14-3-3σ基因甲基化失活与鼻咽癌侵袭转移关系及鼻咽癌血清蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼻咽癌(nasopharyngeal carcinoma,NPC)是我国南方及东南亚一种与遗传和环境因素密切相关的常见肿瘤。至今NPC发生发展机制仍然不清楚。NPC早期临床症状不明显,易早期发生颈部淋巴结和远处转移,绝大多数NPC病人就诊时已是中晚期,导致疗效不佳。因此,本研究一方面从NPC的甲基化失活基因着手,研究14-3-3σ基因甲基化与NPC侵袭转移的关系,以期能为揭示NPC的转移机制提供理论和科学依据;另一方面,采用血清蛋白质组学方法寻找NPC的血清标志物,以期能为NPC的诊治提供帮助。一、14-3-3σ基因甲基化与NPC侵袭转移的关系研究
     14-3-3 sigma(σ)蛋白是一种潜在的肿瘤抑瘤蛋白,是细胞周期G2/M期检控点的负性调节子。我们前期的蛋白质组学研究发现14-3-3σ蛋白在NPC中表达下调,但14-3-3σ在NPC中表达水平下调的机制及意义尚不清楚,有待进一步研究。为揭示14-3-3σ在NPC中表达下调的机制及其作用,本研究以75例NPC组织、25例正常鼻咽黏膜组织、4株分化程度或转移潜能不同的NPC细胞系(CNE1、CNE2、5-8F、6-10B)和永生化的鼻咽上皮细胞系NP69为样本,(1)采用甲基化特异性PCR(MSP)、RT-PCR、Western blotting和免疫组化等方法检测14-3-3σ基因的甲基化状态和表达水平,分析14-3-3σ基因甲基化与其表达水平之间的关系及其临床病理意义;(2)采用MTT和流式细胞技术观察去甲基化药物5-杂氮-2-脱氧胞苷(5-aza-2dC)对NPC细胞增殖、凋亡和细胞周期分布的影响;(3)采用基因转染和Transwell小室实验分析14-3-3σ表达水平对NPC细胞体外侵袭能力的影响。主要结果如下:(1)4株NPC细胞系的14-3-3σ基因启动子均存在甲基化,而永生化人鼻咽上皮细胞株NP69的14-3-3σ基因启动子缺乏甲基化。5-aza-2dC处理后,4株NPC细胞系的14-3-3σ基因甲基化水平下降而其表达水平上调;(2)5-aza-2dC呈浓度依赖性地抑制4株NPC细胞系的生长,促进细胞凋亡,导致细胞周期阻滞,而且高分化CNE1和无转移6-10B细胞对药物的敏感性高于低分化CNE2和高转移5-8F细胞;(3)14-3-3σ启动子甲基化的频率在NPC组织显著高于正常鼻咽上皮组织(84%VS 28%),而且14-3-3σ基因完全甲基化只存在于NPC组织;(4)14-3-3σ基因在NPC组织中表达下调或丢失,且与14-3-3σ基因甲基化状态相关;(5)14-3-3σ甲基化的NPC患者有更高频率的淋巴结转移和远处转移以及更晚的临床分期;(6)上调14-3-3σ表达能够抑制高转移潜能NPC细胞株5-8F的体外侵袭能力。二、鼻咽癌血清蛋白质组学研究
     以19例NPC组织及患者自身血清和19例健康人血清为样本,采用血清蛋白质组学方法筛选NPC抗原及自身抗体。首先,应用双向凝胶电泳(2-DE)分离NPC组织蛋白质,将胶中的蛋白质电转移至PVDF膜上,再分别与NPC患者自身血清及健康人对照血清进行Western blotting反应,获取Western blotting反应图谱,图像分析识别差异反应的蛋白质点,再用质谱技术并结合生物信息学方法对差异反应的蛋白质点进行鉴定,共鉴定了13个可以在多数NPC患者体内诱导产生自身抗体的抗原蛋白,其中CK19、EBP1和Rho-GDI-2抗体分别在47.4%、47.4%和36.8%的NPC患者血清中能检测到。
     为验证血清蛋白质组学研究结果的可靠性,采用免疫共沉淀将CK19、EBP1和Rho-GDI-2蛋白从NPC细胞株CNE2的总蛋白中纯化出来,SDS-PAGE分离并转移至PVDF膜上,以它们作为抗原,采用Western blotting分析在新收集的30例NPC患者血清、23例其它肿瘤患者血清及20例健康人血清中的存在情况。结果显示:CK19、EBP1和Rho-GDI-2抗体在NPC患者血清中的阳性率明显高于其它肿瘤患者及健康人。结果表明:采用血清蛋白质组学筛选到的NPC抗原及其自身抗体结果可靠,CK19、EBP1和Rho-GDI-2抗体具有NPC特异性。
     为探讨NPC组织CK19、EBP1和Rho-GDI-2蛋白产生免疫原性的机制,以30例NPC组织及30例正常鼻咽粘膜上皮组织为样本,采用Western blotting和免疫组织化学染色检测CK19、EBP1和Rho-GDI-2蛋白的表达和亚细胞定位情况。结果显示,CK19和EBP1在NPC组织中的表达比正常鼻咽粘膜上皮组织明显升高,而Rho-GDI-2在正常组织和NPC组织中的表达则没有明显差别,CK19、EBP1和Rho-GDI-2在肿瘤细胞与正常细胞中的亚细胞定位一致。结果提示,CK19和EBP1过表达可能是其产生免疫原性、诱导NPC患者体内产生自身抗体的原因之一,而NPC组织Rho-GDI-2的免疫原性可能与翻译后修饰有关。
     为探讨分析CK19、Rho-GDI-2、HSP70和LAP3自身抗体诊断NPC的价值,采用ELISA方法检测CK19、Rho-GDI-2、HSP70和LAP3四个自身抗体在新收集的36例NPC患者、20例其它肿瘤患者和20例健康人血清中的水平,分析单个自身抗体以及自身抗体联合对NPC判别的特异性和敏感性。结果显示:4个自身抗体的血清水平在NPC患者和其他肿瘤患者均明显高于健康人,以单个自身抗体作为判别NPC的指标,Rho-GDI-2抗体具有更高的敏感性,而HSP70抗体的特异性最高;利用4个自身抗体组成的联合判别函数对NPC判别的敏感性为41.7%(15/36),特异性为95%(19/20)。
     本研究结果表明,NPC存在高频14-3-3σ基因甲基化失活,14-3-3σ基因甲基化失活与NPC淋巴结转移和远处转移有关。CK19、EBP1、Rho-GDI-2、HSP70和LAP3抗原及其自身抗体可能有助于NPC的筛查、诊断及免疫治疗。
Nasopharyngeal carcinoma(NPC) is one of the most common malignant tumors in southern China,which closely correlates with genetic and environmental factors,and the mechanism underlying the pathogenesis of NPC remains unclear.Because of vague clinical symptoms and metastasis at the early stages of the disease,NPC is often difficult to early diagnose,and results in the strong decrease in the possibility of cure and the survival time in NPC patients.Therefore,in this study we first studied association of 14-3-3σgene methylation inactivation with invasion and metastasis in NPC to provide the basis for revealing the mechanisms of NPC metastasis,and on the other hand we carried out serological proteome analysis of NPC to provide the help for NPC diagnosis and treatment.
     1.Inactivation of 14-3-3σgene by promoter methylation correlates with invasion and metastasis.
     14-3-3σ,a potential tumor suppressor protein,is a negative regulator of cell cycle G2-M phase checkpoint in response to DNA damage and in 14-3-3 protein family.Our previous comparative proteomics study showed that expression of 14-3-3σwas downregulated in NPC tissue compared with normal nasopharyngeal epithelial tissue (NNET),but the mechanisms of its downregulation and significance remains unclear.
     In order to reveal the mechanism and role of 14-3-3σdownregulation in the NPC,75 cases of NPC tissues,25 cases of NNET, 4 NPC cell lines(CNE1,CNE2,5-8F,6-10B) with the different differentiation degree or different metastatic potential as well as immortalization human nasopharyngeal epithelial cell line NP69 were used in this study.Methylation-specific PCR(MS-PCR),RT-PCR, Western blotting and immunohistochemistry were performed to detect the methylation status and expression level of 14-3-3σgene,and relationship between the methylation status and expression level of 14-3-3σgene as well as the clinicopathological significance of 14-3-3σmethylation inactivation were analysed;MTT assay and flow cytometry were used to detect the effects of demethylation agent 5-aza-2dC on cell growth,cell cycle distribution and apoptosis of NPC cells;and gene transfection and in vitro invasion assay were applied to determine the effect of 14-3-3σexpression levels on the invasive ability of NPC cells.
     The results were as followings:(1) 14-3-3σpromoter methylation was detected in 100%NPC cell lines(4/4) but are not detected in NP69 cell line.Treatment of the 4 NPC cell lines with the methyltransferase inhibitor 5-aza-2'dC resulted in the demethylation and upregulation of 14-3-3σ;(2) 5-aza-2dC could inhibit cell proliferation,promote cell apoptosis,and block cell cycle progress in a dose-dependent manner in all of the four NPC cell lines.The chemosensitivity of NPC cell lines to 5-aza-2'dC is related to their differentiation degree and metastatic potential;(3) 14-3-3σpromoter methylation occurred at a higher frequency in NPC tissues,63/75(84%),compared to NNET,7/25(28%), and fully methylated 14-3-3σpromoter was detected in NPC but not in any of NNET;(4) 14-3-3σexpression was down-regulated or lost in NPC tissues with methylation,and there was a negative correlation between the expression levels and methylation statuses of 14-3-3σgene; (5) The NPC patients with methylated 14-3-3σpresented a higher frequency of lymph node and distant metastasis,and an advanced clinical stage;(6) Overexpression of 14-3-3σin NPC cell line 5-8F with high metastatic potential was able to inhibit its in vitro invasive ability.
     2.serological proteome analysis of nasopharyngeal carcinoma
     To discover novel NPC biomarkers,serological proteome analysis (SERPA) was used to identify proteins that commonly elicit a humoral immune response in NPC.Sera from 19 newly diagnosed NPC patients and 19 healthy individuals were analyzed for IgG autoantibodies against NPC proteins resolved by 2-DE.Protein spots that exhibited selective reactivity with sera from NPC patients were identified by MS.As a result, a total of 13 proteins that induced autoantibodies in the most of NPC patients were identified.Among the identified proteins,CK19,EBP 1,and Rho-GDI-2 induced autoantibodies in more than 36.8%of NPC patients.
     To validate the findings of SERPA,occurrence of autoantibodies against the three proteins(CK19,EBP 1,and Rho-GDI-2) was detected by immunoprecipitation and Western blotting in additional 30 NPC patients, 23 other types of cancer patients and 20 healthy individuals.Results showed that frequency of autoantibodies against CK19,EBP1 and Rho-GDI-2 in NPC patients was significantly higher than that in other types of cancer patients and healthy individuals.The results not only validated the findings of SERPA,but also indicated that autoantibodies against these three proteins were specific in NPC patients.
     To explore the mechanisms for autoantibody development of the three proteins(CK19,EBP1,and Rho-GDI-2) in NPC,Western blotting and immunohistochemical staining were performed to determine the expression and localization of CK19,EBP1,and Rho-GDI-2 in NPC tissues and NNET.Upregulation of CK19 and EBP1,but not Rho-GDI-2 were observed in NPC as compared with NNET,and subcellular localization of the three proteins in NPC tissue was same as that in the normal tissue.The results indicated that overexpression of CK19 and EBP 1 may be one of the mechanisms for their autoantibody development in NPC,and a protein translational modification may be related to Rho-GDI-2 autoantibody development in NPC.
     To explore the value of autoantibodies against the four proteins (CK19,Rho-GDI-2,HSP70 and LAP3) for diagnosing NPC,we detect the serum levels of their autoantibodies in additional 36 NPC patients,20 other types of cancer patients and 20 healthy individuals by ELISA,and the sensitivity and specificity of individual autoantibody and four autoantibody combination for discriminating NPC patients and controls were analyzed.The results showed that the serum levels of four autoantibodies in NPC and other types of cancer patients were significantly higher than these in the healthy individuals.Using individual autoantibody as a judge marker for NPC patients,Rho-GDI-2 autoantibody had better sensitivity,and HSP70 autoantibody had the highest specificity.Using four autoantibody combination as a judge marker for NPC patients,the sensitivity was 41.7%(15/36),and the specificity was 95%(19/20).
     We conclude that(1)14-3-3σis frequently inactivated by promoter methylation in NPC,this aberrant methylation correlates with lymph node and distant metastasis,and 14-3-3σmay serve as the target molecule for treating NPC metastasis;(2) CK19,EBP1 and Rho-GDI-2 antigens and their autoantibodies may have utility in NPC screening,diagnosis and immunotherapy.
引文
[1]Wei WI,Sham JS.Nasopharyngeal carcinoma.Lancet,2005,365(9476):2041-2054
    [2]Lee AW,Poon YF,Foo W,et al.Retrospective analysis of 5037 patients with nasopharyngeal carcinoma treated during 1976-1985:overall survival and patterns of failure.Int J Radiat Oncol Biol Phys,1992,23:261-270
    [3]Feng,B.J.,W.Huang,Y.Y.Shugart,et al.Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4.Nature Genetics,2002,31(4):395-399
    [4]Xiong W,Zeng ZY,Xia JH,et al.A susceptibility locus at chromosome 3p21linked to familial nasopharyngeal carcinoma.Cancer Res,2004;64(6):1972-1974
    [5]Chen,Y.J.,J.Y.Ko,P.J.Chen,et al.Chromosomal aberrations in nasopharyngeal carcinoma analyzed by comparative genomic hybridization.Genes Chromosomes & Cancer,1999,25(2):169-175
    [6]Hui,A.B.Y.,K.W.Lo,P.M.L.Teo,et al.Genome wide detection of oncogene amplifications in nasopharyngeal carcinoma by array based comparative genomic hybridization.International Journal of Oncology,2002,20(3):467-473
    [7]Sriuranpong,V.,A.Mutirangura,J.W.Gillespie,et al.Global gene expression profile of nasopharyngeal carcinoma by laser capture microdissection and complementary DNA microarrays.Clinical Cancer Research,2004,10(15):4944-4958
    [8]King AD,Ahuja AT,Leung SF,et al.Neck node metastases from nasopharyngeal carcinoma:MR imaging of patterns of disease.Head Neck,2000,22:275-81
    [9]Raab-Traub N.Epstein-Barr virus in the pathogenesis of NPC.Semin Cancer Biol,2002,12:431-41
    [10]Jones P.A,Laird P.W.Cancer epigenetics comes of age.Nat Genet,1999,21(2):163-167
    [11]Jones PA.Epigenetics in carcinogenesis and cancer prevention.Ann N Y Acad Sci,2003,983:213-219
    [12]Herman JG,Baylin SB.Gene silencing in cancer in association with promoter hypermethylation.N Engl J Med,2003,349(21):2042-2054
    [13]Costello JF,Fruhwald MC,Smiraglia DJ,et al.Aberrant CpG-island methylation has non-random and tumour-type-specific patterns.Nat Genet,2000,24(2): 132-138
    [14]Costello JF,Plass C.Methylation matters.J Med Genet,2001,38(5):285-303
    [15]Jones PA,Takai D.The role of DNA methylation in mammalian epigenetics.Science,2001,293(5532):1068-1070
    [16]Antequera F,Bird A.Number of CpG islands and genes in human and mouse.Proc Natl Acad Sci USA,1993,90(24):11995-11999
    [17]Karpf AR,Jones DA.Reactivating the expression of methylation silenced genes in human cancer.Oncogene,2002,21(35):5496-5503
    [18]Baylin SB,Herman JG,Graff JR,et al.Alternations in DNA methylation:a fundamental aspect of neoplasia.Adv Cancer Res,1988,72:141-196
    [19]Nephew KP,Huang TH.Epigenetic gene silencing in cancer initiation and progression.Cancer Letter,2003,190(2):125-133
    [20]Merlo A,Herman JG,Mao L,et al.5'CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers.Nat Med,1995,1(7):686-692
    [21]Hsu HS,Wen CK,Tang YA,et al.Promoter hypermethylation is the predominant mechanism in hMLH1 and hMSH2 deregulation and is a poor prognostic factor in nonsmoking lung cancer.Clin Cancer Res,2005,11(15):5410-5416
    [22]Schildhaus HU,Krockel I,Lippert H,et al.Promoter hypermethylation of p16INK4a,E-cadherin,O6-MGMT,DAPK and FHIT in adenocarcinomas of the esophagus,esophagogastric junction and proximal stomach.Int J Oncol,2005,26(6):1493-1500
    [23]Laird PW,Jackson-Grusby L,Fazeli A,et al.Suppression of intestinal neoplasia by DNA hypomethylation.Cell,1995,81(2):197-205
    [24]Jeronimo C,Henrique R,Hoque MO,et al.Quantitative RARbeta2 hyperme-thylation:a promising prostate cancer marker.Clin Cancer Res,2004,10(12 Pt 1):4010-4014
    [25]Belinsky SA,Nikula KJ,Palmisano WA,et al.Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis.Proc Natl Acad Sci U S A,1998,95(20):11891-11896
    [26]Balch C,Montgomery JS,Paik HI,et al.New anti-cancer strategies:epigenetic therapies and biomarkers.Front Biosci,2005,10:1897-1931
    [27]Kwong J,Lo KW,To KF,et al.Promoter hypermethylation of multiple gene in nasopharyngeal carcinoma.Clin Cancer Res,2002,8(1):131-137
    [28]Lo KW,Kwong J,Hui AB,et al.High frequency of promoter hypermethylation of RASSF 1A in nasopharyngeal carcinoma.Cancer Res,2001,61(10):3877-3881
    [29]Zhou L,Jiang W,Ren C,et al.Frequent hypermethylation of RASSF1A and TSLC1,and high viral load of Epstein-Barr virus DNA in nasopharyngeal carcinoma and matched tumor-adjacent tissues.Neoplasia,2005,7(9):809-815
    [30]Cheng AL,Huang WG,Chen ZC,et al.Identification of novel nasopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis.Clin Cancer Res.2008,14(2):435-445
    [31]Mhawech P.14-3-3 proteins--an update.Cell Res,2005,15(4):228-236
    [32]Laronga C,Yang HY,Neal C,et al.Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression.J Biol Chem,2000,275(30):23106-23112
    [33]Chan TA,Hermeking H,Lengauer C,et al.14-3-3σ is required to prevent mitotic catastrophe after DNA damage.Nature,1999,401(6753):616-620
    [34]Hermeking H.The 14-3-3 cancer connection.Nat Rev Cancer,2003,3(12):931-943
    [35]Yang HY,Wen YY,Chen CH,et al.14-3-3 sigma positively regulates p53 and suppresses tumor growth.Mol Cell Biol,2003,23(20):7096-7107
    [36]Lee MH,Lozano G.Regulation of the p53-MDM2 pathway by 14-3-3 sigma and other proteins.Semin Cancer Biol,2006,16(3):225-234
    [37]Simooka H,Oyama T,Sano T,Horiguchi J,Nakajima T.Immunohistochemical analysis of 14-3-3 sigma and related proteins in hyperplastic and neoplastic breast lesions,with particular reference to early carcinogenesis.Pathol Int,2004,54(8):595-602
    [38]Tanaka K,Hatada T,Kobayashi M,Mohri Y,Tonouchi H,Miki C,Nobori T,Kusunoki M.The clinical implication of 14-3-3 sigma expression in primary gastrointestinal malignancy.Int J Oncol 2004,25(6):1591-1597
    [39]Yang H,Zhao R,Lee MH.14-3-3 sigma,a p53 regulator,suppresses tumor growth of nasopharyngeal carcinoma.Mol Cancer Ther 2006,5(2):253-260
    [40]Gronbaek K,Hother C,Jones PA.Epigenetic changes in cancer.APMIS.2007,115(10):1039-1159
    [41]Goh L,Murphy SK,Muhkerjee S,et al.Genomic sweeping for hypermethylated genes.Bioinformatics,2007,23(3):281-288
    [42]Santini V,Kantarjian HM,Issa JP.Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications.Ann Intern Med,2001,134(7):573-586
    [43]曹卡加,范乔阳,刘奕龙,等.广州市2000-2002年恶性肿瘤的发病率与死亡率分析.癌症,2008;27(3):225-230
    [44]Kamer S,Esassolak M,Yalman D,et al.Mature results of neoadjuvant chemotherapy followed by radiotherapy in nasopharyngeal cancer:is it really old fashioned? Med Oncol.2008,25(1):93-99
    [45]Chua D,Wei WI,Sham JS,et al.Capecitabine monotherapy for recurrent and metastatic nasopharyngeal cancer.Jpn J Clin Oncol.2008,38(4):244-249
    [46]Mostafa E,Nasar MN,Rabie NA,et al.Induction chemotherapy with paclitaxel and cisplatin,followed by concomitant cisplatin and radiotherapy for the treatment of locally advanced nasopharyngeal carcinoma.J Egypt Natl Canc Inst.2006,18(4):348-356
    [47]谭双香,肖志强.DNA甲基化与NPC.国际肿瘤学杂志.2007,34(12):904-907
    [48]Lo KW,Tsang YS,Kwong J,et al.Promoter hypermethylation of the EDNRB gene in nasopharyngeal carcinoma.Int J Cancer.2002,98(5):651-655
    [49]张松,孔维佳,王彦君,等.5-杂氮-2'-脱氧胞苷对人NPC裸鼠移植瘤的抑制作用.癌症.2005,24(10):1201-1205
    [50]Kong WJ,Zhang S,Guo CK,et al.Effect of methylation-associated silencing of the death-associated protein kinase gene on nasopharyngeal carcinoma.Anticancer Drugs.2006,17(3):251-259
    [51]Yi ZC,Wang H,Zhang GY,et al.Downregulation of connexin 43 in naso-pharyngeal carcinoma cells is related to promoter methylation.Oral Oncol.2007,43(9):898-904
    [52]Tao Q,Chan AT.Nasopharyngeal carcinoma:molecular pathogenesis and therapeutic developments.Expert Rev Mol Med.2007,9(12):1-24
    [53]Mackintosh C.Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes.Biochem J.2004,381(Pt2):329-342
    [54]Leffers H,Madsen P,Rasmussen HH,et al.Molecular cloning and expression of the transformation sensitive epithelial marker stratifin.A member of a protein family that has been involved in the protein kinase C signaling pathway.J Mol Biol.1993,23(4):982-998
    [55]Hermeking H,Lengauer C,Polyak K,et al.14-3-3σ is a p53-regulated inhibitor of G2/M progression.Mol Cell.1997,1(1):3-11
    [56]Akahira J,Sugihashi Y,Suzuki T,et al.Decreased expression of 14-3-3 sigma is associated with advanced disease in human epithelial ovarian cancer:its correlation with aberrant DNA methylation.Clin Cancer Res.2004,10:2687-2693
    [57]Suzuki H,Itoh F,Toyota M,et al.Inactivation of the 14-3-3 sigma gene is associated with 5'CpG island hypermethylation in human cancers.Cancer Res.2000,60:4353-4357
    [58]Ferguson AT,Evron E,Umbricht CB,et al.High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer.Proc Natl Acad Sci U S A.2000,97:6049-6054
    [59]Osada H,Tatematsu Y,Yatabe Y,et al.Frequent and histological type-specific inactivation of 14-3-3sigma in human lung cancers.Oncogene.2002,21:2418-2424
    [60]Dellambra E,Golisano O,Bondanza S,et al.Downregulation of 14-3-3sigma prevents clonal evolution and leads to immortalization of primary human keratinocytes.J Cell Biol.2000,149:1117-1130
    [61]Laronga C,Yang HY,Neal C,et al.Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression.J Biol Chem.2000,275:23106-23112
    [62]Sun Y,Hegamyer G,Cheng YJ,et al.An infrequent point mutation of the p53gene in human nasopharyngeal carcinoma.Proc Natl Acad Sci USA.1992,89:6516-6520
    [63]Hermeking H,Lengauer C,Polyak K,et al.14-3-3 sigma is a p53-regulated inhibitor of G2/M progression.Mol Cell.1997,1:3-11
    [64]Ho JH.An epidemiologic and clinical study of nasopharyngeal carcinoma.Int J Radiat Oncol Biol Phys.1978,4:182-198
    [65]Huang CJ,Leung SW,Lian SL,et al.Patterns of distant metastases in nasopharyngeal carcinoma.Kaohsiung J Med Sci.1996,12:229-234
    [66]Fidler IJ.The pathogenesis of cancer metastasis:the‘seed and soil'hypothesis revisited.Nat Rev Cancer,2003,3(6):453-458
    [67]Khong HT,Restifo NP.Natural selection of tumor variants in the generation of “tumor escape”phenotypes.Nat Immunol,2002,3(11):999-1005
    [68]Yang XY,Ren CP,Wang L,et al.Identification of differentially expressed genes in metastatic and non-metastatic nasopharyngeal carcinoma cells by suppression subtractive hybridization.Cell Oncol.2005,27:215-223
    [1]King AD,Ahuja AT,Leung SF,et al.Neck node metastases from nasopharyngeal carcinoma:MR imaging of patterns of disease.Head Neck,2000,22:275-81
    [2]Lee AW,Pooh YF,Foo W,et al.Retrospective analysis of 5037 patients with nasopharyngeal carcinoma treated during 1976-1985:overall survival and patterns of failure.Int J Radiat Oncol Biol Phys,1992,23:261-70
    [3]Raab-Traub N.Epstein-Barr virus in the pathogenesis of NPC.Semin Cancer Biol,2002,12:431-41
    [4]姚开泰.从死因回顾调查资料看湖南省鼻咽癌流行病学的一些特点并探索其发病机理.湖南医科大学学报,1982;7(2):10-6
    [5]姚开泰.鼻咽癌病因发病学之迷正被解开.第六届全国鼻咽癌学术会议论文摘要汇编.广州,1992;11
    [6]Feng BJ,Huang W,Shugart YY,et al.Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4.Nat Genet,2002;31(4):395-9
    [7]Xiong W,Zeng ZY,Xia JH,et al.A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma.Cancer Res,2004;64(6):1972-4
    [8]曾益新.鼻咽癌分子遗传学研究成果简介冲国科学基金,2006,20(4):233-35
    [9]李桂源,刘华英,周鸣,等.鼻咽癌癌变的分子机理.生物化学与生物物理进展,2006;33(10):922-31
    [10]宗永生,钟碧玲,梁英杰,等.鼻咽癌变过程生物学特性研究的进展。癌症,2002;21(6):686-95
    [11]Chan KH,Gu YL,Ng F,et al.EBV specific antibody-based and DNA-based assays in serologic diagnosis Of nasopharyngeal carcinoma,Int J Cancer,2003;105,706-9
    [12]Lo YM,Chan LY,Lo KW,et al.Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma.Cancer Res,1999;59,1188-91
    [13]李宇红,邵建永,冯惠霞,等.鼻咽癌患者血浆游离EBV/DNA的定量检测及其临床意义.中国肿瘤临床,2004;31(8):421-4
    [14]Cho WC.Nasopharyngeal carcinoma:molecular biomarker discovery and progress.Molecular Cancer,2007;6:1
    [15]Shih-Hsin Wu L.Construction of evolutionary tree models for nasopharyngeal carcinoma using comparative genomic hybridization data.Cancer Genet Cytogenet,2006;168:105-8
    [16]Tiwawech D,Srivatanakul P,Karalak A,et al.Cytochrome P450 2A6 polymorphism in nasopharyngeal carcinoma.Cancer Lett,2005;241:135-41
    [17]姜桔红,李智,苏广,等.中国广东人CYP2F1基因遗传多态性研究。中华医学遗传学杂志,2006;23(4)383-7
    [18]Cao Y,Miao XP,Huang MY,et al.Polymorphisms of XRCC1 genes and risk of nasopharyngeal carcinoma in the Cantonese population.BMC Cancer,2006;6:167
    [19]Stockert E,Jager E,Chen YT,et al.A survey of the humoral immune response of cancer patients to a panel of human tumor antigens.J Exp Med,1998;187(8):1349-54
    [20]Scanlan MJ,Welt S,Gordon CM,et al.Cancer-related serological recognition of human colon cancer:identification of potential diagnostic and immunotherapeutic targets.Cancer Res,2002;62(14):4041-7
    [21]Canevari S,Pupa SM,Menard S.1975-1995 revised anti-cancer serological response:biological significance and clinical implications.Ann Oncol,1996;7,227-32
    [22]Malyankar UM.Tumor-associated antigens and biomarkers in cancer and immune therapy.Int Rev Immunol,2007;26(3-4):223-7
    [23]Caron M,Choquet-Kastylevsky G,Joubert-Caron R.Cancer immunomics using autoantibody signatures for biomarker discovery.Mol Cell Proteomics,2007;6(7):1115-22
    [24]Ichiki Y,Takenoyama M,Mizukami M,et al.Simultaneous cellular and humoral immune response against mutated p53 in a patient with lung cancer.J Immunol,2004;172(8):4844-50
    [25]Brichory F,Beer D,Hanash S,et al.Proteomics-based identification of protein gene product 9.5 as a tumor antigen that induces a humoral immune response in lung cancer.Cancer Research,2001;61(21):7908-12
    [26]Wulfkuhle JD,Liotta LA,Petricoin EF.Proteomic applications for the early detection of cancer.Nat Rev Cancer,2003;3(4):267-75
    [27]Cho WC,Cheng CH.Oncoproteomics:current trends and future perspectives.Expert Rev Proteomics,2007;4(3):401-10
    [28]Omenn GS.Advancement of biomarker discovery and validation through the HUPO plasma proteome project.Dis Markers,2004;20(3):131-4
    [29]Wu CC,Chien KY,Tsang NM,et al.Cancer cell-secreted proteomes as a basis for searching potential tumour markers:nasopharyngeal carcinoma as a model.Proteomics,2005;5:3173-82
    [30] Cho WC, Yip TT, Yip C, et.al. Identification of serum amyloid A protein as a potentially useful biomarker to monitor relapse of nasopharyngeal cancer by serum proteomic profiling. Clin Cancer Res, 2004; 10:43-52
    [31] Xiao ZQ, Chen Y, Yi B, et al. Identification of nasopharyngeal carcinoma antigens that induce humoral immune response by proteomic analysis. Proteomics Clin Appl, 2007; 1(7): 688-98
    [32] Shiku H, Takahashi T, Resnick LA, et al. Cell surface antigens of human malignant melanoma. Ⅲ. Recognition of autoantibodies with unusual characteristics. J Exp Med, 1977; 145,784-9
    [33] Old LJ and Chen YT. New paths in human cancer serology. J Exp Med, 1998; 187,1163-7
    [34] Sahin U, Tureci O, Pfreundschuh, M. Serological identification of human tumor antigens. Curr Opin Immunol, 1997; 9, 709-16
    [35] Scanlan MJ, Chen YT, Williamson B, et al. Characterization of human colon cancer antigens recognized by autologous antibodies. Int J Cancer, 1998; 76: 652-8
    [36] Yu KH, Rustgi AK, Blair IA. Characterization of proteins in human pancreatic cancer serum using differential gel electrophoresis and tandem mass spectrometry. J Proteome Res, 2005; 4(5): 1742-51
    [37] Klade CS, Voss T, Krystek E, et al. Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics, 2001; 1: 890-8
    [38] Wang X, Yu J, Sreekumar A, et al. Autoantibody signatures in prostate cancer. N Engl J Med, 2005;353:1224-35
    [39] Le Naour F, Misek DE, Krause MC, et al. Proteomics-based identification of RS/DJ-1 as a novel circulating tumor antigen in breast cancer. Clin Cancer Res, 2001; 7(11):3328-35
    [40] Prasannan L, Misek DE, Hinderer R, et al.Identification of beta-tubulin isoforms as tumor antigens in neuroblastoma. Clin Cancer Res, 2000; 6(10):3949-56
    [41] Le Naour F, Brichory F, Misek DE, et al. A distinct repertoire of autoantibodies in hepatocellular carcinoma identified by proteomic analysis. Mol Cell Proteomics, 2002; 1(3):197-203
    [42] Cui JW, Li WH, Wang J, et al. Proteomics-based identification of human acute leukemia antigens that induce humoral immune response. Mol Cell Proteomics, 2005; 4(11): 1718-24
    [43] Axiotis CA, Monteagudo C, Merino MJ, et al. Immunohistochemical detection of P-glycoprotein in endometrial adenocarcinoma. Am J Pathol, 1991, 138(4):799- 806
    [44] Fang Y,Zhiqiang Xiao,Xiuzhi Zhang,et al.Identification of Tumor Antigens in Human Lung Squamous Carcinoma by Serological Proteome Analysis.Journal of Proteome Research,2007,6(2):751-758
    [45] Xiang Y, Sekine T, Nakamura H, et al. Proteomic Surveillance of autoimmunity in Osteoarthritis: identification of triosephosphate isomerase as an autoantigen in patients with osteoarthritis. Arthritis Rheum, 2004, 50(5): 1511-1521
    [46] Li C, Xiao Z, Zhang X, et al. Proteome analysis of human lung squamous carcinoma. Proteomics, 2006, 6(2), 547-558
    [47] Udono H, Srivastava PK. Comparision of tumor specific immunogenicities of stress induced proteins gp96, hsp90 and hsp70. J Immunol,1994,152:5398-5403
    [48] Thompson EW, Paik S, Brunner N, et al. Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J. Cell. Physiol, 1992,150(3):534-544
    [49] Barak, V., Goike, H., Panaretakis, K.W., Einarsson, R., Clin. Biochem.2004,37,529-540
    [50] Chu YW, Runyan RB, Oshima RG, and Hendrix MJ. Expression of complete keratin filaments in mouse L cells augments cell migration and invasion. Proc. Natl. Acad. Sci. U. S. A, 1993,90(9):4261-4265
    [51] Eyken van P, Sciot R, Callea F, et al. A cytokeratin-immunohistological study of hepatocellular carcinoma. Hum. Pathol, 1990,21(3): 302-308
    [52] Green JA, Carthew P, Heuillet E, et al. Cytokeratin expression during AFB1- induced carcinogenesis. Carcinogenesis, 1990,11 (7): 1175-1182
    [53] Ding SJ, Li Y,Jiang MR. et al. From Proteomic Analysis to Clinical Significance. Mol Cell Proteomics, 2004, 3(1): 73-81
    [54] Gunther A, Kinjo M, Winter H, et al. Differential expression of intermediate- filament proteins in murine sarcoma 180 ascites or solid tumor. Cancer Res, 1984,44(6): 2590-2594
    [55] Ho S,Leung WT,Yuen J,et al.Serum levels of CYFRA 21-1 in nasopharyngeal carcinoma and its possible role in monitoring of therapy. Eur. J. Cancer B Oral. Oncol. 1996, 32B(6):377-380
    [56] Nakata B,Ogawa Y,Ishikawa T,et al. Serum CYFRA 21-1 is one of the most reliable tumor markers for breast carcinoma. Cancer 2000, 89(6): 1285-1290
    [57] Gadducci A,Ferdeghini M,Cosio S,et al. The clinical relevance of serum CYFRA 21-1 assay in patients with ovarian cancer. Int. J. Gynecol. Cancer 2001,11(4):277-282
    [58] Pujol JL,Grenier J,Daures JP, et al. Serum fragment of cytokeratin subunit 19 measured by CYFRA 21-1 immunoradiometric assay as a marker of lung cancer. Cancer Res. 1993, 53(1):61-66
    [59] Sanchez-Carbayo M,Espasa A,Chinchilla . V,et al.New electrochemiluminescent immunoassay for the determination of CYFRA 21-1:analytical evaluation and clinical diagnostic performance in urine samples of patients with bladder cancer.Clin.Chem.1999,45(11):1944-1953
    [60]Yoo JY,Wang XW,Rishi AK,et al.Interaction of the PA2G4(EBP1) protein with ErbB-3 and regulation of this binding by heregulin.Br.J.Cancer 2000,82,(3):683-690
    [61]Zhang Y,Woodford N,Xia X,et al.Repression of E2F1-mediated transcription by the ErbB3binding protein Ebp1 involves histone Deacetylases.Nucleic Acids Res,2003,31:2168-2177
    [62]余优成,张志愿,陈万涛,等.ErbB-3结合蛋白-ebp1对ACC-M细胞生长的影响.中国临床医学,2005,12:324-326
    [63]Zhang Y,Wang XW,Jelovac D,et al.The ErbB3-binding protein Ebp1 suppresses androgen receptor-mediated gene transcription and tumorigenesis of prostate cancer cells.Proc Natl Acad Sci U S A,2005,102:9890-9895
    [64]Liu Z,Ahn JY,Liu X,et al.Ebpl isoforms distinctively regulate cell survival and differentiation.Proc.Natl Acad Sci.USA 2006,103(29):10917-10922
    [65]Olofsson B.Rho guanine dissociation inhibitors:pivotal molecules in cellular signalling.Cell Signal.1999,11(8):545-554
    [66]Jiang WG.,Watkins G,Lane J,et al.Prognostic value of rho GTPases and rho guanine nucleotide dissociation inhibitors in human breast cancers.Clin.Cancer Res.2003,9(17):6432-6440
    [67]Seraj MJ,Harding MA,Gildea JJ,et al.The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines.Clin.Exp.Metastasis 2001,18(6):519-525
    [68]Tapper J,Kettunen E,El-Rifai W,et al.Changes in gene expression during progression of ovarian carcinoma.Cancer Genet.Cytogenet.2001,128(1):1-6
    [69]Cui JW,Wang J,He K,et al.Proteomic analysis of human acute leukemia cells:insight into their classification.Clin.Cancer Res.2004,10(20):6887-6896
    [70]Sinha P,Kohl S,Fischer J,etal.Identification of novel proteins associated with the development of chemoresistance in malignant melanoma using two-dimensional electrophoresis.Electrophoresis 2000,21(14):3048-3057
    [71]Goto T,Takano M,Sakamoto M,etal.Gene expression profiles with cDNA microarray reveal RhoGDI as a predictive marker for paclitaxel resistance in ovarian cancers.Oncol.Rep.2006,15(5):1265-1271
    [72]Zhang B,Zhang Y,Dagher MC,etal.Rho GDP dissociation inhibitor protects cancer cells against drug-induced apoptosis.Cancer Res.2005,65(14):6054-6062
    [73]王超.亮氨酸氨基肽酶在肝病及癌症诊断中的应用.西南国防医药,2004,14(6):594-525
    [74]张延泽,杨文东,刘民.尿亮氨酸氨基肽酶在秘尿系感染的鉴别价值.江西医学检验,2004,22(4):339-340
    [75]张荧,张代民.尿亮氨酸氨基肽酶对糖尿病和高血压病早期肾损害的诊断价值.实用医药杂志,2004,21(5):417-418
    [76]Suzuki Y,Shibata K,Kikkawa F,et al.Possible Role of Placental Leucine Aminopeptidase in the Antiproliferative Effect of Oxytocin in Human Endome-trial Adenocarcinoma.Clin Cancer Res,2003,9(4):1528-34
    [77]Shibata K,Kikkawa F,Kondo C,et al.Placental leucine aminopeptidase(P-LAP) expression is associated with chemosensitivity in human endometrial carcinoma.Gynecol Oncol,2004,95(2):307-13
    [78]Kazeto H,Nomura S,Ito N,et al.Expression of adipocyte-derived leucine aminopeptidase in endometrial cancer.Association with tumor grade and CA-125.Tumour Biol,2003,24:203-208
    [79]Wang S,Nath N,Adlam M,et al.Prohibitin,a potential tumor suppressor,interacts with RB and regulates E2F function.Oncogene,1999,18(23):3501-3510
    [80]Fusaro G,Dasgupta P,Rastogi S,et al.Prohibitin Induces the Transcrptional Activity of p53and Is Exported from the Nucleus upon Apoptotic Signaling.J Biol Chem,2003,278(48):47853-47861
    [81]Naour FL,Brichory F,Beretta L,etal.Identification of tumor-associated antigens using proteomics.Technol.Cancer Res.Treat.2002,1(4):257-262
    [82]Levine JS,Koh JS.The role of apoptosis in autoimmunity:immunogen,antigen,and accelerant.Semin.Nephrol.1999,19(1):34-47
    [83]Kwon KB,Park EK,Ryu DG,etal.D4-GDI is cleaved by caspase-3 during daunorubicin-induced apoptosis in HL-60 cells.Exp.Mol.Med.,2002,34(1):32-37
    [84]Zhang Z,Bast Jr RC,Yu Y,et al.Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer.Cancer Res,2004,64(16):5882-5890.
    1.Moore BW,Perez,V.J.Physiological and Biochemical Aspects of Nervous Integration.Prentice Hal.1967,343-359
    2.Fu H,Subramanian RR,Masters SC.14-3-3 proteins:structure,function,regulation.Ann Rev Pharmacol Toxicol.2000;40:617-647
    3.Rubio MP,Geraghty KM,Wong BH,et al.14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism,proliferation,and trafficking.Biochem J.2004,379:395-408
    4.Benzinger A,Muster N,Koch HB,et al.Targeted proteomic analysis of 14-3-3,a p53 effector commonly silenced in cancer.Mol Cell Proteomics.2005,4(6):785-795
    5.Jin J,Smith D,Stark C,et al.Proteomic,functional,and domainbased analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization.Current Biol.2004,14:1436-1450
    6.Jackson-Constan D,Akita M,Keegstra K.Molecular chaperones involved in chloroplast protein import.Biochim Biophys Acta.2001,1541(1-2):102-113
    7.May T,Soll J.14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants.Plant Cell.2000,12(1):53-64
    8.Aducci P,Camoni L,Marra M,et al.From cytosol to organelles:14-3-3 proteins as multifunctional regulators of plant cell.IUBMB Life.2002,53(1):49-55
    9.Muslin AJ,Tanner JW,Allen PM,et al.Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine.Cell.1996,84:889-97
    10.Aitken,A.14-3-3 proteins:a historic overview.Semin.Cancer Biol.2006,16,162-172
    11.Yaffe MB,Rittinger K,Volinia S,et al.The structural basis for 14-3-3:phosphopeptide binding specificity.Cell.1997,91:961-971
    12.Urschel S,Bassermann F,Bai RY,et al.Phosphorylation of Grb10 regulates its interaction with 14-3-3.J Biol Chem.2005,280(17):16987-93
    13.Gardino,A.K.et al.structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes:a comparison of the X-ray crystal structures of all human 14-3-3 isoforms.Semin.Cancer Biol.2006,16:173-182
    14.Yang X,Lee WH,Sobott F,et al.Structural basis for protein-protein interactions in the 14-3-3 protein family.Proc Natl Acad Sci.2006,103(46):17237-17242
    15.Tzivion,G.et al.14-3-3 proteins as potential oncogenes.Semin.Cancer Biol.2006,16:203-213
    16.Avruch J,Khokhlatchev A,Kyriakis JM,et al.Ras activation of the Raf kinase:tyrosine kinase recruitment of the MAP kinase cascade.Recent Prog Horm Res.2001,56:127-55
    17. Durnaz N, Marais R. Protein kinase A blocks Raf-1 activity by stimulating 14-3-3 binding and blocking Raf-1 interaction with Ras. J Biol Chem .2003,278: 29819-23
    18. Yaffe MB. How do 14-3-3 proteins work?-Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS letters.2002,513:53-57
    19. Rushworth LK, Hindley AD, O'Neill E, et al. Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol. 2006,26(2):2262-2272
    20. Garnett MJ, Rana S, Paterson H, et al. Wild-type and mutant B-RAF activate CRAF through distinct mechanisms involving heterodimerization. Mol Cell.2005,20(6):963-969
    21. Wan PT, Garnett MJ, Roe SM,et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell.2004, 116(6):855-867
    22. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004,5(11):875-885
    23. Sabatini,DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer .2006,6(9):729-734
    24. Guertin DA,Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell.2007,12: 9-22
    25. Bhaskar PT,Hay N. The two TORCs and Akt. Dev. Cell.2007,12:487-502
    26. Manning BD,Cantley LC. (2003) Rheb fills a GAP between TSC and TOR Trends Biochem Sci. 28, 573-576
    27. Crino PB, Henske EP. New developments in the neurobiology of the tuberous sclerosis complex. Neurology 1999; 53:1384-1390
    28. Hengstschlager M, Rosner M, Fountoulakis M, et al. Biochem Biophys Res Commun 2003; 312:676-3
    29. Huang J,Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J. 2008,412,179-190
    30. Li Y, Inoki K, Yeung R, Guan KL. Regulation of TSC2 by 14-3-3 binding. J Biol Chem.2002,277(47):44593-44596
    31. Nellist M, Goedbloed MA, de Winter C,et al. Identification and characterization of the interaction between tuberin and 14-3-3z. J Biol Chem. 2002,277(47):39417-39424
    32. Shumway SD, Li Y, Xiong Y.14-3-3β binds to and negatively regulates the tuberous sclerosis complex 2 (TSC2) tumor suppressor gene product, tuberin. J Biol Chem. 2003, 278(16):2089-2092
    33. Li Y, Inoki K, Vacratsis P, et al. The p38 and MK2 kinase cascade phosphorylates tuberin, the tuberous sclerosis 2 gene product, and enhances its interaction with 14-3-3. J Biol Chem. 2003,278(16): 13663-13671
    34. Cai SL, Tee AR, Short JD, et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol. 2006,173(2): 279-289
    35. DeYoung MP, Horak P, Sofer A, et al. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 2008, 22(2):239-251
    36. Cheng M, Olivier P, Diehl JA, et al. The p21(Cip1) and p27 (Kip1) CDK "inhibitors" are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 1999,18: 1571-1583
    37. Slingerland J, Pagano M. Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol.2000,183:10-17
    38. Sekimoto T, Fukumotot M, Yoneda Y. 14-3-3 suppresses the nuclear localization of threonine 157-phosphorylated p27kip1. EMBO J. 2004,23:1934-1942
    39. Margolis SS, Korbluth S. When the checkpoints have gone. Insights into Cdc25 functional activation. Cell Cycle .2004,3:425-428
    40. Forrest A, Gabrielli B. Cdc25B activity is regulated by 14-3-3. Oncogene. 2001, 20:4393-4401
    41. Dalai SN, Yaffe MB, DeCaprio JA. 14-3-3 family members act coordinately to regulate mitotic progression. Cell Cycle 2004; 3: 672-677
    42. Melo J, Toczyski. A unified view of the DNA-damage checkpoint. Curr Opin Cell Biol. 2002,14:237-245
    43. Uchida S, Kuma A, Ohtsubo M, et al. Binding of 14-3-3 .but not 14-3-3 . controls the cytoplasmic localization of CDC25B: binding site preferences of 14-3-3 subtypes and the subcellular localization of CDC25B. J Cell Science. 2004,117:3011-3020
    44. Lee J, Kumagai A, Dunphy WG. Positive regulation of Weel by Chkl and 14-3-3 proteins. Mol Biol Cell. 2001,12:551-563
    45. Porter GW, Khuri FR, Fu H. Dynamic 14-3-3/client protein interactions integrate survival and apoptotic pathways. Semin Cancer Biol. 2006,16(3): 193-202
    46. Yuan Z, Becker EB, Merlo P ,et al. Activation of FOXO1 by Cdkl in cycling cells and postmitotic neurons. Science.2008,319(5870):1665-1668
    47. Donovan N, Becker EB, Konishi Y, et al. JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem. 2002, 277(43):40944-40949
    48. Sunayama J, Tsuruta F, Masuyama N,et al. JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J Cell Biol. 2005,170(2):295-304
    49. Tsuruta F, Sunayama J, Mori Y,et al. JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J. 2004,23(8): 1889-1899
    50. Yoshida K, Yamaguchi T, Natsume T, et al. JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Ab1 in the apoptotic response to DNA damage. Nat Cell Biol. 2005, 7(3):278-285
    51. Cary LA, Han DC, Guan.JL. Integrin-mediated signal transduction pathways. Histol Histopathol. 1999,14:1001-1009
    52. Han DC, Shen TL, Miao H,et al. EphB1 associates with Grb7 and regulates cell migration. J Biol Chem. 2002,277: 45655-45661
    53. Rodriguez LG,Guan JL. 14-3-3 regulation of cell spreading and migration requires a functional amphipathic groove. J cell Physiol.2005,202:285-294
    54. Honda H, Nakamoto T, Sakai R, et al. p130 (Cas), an assembling molecule of actin filaments, promotes cell movement, cell migration, and cell spreading in fibroblasts. Biochem Biophys Res Commun. 1999,262:25-30
    55. Tombes RM, Faison MO, Turbeville JM. Organization and evolution of multifunctional Ca2+/CaM-dependent protein kinase genes. Gene. 2003,322:17-31
    56. Davare MA, Saneyoshi T, Guire ES, et al. Inhibition of Calcium/calmodulin-dependent protein kinase kinase by protein 14-3-3. J Biol Chem. 2004,279:52191-52199
    57. Wilker EW, Grant RA, Artim SC, et al. A structural basis for 14-3-3σ functional specificity. J Biol Chem. 2005,280(19):18891-18898
    58. Hermeking H, Lengauer C, Polyak K, et al. 14-3-3σ is a p53-regulated inhibitor of G2/M progression. Mol Cell.1997,1(1):3-11
    59.Aprelikova O,Pace AJ,Fang B,et al.BRCA1 is a selective co-activator of 14-3-3s gene transcription in mouse embryonic stem cells.J Biol Chem.2001,276(28):25647-25650
    60.Chan TA,Hermeking H,Lengauer C,et al.14-3-3σ is required to prevent mitotic catastrophe after DNA damage.Nature.1999,401(6753):616-620
    61.Laronga C,Yang HY,Neal C,et al.Association of the cyclin-dependent kinases and 14-3-3σnegatively regulates cell cycle progression.J Biol Chem.2000,275(30):23106-23112
    62.Lodygin D,Hermeking H.Epigenetic silencing of 14-3-3σin cancer.Semin Cancer Biol.2006,16:214-224
    63.Wilker EW,van Vugt MA,Artim SA,et al.14-3-3σcontrols mitotic translation to facilitate cytokinesis.Nature.2007,446(7133):329-332
    64.Clevers H.Wnt/b-catenin signaling in development and disease.Cell.2006,127:469-480
    65.Gavert N,Ben-Ze'ev,A.b-catenin signaling in biological control and cancer.J.Cell.Biochem.2007,102(4):820-828
    66.Polakis P.The many ways of Wnt in cancer.Curr Opin Genet Dev.2007,17:45-51
    67.Takemaru K,Yamaguchi S,Lee YS,et al.Chibby,a nuclear b-catenin-associated antagonist of the Wnt/Wingless pathway.Nature.2003,422(6934):905-909
    68.Li FQ,Mofunanya A,Harris K,et al.Chibby cooperates with 14-3-3 to regulate bcatenin subcellular distribution and signaling activity.J Cell Biol.2008,181(7):1141-1154
    69.Niemantsverdriet M,Wagner K,Visser M,et al.Cellular functions of 14-3-3z in apoptosis and cell adhesion emphasize its oncogenic character.Oncogene.2008,27(9):1315-1319
    70.Arora S,Matta A,Shukla NK,et al.Identification of differentially expressed genes in oral squamous cell carcinoma.Mol Carcinog.2005,42(2):97-108
    71.Jang JS,Cho HY,Lee YJ,et al.The differential proteome profile of stomach cancer:identification of the biomarker candidates.Oncol Res.2004,14(10):491-499
    72.Ghadimi BM,Grade M,Liersch T,et al.Gain of chromosome 8q23-24 is a predictive marker for lymph node positivity in colorectal cancer.Clin Cancer Res.2003,9(5):1808-1814
    73. Tada K, Oka M, Tangoku A, et al. Gains of 8q23-qter and 20q and loss of 11q22-qter in esophageal squamous cell carcinoma associated with lymph node metastasis. Cancer.2000,88(2):268-273
    74. Nakajima T, Shimooka H, Weixa P, et al. Immunohistochemical demonstration of 14-3-3 .protein in normal human tissues and lung cancers, and the preponderance of its strong expression in epithelial cells of squamous cell lineage.Pathol Int.2003, 53:353-360
    75. Lodygin D, Hermeking H. The role of epigenetic inactivation of 14-3-3 . in human cancer. Cell Res.2005,15:237-246
    76. Jun-ichi Akahira, Youko Sugihashi,Takashi Suzuki,etal.Decreased Expression of 14-3-3σ Is Associated with Advanced Disease in Human Epithelial Ovarian Cancer: Its Correlation with Aberrant DNA Methylation. Clinical Cancer Research.2004,10:2687-2693
    77. Gyeong Hoon Kang,Sun Lee, Woo Ho Kim.Epstein-Barr Virus-Positive Gastric Carcinoma Demonstrates Frequent Aberrant Methylation of Multiple Genes and Constitutes CpG Island Methylator Phenotype-Positive Gastric Carcinoma. American Journal of Pathology.2002,160:787-794
    78. Liang Cheng, Chong-Xian Pan,Jian-Ting Zhang,etal.Loss of 14-3-3σin Prostate Cancer and Its Precursors,Clinical Cancer Research.2004(10):3064-3068
    79. Lodygin D,Hermeking H. Epigenetic silencing of 14-3-3 s in cancer. Semin Cancer Biol .2006,16:214-224
    80. Jose MA,Moreira, Pavel Gromov, et al.Expression of the Tumor Suppressor Protein 14-3-3σ Is Down-regulated in Invasive Transitional Cell Carcinomas of the Urinary Bladder Undergoing Epithelial-to-Mesenchymal Transition. Molecular & Cellular Proteomics.2004,3:410-419
    81. Huiling Yang,YuYe Wen,Ruiying Zhao,et al.DNA Damage-Induced Protein 14-3-3σ Inhibits Protein Kinase B/Akt Activation and Suppresses Akt-Activated Cancer. Cancer Res.2006; 66(6): 3096-3105
    82. Milena G, Alexandra KB, Victoria H, et al.Epigenetic Inactivation of 14-3-3 a in Oral Carcinoma: Association with p16~(INK4a)Silencing and Human Papillomaviras Negativityl .Cancer Research.2002,62:2072-2076.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700