2. It was found that fermentation filtrate of H10 and its 80% saturated (NH4)2SO4 precipitate had obvious antagonism against Fusarium oxysporum f. sp. niveum and Fusarium oxysporum f. sp. cucumerinum by antagonistic experiment. Its cell-free culture filtrate showed great inhibition to mycelial growth, which were swelling, seriously distortion hyphae and concentrated protoplasm under light microscope. Activities of protease, chitinase andβ-1.3-glucanase were tested in protein precipitate. The results indicated that extracellular hydrolase produced by strain H10 destroyed the cell-wall of pathogens.
     3. In order to study the degradation characteristics of bacteria, the degradation rates of B3 and H10 against insecticides (beta-cypermethrin in synthetic pyrethroids, chlorpyrifos in organophosphate pesticides and imidacloprid in neonicotinoid insecticides) were determined by UV-spectrophotometry. The extent of degradation of them at initial concentration of 100 mg/L was 54.42%, 57.44% and 49.24% respectively by strain B3 within 7 days, and 83.51%, 79.82%, 59.12% by strain H10 within 60 hours. When substrate beta-cypermethrin was at 400 mg/L, the extent of degradation by H10 was the maximum, 75.55%, when substrate was at 700 mg/L, most microorganisms could not live, but the degradation rate by H10 still reached to 60.05%. When the amount of inoculation was at 5%, the degradation rate was 89.61%, as the hignest. Adding a little carbon source or nitrogen source could improve the degradation ability of H10 against beta-cypermethrin.
     4. To research the pesticide-degradation mechanisms of bacteria, a pyrethroid hydrolase was purified by ultrusonic cell disrupter, following by DEAE Sepharose Fast Flow chromatography and Sephadex G-75. It appeared as a single band corresponding to molecular weight (MW) of approximately 65.0 kDa on SDS-PAGE with commassie blue staining. 150μL purified enzyme degraded 10 mL 50 mg/L beta-cypermethrin in 30 minutes completely.
     5. In order to ascertain the nature of the pyrethroid hydrolase concerned, effects of temperature, pH and different metal ions on enzyme activities were assayed, with 4-nitrophenyl acetate as a substrate. The optimum temperature for enzyme activitis was 40℃and pH was 8.0. The enzyme was more stable when temperature was lower than 40℃and pH ranged from 6.0 to 9.0. Na+ and EDTA had no effect on enzyme activities, while Ca~(2+) and Mn~(2+) inhibited in some degree, and Zn~(2+), Fe~(3+), Cu~(2+) can strongly retard enzyme activities.
引文
[1] Vidaver AK. Prospects for control of phytopathogenic bacteria by bacteriophage and bacteriocins[J]. Ann Rev Phytopathol, 1976, 24: 451-465.
    [2] Baker KF. Evolving concepts of biological control of plant pathogens[J]. Ann Rev Phytopathol, 1987, 25: 67-85.
    [3] David B, Charl ESW, Rew R. Factors affecting the degradation of polyaromatic hydrocarbons in soil by white rot fungi[J]. Soil Biochem, 1998, 30 (7): 873-882.
    [4] Yiu-Kwok Chan, Wayne A. McCormick, Keith A. Seifert. Characterization of an antifungal soil bacterium and its antagonistic activities against Fusarium species[J]. Can. J. Microbiol., 2003, 49: 253-262.
    [5]虞云龙,盛国英,傅家谟,宋凤鸣,郑重,葛秀春,陈鹤鑫,樊德方.一株农药降解菌的分离与鉴定[J].华南理工大学学报(自然科学版), 1996, 24: 183-187.
    [6]何礼远.细菌在植物病害生物防治上的应用研究进展[J].生物防治通报, 1985, 8(1): 18-31.
    [7]朱育菁,肖荣凤,林营志,史怀,刘波.生防菌ANTI-8098A对青枯雷尔氏菌致病力的影响[J].中国生物防治, 2009, 25(1): 41-47.
    [8]张广志,杨合同,李纪顺,扈进冬.多功能芽孢杆菌的分离、筛选及活性检测[J].江苏农业科学, 2009, 1: 298-300.
    [9]林福呈.枯草芽孢杆菌产生的拮抗物质对西瓜枯萎孢子萌发的影响[J].浙江农业大学学报, 1990, 16(增刊2): 235-240.
    [10]陈志谊.枯草芽孢杆菌B-916防治水稻纹枯病的田间试验[J].中国生物防治, 1997, 13(2):75-78.
    [11]王政逸.拮抗立枯丝核菌的细菌菌株筛选及其防治试验[J].浙江农业大学学报, 1990, 16(增刊2): 191-195.
    [12]祝新德,冯镇泰,许煜泉,张霞.荧光假单胞菌株M18防治甜瓜蔓枯病害[J].上海交通大学学报, 2001, 35(7): 1062-1065.
    [13]游春平,傅莹,陈金明.香蕉枯萎病拮抗菌的筛选与初步鉴定[J].仲恺农业工程学院学报, 2009, 22(4): 04-08.
    [14]郑爱萍,李平,王世全,孙惠青.水稻纹枯病菌强拮抗菌B34的分离与鉴定[J].植物病理学报, 2003, 33(1): 81-85.
    [15] Ash C, Priest FC, Collins MD. Molecular identification of rRNA group 3 bacilli using a PCR probe test[J]. Antonie Van Leeuwenhoek, 1994, 64: 253-260.
    [16]何亮,宋新华,王智文,等. 1株植物病原真菌拮抗细菌的鉴定[J].西北农林科技大学学报:自然科学版, 2007, 35(2): 120-124.
    [17]鲁红学,周炎炎,类芽孢杆菌在植物病害防治和环境治理中的应用研究进展[J],安徽农业科学, 2008, 36 (30): 13244-13247
    [18] Fravel D R. Role of antibiosis in the biocontrol of plant diseases[J]. Annu Rev Phytopathol, 1988, 26(1): 75-91.
    [19]陈中义,张杰,黄大昉.植物病害生防芽孢杆菌抗菌机制与遗传改良研究[J].植物病理学报, 2003, 33(2): 97~103.
    [20] Reyes-Ramirez A., Escuderc-Abarca B.I., Aguilar-Uscanga G., et al. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds[J]. Food Microbiol. Saf., 2004, 65(5): 131~134.
    [21] Zamfir M., CalleWaert R., Cornea P.C., et al. Purification and characterization of a bacteriocin produced by Lactobacillus acidophilus IBB801[J]. J. Appl. Microbiol., 1999, 87(6): 923~931.
    [22] Calonje M., Novaes-Ledieu M., Bernardo D., et al. Chemical components and their locations in the Verticillium fungicola cell wall[J]. Can. J. Microbiol., 2000, 46(2): 101~109.
    [23] Priest F.G. Extracellular enzyme synthesis in the genus Bacillus[J]. Bacteriol. Rev., 1977, 41(3): 711~753.
    [24] Naosekpam S.A., Rajni V., Shanmugam V. Extracellular Chitinases of Fluorescent Pseudomonads Antifungal to Fusarium oxysporum f.sp. dianthi Causing Carnation Wilt[J]. Curr. Microbiol. 2006, 52: 310~316.
    [25] Vonder Weid I., Alviano D.S., Santos A.L.S. et al. Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a abroad spectrum of phytopathogenic bacteria and fungi[J]. J. Appl. Microbiol., 2003, 95: 1143~1151.
    [26] Kobayashi D.Y., Reedy R.M., JulieAnn B. Characterization of a chitinase gene from Stenotropho- -monas maltophilia strain 34S1 and its involvement in biological control[J]. Appl. Environ. Microbiol., 2002, 68(3): 1047~1054.
    [27] Ei-Tarabily K.A., Soliman M.H., Nassar A.H. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes[J]. Plant Pathol., 2000, 49(5): 573~583.
    [28] Berr S V. Biological control of fireblight by Erwinia herbicola[J]. Plant Pathol Bacteria, 1981, 596-597.
    [29]崔云龙,刘训理.枯草芽孢杆菌B-912菌株对数种病原菌的抗生作用[J].生物防治通报, 1993, 9(1): 29-32.
    [30]赵白鸽.枯草芽孢杆菌的抑菌作用及其防治棉苗病害的研究[J].植物保护学报, 1993, 19(3): 7-18.
    [31]陈志谊,刘荣.水稻纹枯病拮抗细菌B-916的选育[J].中国生物防治, 2003, 19(1): 15-18.
    [32] Andro T. Mutation of Erwinia chrysanthemi defective in secretion of pectinase and celluase [J]. Bacteriol, 160: 1199-1203.
    [33] Bender C L. Reduced pathogen fitness of Pseudomonas syringae pv.tomato Tn5 mutants defective in coronative production[J]. Physiol Molec Plant Pathol, 1987, 30: 73-283.
    [34]彭于发.工程荧光菌93防治小麦全蚀病研究简报[J].生物防治报, 1991, 7(4): 181-182.
    [35]何晨阳,王金生.水稻白叶枯病毒性基因缺失菌株的构建及其在生防上的作用[J].南京农业大学学报, 1994, 17(增刊): 17-22.
    [36]贾乃新,刘海凤,王晓萍,等.对有机食品、绿色食品和无公害食品发展问题的探讨[J].中国农业资源与区划, 2002, 23 (5): 60-62.
    [37] Mulbry w, Degradation of pesticides by microorganisms and potential for genetic manipulation[J]. Corp Protection, 1991, 10: 334-346.
    [38]罗永侦.产有机磷农药降解酶菌株的筛选及酶学性质研究[D].广西大学硕士学位论文, 2007,5-6.
    [39]沈德中.污染环境的生物修复[M].北京:化学工业出版社, 2002: 12-20.
    [40]王兆守,刘丽花,陈小兰,邵宗泽.拟除虫菊酯类农药降解菌及降解酶的研究概况[J].微生物学通报, 2008, 35(5): 825-829.
    [41] Nina G, Friedhelm D. Influence of pyrethroids and piperonyl butoxide on the Ca2+-ATPase activity of rat brain synaptosomes and leukocyte membrane. International Immunopharmacology[J], 2005, 5(2): 63-70.
    [42]薛南冬,王洪波,徐晓白.水环境中农药类内分泌干扰物的研究进展[J].科学通报, 2005, 50(22): 2441-2449.
    [43] Anders C, Valery EF. Consequences of a short pulse of pesticide exposure for survival and reproduction of Gammarus pulex. Aquatic Toxicology[J], 2004, 67(3): 287-299.
    [44]鲁兴盟.微量氯氛菊酯对家蚕的毒性[J].农药学学报, 2002, 5(4): 42-45.
    [45]肖红利.拟除虫菊酯降解菌株的分离及生化分子基础研究[D].中国农业科学院硕士学位论文. 2004.
    [46]王兆守,林淦,尤民生,李秀仙,梁小虾.茶叶上拟除虫菊酯类农药降解菌的分离及其特性[J].生态学报, 2005, 7: 1824-1828.
    [47]虞云龙,宋凤鸣,郑重,陈鹤鑫,樊德方.一株广谱性农药降解菌(Alcaligenes sp.)的分离与鉴定[J].浙江农业大学学报, 1997, 23 (2): 111-115.
    [48]梁卫驱,刘玉焕,李荷.氯氰菊酯降解菌的分离鉴定及其降解特性研究[J].广东药学院学报, 2007, 23(2): 199-204.
    [49]许育新,李晓慧,张明星,崔中利,李顺鹏.红球菌CDT3降解氯氰菊酯的特性及途径[J].中国环境科学, 2005, 25(4): 399-402.
    [50]王兆守,林淦,李秀仙,梁小虾,尤民生.拟除虫菊酯降解菌的分离、筛选及鉴定[J].福建农林大学学报(自然科学版), 2003, 32(2): 176-180.
    [51]华小梅等.我国农药的生产使用状况及其对环境的影响[J],环境保护, 1999, (9): 23.
    [52]张一宾等.国内外有机磷农药的概况及对我国有机磷农药发展的看法[J].农药, 1999, 38(7): l-3.
    [53] S.Herkenhoff L, Szinicz V.K, Rastogi T.-C.Cheng J.J, DeFrank F.Worek, Effect of organophospho- -rus hydrolysing enzymes on obidoxime-induced reactivation of organophosphate-inhibited human acetylcholinesterase[J], Arch Toxicol, 2004, 78: 338–343.
    [54] Siddavattam D., Khajamohiddin S., Manavathi B., et al. Transposon-like organization of the plasmid-borne organophosphate degradation(opd)gene cluster found in Flavobacterium sp. [J]. Appl. Environ. Microbiol, 2003,69(5):2533-2539.
    [55] Dave KI, Phillips L, Luckow VA, Wild JR. Expression and post-translational processing of a broad-spectrum organophosphorus-neurotoxin-degrading enzyme in insect tissue culture[J]. Biotechnol Appl Biochem. 1994, 19(Pt3): 271-284
    [56]虞云龙,樊德方,陈鹤鑫.农药微生物降解的研究现状与发展策略[J].环境科学进展, 1996, 4(3): 28-36.
    [57]李阜棣等,农业微生物技术[M],中国农业出版社, 1996.
    [58] Bayer crop. Imidacloprid:one active substance, many uses[J]. COURIER, 2002, 2: 8-12.
    [59] Cox Caroline. Imidacloprid[J]. Journal of pesticide reform, 2001, 21(1): 15-21.
    [60]谢心宏.新型杀虫剂吡虫啉[J]. Pesticides, 1998, 37(6): 40-42.
    [61]张韩杰,闰韩春.农药残留及微生物在农药降解中的应用与展望[J].湖南植保, 2004, 1: 31-35.
    [62] Grant RJ, Daniell TJ, Betts WB. Isolation and identication of synthetic pyrethroid-degradingbacteria[J]. Journal of Applied Microbiology, 2002, 92: 534-540.
    [63] Maloney SE, Maule A, Smith. ARW. Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus[J]. Appl Environ Microbiol, 1993, 59( 7): 2007-2013.
    [64]杨丽,赵宇华,张炳欣,等.一株毒死蜱降解细菌的分离鉴定及其在土壤修复中的应用[J].微生物学报, 2005, 45( 6): 905-909.
    [65]郑永良,刘德立,高强,等.甲胺磷农药降解菌HS-A32的分离鉴定及降解特性[J].应用与环境生物学报, 2006, 12( 3) : 399- 403.
    [66] Holmes B, Popoff M, Kiredjian M, et al [J]. Int J Syst Bacteriol, 1988, 38: 406-416.
    [67]李宝明,阮志勇,姜瑞波.石油降解菌的筛选、鉴定及菌群构建[J].中国土壤与肥料, 2007 (3): 68-72.
    [68]戴青华,张瑞福,蒋建东,顾立锋,李顺鹏.一株三唑磷降解菌mp-4的分离鉴定及降解特性的研究[J].土壤学报, 2005, 42(1): 111-115.
    [69] Allan walker, Pualine A.Brown, Andrew R. Entwistle. Enhanced Degrdeation of IProdione and Vinclozolin in soil[J], Pestic. Sci., 1986, 17: 183-193.
    [70]王兆守,梁小虾,林淦等.拟除虫菊酯类农药降解菌的紫外诱变[J].华东昆虫学报, 2003, 12(2): 82-86
    [71]刘玉焕,钟英长.甲胺磷降解真菌的研究[J].中国环境科学. 1999, 19(2): 172-175.
    [72]顾宝群.氯氰菊酯降解菌的筛选及降解特性研究[D].广西大学硕士论文, 2006, 9-14.
    [73]林维宣,李继业,王玫,等.双柱净化高效液相色谱法测定拟除虫菊醋农药残留的研究[J].中国卫生检测杂志, 2001, 11(l): 21-32.
    [74]郑重.农药的微生物降解[J].环境科学, 1990, 11(2): 68-70.
    [75] Fumio M, Krishna Murti CR. Biodegradation of pestieides[M]. New York and London: Plenum,1983:69
    [76] Saikia N, Das SK, Patel BK, et al. Biodegration of betacyfluthrin by Pesudomonas stutzeri strain S1[J]. Biodegradation, 2005, 16(6): 581.
    [77]洪永聪,辛伟,来玉宾,翁昕,胡方平.茶树内生防病和农药降解菌的分离[J].茶叶科学, 2005, 25(3): 183-188.
    [78]许育新,戴青华,李晓慧,李顺鹏.氯氰菊酯降解菌株CDT3的分离鉴定及生理特性研究[J].农业环境科学学报, 2004, 23(5): 958-963.
    [79] Painganker M, Jain M, Deobagker D. Biodegradation of allethrin,a pyrethroid insecticide,by an Acidomonas sp[J]. Biotechnol Lett, 2005, 27(23-24): 1909.
    [80]陈亚丽,张先恩,刘虹等.甲基对硫磷降解菌假单胞菌WBC-3的筛选及其降解性能的研究[J].微生物学报, 2002, 42(4): 490-497.
    [81] Grant RJ, Betts WB. Biodegradation of the synthetic pyrethroid cypermethrin in used sheep dip[J]. Letters in Applied Microbiology, 2003, 36(3): 173?176.
    [82]洪永聪,辛伟,崔德杰等.蜡状芽孢杆菌菌株TR2的氯氰菊酯降解酶特性[J].青岛农业大学学报(自然科学版), 2007, 24(3): 185?188.
    [83]林淦,黄升谋.甲氰菊酯降解酶的部分纯化及其性质研究[J].河南农业科学, 2005, (12): 47?50.
    [84]虞云龙,陈鹤鑫,樊德方,陆贻通,盛国英,傅家谟. Alcaligenes sp.YF11菌对杀灭菊酯的降解机理[J].环境污染与防治, 1998, 20 (6): 5-7.
    [85]邢介帅,李然,梁元存,竺晓平,赵蕾.产蛋白酶生防细菌的筛选及其对病原真菌的拮抗作用[J].西北农业学报, 2008, 17 (1): 106-109.
    [86]何延静,刘海明,胡洪波,许煜泉,张雪洪.一株拮抗辣椒疫霉的假单胞茵的分离与鉴定[J].微生物学报, 2008, 46(4): 516-521.
    [87]沈萍,范秀容等.微生物学实验[M].北京:高等教育出版社, 1999, 69-74.
    [88]饶小莉,沈德龙,等.甘草内生细菌的分离及拮抗菌株鉴定[J].微生物学通报, 2007, 34(4): 700-704.
    [89]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社, 2001, 59-61.
    [90] J.萨姆布鲁克, D. W.拉塞尔.分子克隆实验指南(第三版)[M].科学出版社, 2003, 27-35.
    [91]邢介帅.生防芽孢杆菌胞外蛋白酶的纯化及其拮抗作用[D].山东师范大学硕士学位论文. 2008, 32-33.
    [92] William G., Weisburg, Susan M., et al. 16S ribosomal DNA amplification for phylogenetic study[J]. J. Bacteriol., 1991, 697-703.
    [93]焦振泉,刘秀梅.分类与鉴定的新热点: 16S-23S rDNA间区[J].微生物学通报, 2001, 28 (1): 85-89.
    [94]张晓舟,徐剑宏,李顺鹏.植病生防芽孢杆菌的分离筛选与初步鉴定[J].土壤(Soils), 2005,37(1): 85-88.
    [95]姜英华,胡白石,刘凤权.植物土传病原菌拮抗细菌的筛选与鉴定[J].中国生物防治. 2005, 21(4): 260-264.
    [96]陈曼,李赤,邱逸斯.富贵竹黑腐病拮抗菌H5的抑菌机制及相关特性研究[J].微生物学通报, 2008, 35(4): 529-532.
    [97] Validov S, Kamilova F, Qi S, et al. Selection of bacteria able to control Fusarium oxysporum f. sp. radicis-lycopersici in stonewool substrate[J]. J Appl Microbiol, 2007, 102(2): 461-471.
    [98]陈雪丽,郝再彬,王光华,金剑,刘居东.多粘类芽孢杆菌BRF-1抗菌蛋白的分离纯化[J].中国生物防治, 2007, 23(2): 156–159.
    [99]郝晓娟,刘波,谢关林,葛慈斌,林娟.短短芽孢杆菌JK-2菌株抑茵物质特性的研究[J].浙江大学学报, 2007, 33(5): 484-48.
    [100]姜锡瑞,段钢.新编酶制剂实用技术手册[M].北京:中国轻工业出版社, 2002, 412~418.
    [101] Boller T., Gehri A., Mauch Fetal. Chitinase in bean leaves induction by ethylene purification, properties and possible function[J]. Planta, 1983, 157: 22-31.
    [102]陈崇顺,徐彩凤. 21科41种(变种)植物叶片几丁质酶系的研究[J].植物资源与环境, 1993, 2(4): 28-33.
    [103] Miller G.L. Use of dinitrosalicylic reagent for determination of reducing sugars[J]. Anal. Biochem., 1959, 31(3): 426-428.
    [104]叶小梅,常志州,季国军等.番茄拮抗内生细菌102菌株的分离及其防病促生作用[J],江苏农业学报, 2005, 21(4): 294-297.
    [105] Kobayashi T., Hakamada Y., Hitomi Jetal. Purification of alkaline proteases from a Bacillus strain and their possible interrelationship[J]. Appl. Microbiol. Biotechnol., 1996, 45 (1-2): 63-71.
    [106]杨谦,赵小岩.多菌灵抗性基因在木霉菌中的转化方法[J].科学通报, 1998, 43(22): 2423-2426.
    [107] Ryu CM, Kim J, Choi O, et al. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame[J]. Biological Control, 2006, 39(3): 82-89.
    [108] Singh BK, Walker A, Morgan JA, et al. Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium[J]. Appl Environ Microbiol, 2003, 69(9): 5198-5206.
    [109]丁海涛,李顺鹏,沈标,崔中利.拟除虫菊酯类农药残留降解菌的筛选及其生理特性研究[J].土壤学报, 2003, 40(1): 123-129.
    [110]刘新,尤民生,廖金英,等.甲胺磷降解菌的分离与降解效能测定[J].武夷科学, 2001, 17: 51-55.
    [111] Pandey G, Dorrian SJ, Russell RJ, et al. Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by Pseudomonas sp. 1G[J]. Biochem Biophys Res Commun, 2009, 380(3): 710-714.
    [112]许玫英,李建军,曹渭等.染料脱色菌的分子分类和有关基因与其脱色特性的关系[J].微生物学杂志, 2004 ,24(6): 25-28.
    [113]柏文琴,李梅,邱星辉等.苍白杆菌B2对甲基对硫磷降解途径研究[J].农药学学报, 2004, 6 (4): 48-54.
    [114]李颖,袁勇军,陆兆新等. Ochrobacterum intermedium DN2新型烟碱降解酶的分离纯化[J].食品科学, 2006, 27(12): 287-290.
    [115]李明静.甲氰菊酯降解菌的分离、鉴定及应用基础研究[D].福建农林大学硕士学位论文, 2006.
    [116]张卫,虞云龙,吴加仑,等.阿维菌素在土壤中的降解和高效降解菌的筛选[J].土壤学报, 2004, 41(4): 590-596.
    [117]王卓娅,刘玉焕,梁卫驱.克雷伯氏菌菌株ZD112的菊酯农药降解酶特性研究[J].医学导刊, 2008(5): 84-85.
    [118] WEI Q. LIANG, ZHUO Y. WANG, HE LI, PEI C. WU, JI M. HU, NA LUO, LI X. CAO, AND YU H. LIU. Purification and Characterization of a Novel Pyrethroid Hydrolase from Aspergillus niger ZD11[J]. J. Agric. Food Chem, 2005, 53: 7415-7420.
    [119]陈毓荃.生物化学试验方法和技术[M].北京:科学出版社, 2002, 95-97.
    [120]汪家政,范明.蛋白质技术手册[M].北京:科学出版社, 2001, 77-92.
    [121]林淦,姚威.阴沟肠杆菌w-1粗酶液对氯氟氰菊酯的降解效果及其作用机理[J].江苏农业科学, 2006, 3: 191-198.
    [122] Maria C Rubio, Rosa Runco, Antonio R, Navarro. Invertase From a Strain of Rhodotorula glutinis [J]. Phytochemistry(S0031-9422), 2002, 61: 605-609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700