仿生固定化酶制备及其催化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
载体理性设计和制备是固定化酶领域的研究热点和前沿。本文借鉴酶在生物体中的存在形式,模仿细胞的多层结构,通过成分仿生、功能仿生和过程仿生设计和制备了核壳结构微囊,用于包埋β-D-葡萄糖醛酸苷酶(GUS),催化天然成分黄芩苷的高值转化。通过系统考察微囊液核、壳膜和杂化壳壁的结构和制备条件对GUS活力和稳定性的影响,尝试提出仿生固定化酶载体的制备原则。
     首先,模仿细胞液的成分和功能选用三种具有不同电性的多糖(羧甲基纤维素钠、甲基纤维素和羧甲基壳聚糖钠)作为仿生微囊的液核,经比较可知,与酶分子具有静电排斥作用的多糖更有利于酶构象、活力的维持和酶稳定性的提高;然后,模仿细胞膜的结构和功能构建仿生微囊的壳膜。在适宜的制备条件下,多孔的海藻酸钙壳膜可在保证底物和产物自由扩散的同时,有效防止酶的泄漏;模仿硅藻细胞壁的形成过程和功能,首次利用精蛋白调控微囊表面的仿生硅化,形成规整的精蛋白/氧化硅杂化壳壁,完全抑制了微囊的溶胀,有效提高了微囊的重复使用稳定性。此外,还首次研究了精蛋白在仿生硅化过程中的催化作用和模板作用,并对仿生硅化的机理进行了初步探讨。
     最终确定以羧甲基纤维素钠为仿生微囊的液核,制备出具有海藻酸/精蛋白壳膜和精蛋白/氧化硅杂化壳壁的微囊(APSi微囊),并用于包埋GUS,催化黄芩苷转化为黄芩素。其中羧甲基纤维素钠液核能够模仿GUS在生物体中的负电环境,提高GUS的活力和稳定性,尤其是在酸性条件下的pH稳定性和储存稳定性;海藻酸/精蛋白壳膜和精蛋白/氧化硅壳壁可实现GUS的高效包埋,防止GUS泄漏,同时提高了固定化GUS在碱性条件下的pH稳定性和重复使用稳定性。GUS在APSi微囊中的包埋率为69%,酶活力表现率为125%;在极端pH条件下,固定化GUS仍能维持85%以上的相对酶活力;储存26天后固定化GUS的相对酶活力仍高于90%;重复使用10次,固定化GUS的酶活力仍无明显下降;在37℃和pH7.0的条件下利用APSi微囊固定化的GUS水解黄芩苷,所得黄芩素的产率高达73%。
The key problem for enzyme immobilization is the rational design and preparation of carrier. In this study, a core-shell structured capsule was designed by mimicking the structure, component, function, and formation process of multi-layered cell.β-D-glucuronidase (GUS) encapsulated in this biomimetic capsule was utilized for the enzymatic conversion of baicalin to baicalein. The preparation conditions of capsule core, shell membrane and shell wall were systematically investigated, and their effects on the activity and stability of encapsulated GUS were extensively studied. Finally, the guideline for efficiently preparing core-shell structured capsule carrier was tentatively proposed.
     The cationic, neutral and anionic polysaccharides were separately acted as the liquid core of biomimetic capsule by mimicking the component and function of cell sap. It was found that the electrostatic repulsion interaction between the polysaccharide core and the enzyme enhanced the enzyme activity and stability. The shell membrane of biomimetic capsule was then fabricated by mimicking the structure and function of cell membrane. Under the optimum preparation conditions, the porous Ca-alginate membrane of the capsule could not only confine the enzyme inside but also permit the substrate and product to freely diffuse in and out. Finally, mimicking the biosilicification process and function of diatom cell wall, protamine was for the first time utilized to mediate the formation of intact protamine/silica shell wall on the surface of capsule. The rigid silica shell wall dramatically inhibited the swelling of the capsule and significantly enhanced the recycling stability of capsule. In addition, the silica-precipitating and templating roles of protamine were elucidated, and the mediation mechanism of organic molecules in biomimetic silicification was also tentatively analyzed.
     Baicalin was converted into baicalein by GUS encapsulated in biomimetic capsules. The sodium carboxymethyl cellulose (CMC) core created a biomimetic anionic microenvironment, and thus enhanced the activity of GUS. Meanwhile, the alginate/protamine shell membrane and the protamine/silica shell wall prevented the swelling of capsule and the leakage of GUS, and thus enhanced the recycling stability of GUS. The encapsulated GUS exhibited up to 125% of its free-form activity with an encapsulation efficiency of 69%. Moreover, the relative activity of encapsulated GUS under extreme pH conditions was up to 85%. The encapsulated GUS showed no appreciable loss in activity after 10 repeated cycles, and 90% of its initial activity remained after 26-day storage at 4 oC. Under the optimum conversion conditions (37℃, pH 7), a baicalein productivity as high as 73% was obtained.
引文
[1] Sheldon R A. Enzyme immobilization: The quest for optimum performance, Adv. Synth. Catal., 2007, 349(8-9): 1289~1307
    [2] Mateo C, Palomo J M, Fernandez-Lorente G, Guisan J M, Fernandez-Lafuente R. Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme Microb. Tech., 2007, 40(6): 1451~1463
    [3] Subramanian A, Kennel S J, Oden P I, Jacobson K B, Woodward J, Doktycz M J. Comparison of techniques for enzyme immobilization on silicon supports, Enzyme Microb. Tech., 1999, 24(1-2): 26~34
    [4] Smith K, Silvernail N J, Rodgers K R, Elgren T E, Castro M, Parker R M. Sol-gel encapsulated horseradish peroxidase: a catalytic material for peroxidation, J. Am. Chem. Soc., 2002, 124(16): 4247~4252
    [5] Vandenberg T, Brown R S, Krull U J, in: I.E. Veliky (Ed.), Immobilized biosystems in theory and practical applications, Elsevier, Holland, 1983, 120-135.
    [6] Weetall H H. Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports, Appl. Biochem. Biotechnol., 1993, 41(3): 157~188
    [7] Betigeri S S, Neau S H. Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads, Biomaterials, 2002, 23(17): 3627~3636
    [8] Cao L Q. Immobilised enzymes: science or art?, Curr. Opin. Chem. Biol., 2005, 9(2): 217~226
    [9]刘蕾,李杰,王亚娥.生物固定化技术中的包埋材料,净水技术, 2005, 24(1): 40~42
    [10] Davis T A, Llanes F, Volesky B, Mucci A. Metal selectivity of Sargassum spp. and their alginates in relation to theirα-L-guluronic acid content and conformation, Env. Sci. Tec., 2003, 37(2): 261~267
    [11] Bu H, Kj?niksen A-L, Knudsen K D, Nystr?m B. Rheological and structural properties of aqueous alginate during gelation via the Ugi multicomponent condensation reaction, Biomacromolecules, 2004, 5(4): 1470~1479
    [12] Ibáez J P, Umetsu Y. Potential of protonated alginate beads for heavy metals uptake, Hydrometallurgy, 2002, 64(2): 89~99
    [13] Zhang F J, Cheng G X, Gao Z, Li C P. Preparation of porous calcium alginate membranes/microspheres via an emulsion templating method, Macromol. Mater. Eng., 2006, 291(5): 485~492
    [14] Wan L S C, Heng P W S, Chan L W. Drug encapsulation in alginate microspheres by emulsification, J. Mcroencapsul., 1992, 9(3): 309~316
    [15] Bayramoglu G, Denizli A, Bektas S, Arica M Y. Entrapment of Lentinus sajor-caju into Ca-alginate gel beads for removal of Cd(II) ions from aqueous solution: Preparation and biosorption kinetics analysis, Microchem. J., 2002, 72(1): 63~76
    [16] Strand B L, M?rch Y A, Skj?k-Br?k G. Alginate as immobilization matrix for cells, Minerva. Biotecnol., 2000, 12(4): 223~233
    [17] Bajpai S K, Sharma S. Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions, React. Funct. Polym., 2004, 59(2): 129~140
    [18] Rousseau I, Le Cerf D, Picton L, Argillier J F., Muller G. Entrapment and release of sodium polystyrene sulfonate (SPS) from calcium alginate gel beads, Eur. Polym. J., 2004, 40(12): 2709~2715
    [19] Senuma Y, Lowe C, Zweifel Y, Hilborn J G, Marison I. Alginate hydrogel microspheres and microcapsules prepared by spinning disk atomization, Biotechnol. Bioeng., 2000, 67(5): 616~622
    [20] Tu J, Bolla S, Barr J, Miedema J, Li X, Jasti B. Alginate microparticles prepared by spray-coagulation method: Preparation, drug loading and release characterization, Int. J. Pharm., 2005, 303(1-2): 171~181
    [21] Guo X-L, Deng G, Xu J, Wang M-X. Immobilization of Rhodococcus sp. AJ270 in alginate capsules and its application in enantioselective biotransformation of trans-2-methyl-3-phenyl-oxiranecarbonitrile and amide, Enzyme Microb. Tech., 2006, 39(1): 1~5
    [22] Blandino A, Macías M, Cantero D. Formation of calcium alginate gel capsules: Influence of sodium alginate and CaCl2 concentration on gelation kinetics, J. Biosci. Bioeng., 1999, 88(6): 686~689
    [23]柴燚,梅乐和,姚善泾.液芯CMC-ALG微胶囊的制备、扩散性能及初步应用研究,膜科学与技术, 2004, 24(3): 10~14, 19
    [24] Koyama K, Seki M. Evaluation of mass-transfer characteristics in alginate-membrane liquid-core capsules prepared using polyethylene glycol, J. Biosci. Bioeng., 2004, 98(2): 114~121
    [25] Tanriseven A, Uluda? Y B, Do?an ?. A novel method for the immobilization of glucoamylase to produce glucose from maltodextrin, Enzyme Microb. Tech., 2000, 30(3): 406~409
    [26] Konsoula Z, Liakopoulou-Kyriakides M. Thermostableα-amylase production by Bacillus subtilis entrapped in calcium alginate gel capsules, Enzyme Microb. Tech., 2006, 39(4): 690~696
    [27] Dashevsky, A. Protein loss by the microencapsulation of enzyme (lactase) in alginate beads, Int. J. Pharm., 1998, 161(1): 1~5
    [28] Kong H J, Kaigler D, Kim K, Mooney D J. Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution, Biomacromolecules, 2004, 5(5): 1720~1727
    [29] Blandino A, Macías M, Cantero D. Modelling and simulation of a bienzymatic reaction system co-immobilised within hydrogel-membrane liquid-core capsules, Enzyme Microb. Tech., 2002, 31(4): 556~565
    [30] Tanriseven A, Do?an ?. Immobilization of invertase within calcium alginate gel capsules, Process Biochem., 2001, 36(11): 1081~1083
    [31] Koyama K, Seki M. Cultivation of yeast and plant cells entrapped in the low-viscous liquid-core of an alginate membrane capsule prepared using polyethylene glycol, J. Biosci. Bioeng., 2004, 97(2): 111~118
    [32] Coradin T, Nassif N, Livage J. Silica-alginate composites for microencapsulation, Appl. Microbiol. Biot., 2003, 61(5-6): 429~434
    [33] Darrabie M D, Kendall W F, Opara E C. Effect of alginate composition and gelling cation on microbead swelling, J. Microencapsul., 2006, 23(6): 613~621
    [34] Coiffier A, Coradin T, Roux C, Bouvet O M M, Livage J. Sol-gel encapsulation of bacteria: A comparison between alkoxide and aqueous routes, J. Mater. Chem., 2001, 11(8): 2039~2044
    [35] Coradin T, Livage J. Mesoporous alginate/silica biocomposites for enzyme immobilization, C. R. Chim., 2003, 6(1): 147~152
    [36] Fukushima Y, Okamura K, Imai K, Motai H. A new immobilization technique of whole cells and enzymes with colloidal silica and alginate, Biotechnol. Bioeng., 1988, 32(5): 584~594
    [37] Jiang Z, Xu S, Lu Y, Yuan W, Wu H, Lv C. Nanotube-doped alginate gel as a novel carrier for BSA immobilization, J. Biomat. Sci-Polym. E., 2006, 17(1): 21~35
    [38] Heichal-Segal O, Rappoport S, Braun S. Immobilization in alginate-silicate sol-gel matrix protectsβ- glucosidase against thermal and chemical denaturation, Bio/technology, 1995, 13(8): 798~800
    [39] Xu S W, Jiang Z Y, Lu Y, Wu H, Yuan W K. Preparation and catalytic properties of novel alginate-silica-dehydrogenase hybrid biocomposite beads, Ind. Eng. Chem. Res., 2006, 45(2): 511~517
    [40] Sakai S, Ono T, Ijima H, Kawakami K. Synthesis and transport characterization of alginate/aminopropyl-silicate/alginate microcapsule: Application to bioartificial pancreas, Biomaterials, 2001, 22(21): 2827~2834
    [41] Sakai S, Ono T, Ijima H, Kawakami K. Alginate/aminopropyl-silicate/alginate membrane immunoisolatability and insulin secretion of encapsulated islets, Biotechnol. Progr., 2002, 18(2) : 401~403
    [42] Sakai S, Ono T, Ijima H, Kawakami K. In vitro and in vivo evaluation of alginate/sol-gel synthesized aminopropyl-silicate/alginate membrane for bioartificial pancreas, Biomaterials, 2002, 23(21): 4177~4183
    [43] Coradin T, Allouche J, Boissière M, Livage J. Sol-gel biopolymer/silica nanocomposites in biotechnology, Curr. Nanosci., 2006, 2(3): 219~230
    [44] Miller J M, Valentine J S, Zink J I. Synthesis conditions for encapsulating cytochrome C and catalase in SiO2 materials, J. Non-Cryt. Solids, 1996, 202(3): 279~289
    [45] Kato T, Sugawara A, Hosoda N. Calcium carbonate-organic hybrid materials, Adv. Mater., 2002, 14(12): 869~877
    [46] Currey J D, Zioupos P, Davies P, Casinos A. Mechanical properties of nacre and highly mineralized bone, P. Roy. Soc. B-Biol. Sci., 2001, 268(1462): 107~111
    [47]崔福斋,郑传林,仿生材料,北京:化学工业出版社, 2004. 6~7
    [48] Chang T M S. Semipermeable microcapsules, Science, 1964, 146(3643): 524~525
    [49] Liu W, Wang P. Cofactor regeneration for sustainable enzymatic biosynthesis, Biotechnol. Adv. 2007, 25(4): 369~384
    [50] Ei-Zahab B, Donnelly D, Wang P. Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes, Biotechnol. Bioeng., 2008, 99(3): 508~514
    [51]崔福斋,生物矿化,北京:清华大学出版社, 2007. 2~3
    [52] Sumper M, Brunner E. Learning from diatoms: Nature's tools for the production of nanostructured silica, Adv. Funct. Mater., 2006, 16(1): 17~26
    [53] Sun Q, Vrieling E G, Van Santen R A, Sommerdijk N A J M. Bioinspired synthesis of mesoporous silicas, Curr. Opin. Solid. St. M., 2004, 8(2): 111~120
    [54] Kr?ger N, Deutzmann R, Sumper M. Silica-precipitating peptides from diatoms: The chemical structure of silaffin-1A from Cylindrotheca fusiformis, J. Biol. Chem., 2001, 276(28): 26066~26070
    [55] Poulsen N, Kr?ger N. Silica morphogenesis by alternative processing of silaffins in the diatom Thalassiosira pseudonana, J. Biol. Chem., 2004, 279(41): 42993~42999
    [56] Poulsen N, Sumper M, Kr?ger N. Biosilica formation in diatoms: Characterization of native silaffin-2 and its role in silica morphogenesis, Proc. Natl. Acad. Sci. U.S.A., 2003, 100(21): 12075~12080
    [57] Kr?ger N, Deutzmann R, Sumper M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation, Science, 1999, 286(5442): 1129~1132
    [58] Brott L L, Naik R R, Pikas D J, Kirkpatrick S M, Tomlin D W, Whitlock P W, Clarson S J, Stone M O. Ultrafast holographic nanopatterning of biocatalytically formed silica, Nature, 2001, 413(6853): 291~293
    [59] Rodríguez F, Glawe D D, Naik R R, Hallinan K P, Stone M O. Study of the chemical and physical influences upon in vitro peptide-mediated silica formation, Biomacromolecules, 2004, 5(2): 261~265
    [60] Tomczak M M, Glawe D D, Drummy L F, Lawrence C G, Stone M O, Perry C C, Pochan D J, Deming T J, Naik R R. Polypeptide-templated synthesis of hexagonal silica platelets, J. Am. Chem. Soc., 2005, 127(36): 12577~12582
    [61] Coradin T, Livage J. ffect of some amino acids and peptides on silicic acid polymerization, J. Colloid Surf. B, 2001, 21(4): 329~336
    [62] Patwardhan S V, Clarson S J. Silicification and biosilicification: Part 6. Poly-L-histidine mediated synthesis of silica at neutral pH, J. Inorg. Organomet. Polym., 2003, 13(1): 49~53
    [63] Patwardhan S V, Clarson S J. Silicification and biosilicification: Part 1. Formation of silica structures utilizing a cationically charged synthetic polymer at neutral pH and under ambient conditions, Polym. Bull., 2002, 48(4-5): 367~371
    [64] Patwardhan S V, Taori V P, Hassan M, Agashe N R, Franklin J E, Beaucage G, Mark J E, Clarson S J. An investigation of the properties of poly(dimethylsiloxane)-bioinspired silica hybrids, Eur. Polym. J. 2006, 42(1): 167~178
    [65] Jin R H, Yuan J J. Shaped silicas transcribed from aggregates of four-armed star polyethyleneimine with a benzene core, 2006, 18(15): 3390~3396
    [66] Yuan J J, Jin R H. Multiply shaped silica mediated by aggregates of linear poly(ethyleneimine), Adv. Mater., 2005, 17(7): 885~888
    [67] Coradin T, Marchal A, Abdoul-Aribi N, Livage J. Gelatine thin films as biomimetic surfaces for silica particles formation, Colloid Surf. B, 2005, 44(4): 191~196
    [68] Allouche J, Boissière M, Hélary C, Livage J, Coradin T. Biomimetic core-shell gelatine/silica nanoparticles: A new example of biopolymer-based nanocomposites, J. Mater. Chem., 2006, 16(30): 3120~3125
    [69] Coradin T, Bah S, Livage J. Gelatine/silicate interactions: From nanoparticles to composite gels, Colloid Surf. B, 2004, 35(1): 53~58
    [70] Coradin T, CoupéA, Livage J. Interactions of bovine serum albumin and lysozyme with sodium silicate solutions, J. Colloid Surf. B, 2003, 29(2-3): 189~196
    [71] Patwardhan S V, Clarson S J, Perry C C. On the role(s) of additives in bioinspired silicification, Chem. Commun., 2005, 9: 1113~1121
    [72] Patwardhan S V, Maheshwari R, Mukherjee N, Kiick K L, Clarson S J. Conformation and assembly of polypeptide scaffolds in templating the synthesis of silica: An example of a polylysine macromolecular "switch", Biomacromolecules, 2006, 7(2): 491~497
    [73] Patwardhan S V, Mukherjee N, Steintz-Kannan M, Clarson S J. Bioinspired synthesis of new silica structures, 2003, Chem. Commun., 2003, 9(10):1122~1123
    [74] Luckarift H R, Spain J C, Naik R R, Stone M O. Enzyme immobilization in a biomimetic silica support, Nat. Biotechnol., 2004, 22(2): 211~213
    [75] Luckarift H R, Dickerson M B, Sandhage K H, Spain J C. Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania, Small, 2006, 2(5): 640~643
    [76] Coradin T, Mercey E, Lisnard L, Livage J. Design of silica-coated microcapsules for bioencapsulation, Chem. Commun., 2001, 23: 2496~2497
    [77] Zhao J, Zhang Z P, Chen H S, Chen X H, Zhang X Q. Preparation and anti-HIV activity study of baicalein and its benzylated derivatives, Acta Pharm. Sinica, 1997, 32(2): 140~143
    [78] Ma Z, Otsuyama K I, Liu S Q, Abroun S, Ishikawa H, Tsuyama N, Obata M, Li F J, Zheng X, Maki Y, Miyamoto K, Kawano M M. Baicalein, a component of Scutellaria radix from Huang-Lian-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells, Blood, 2005, 105(8): 3312~3318
    [79] Gao Z H, Huang K X, Yang X L, Xu H B. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi, BBA-Gen. Subjects, 1999, 1472(3): 643~650
    [80] Su Y L, Leung L K, Bi Y R, Huang Y, Chen Z Y. Antioxidant activity of flavonoids isolated from Scutellaria rehderiana, J. Am. Oil. Chem. Soc., 2000, 77(8): 807~812
    [81] Yang D P, Hu H Y, Huang S L. Study on the inhibitory activity, in vitro, of baicalein and baicalin against skin fungi and bacteria, J. Chin. Med. Mater., 2000, 23(5): 272~274
    [82] Cushnie T P T, Lamb A J. Antimicrobial activity of flavonoids, Int. J. Antimicrob. Ag., 2005, 26(5), 343~356
    [83] Zhu J T T, Choi R C Y, Chu G K Y, Cheung A W H, Gao Q T, Li J, Jiang Z Y, Dong T T X, Tsim K W K. Flavonoids possess neuroprotective effects on cultured pheochromocytoma PC12 cells: A comparison of different flavonoids in activating estrogenic effect and in preventingβ-amyloid-induced cell death, J. Agric. Food Chem., 2007, 55(6): 2438~2445
    [84] Liu T M, Jiang X H. Investigation of the absorption mechanisms of baicalin and baicalein in rats, J. Pharm. Sci., 2006, 95(6): 1326~1333
    [85] Xing J, Chen X Y, Zhong D F. Absorption and enterohepatic circulation of baicalin in rats, Life Sci., 2005, 78(2): 140~146
    [86] Lai M Y, Hsiu S L, Tsai S Y. Comparison of metabolic pharmacokinetics of baicalin and baicalein in rats, J. Pharm. Pharmacol., 2003, 55(2): 205~209
    [87] Che Q M, Huang X L, Li Y M. Studies on metabolites of baicalin in human urine, China J. Chin. Mat. Med., 2001, 26(11): 769
    [88]车庆明,一种制备黄芩素的方法,中国专利, 02129372.4, 2002-09-06
    [89]高文远,邓轶渊,由黄芩苷制备黄芩素的方法,中国专利, 200410019726.6, 2004-06-22
    [90] Zhang C Z, Zhang Y F, Chen J P, Liang X M. Purification and characterization of baicalin-β-D-glucuronidase hydrolyzing baicalin to baicalein from fresh roots of Scutellaria viscidula Bge, Process Biochem., 2005, 40(5): 1911~1915
    [91] Xu Q, Huang H Z, Baicalin de-glycosylation, PCT, PCT/DK2004/000765, 2005-05-19
    [92] Jain S, Drendel W B, Chen Z W, Mathews F S, Sly W S, Grubb J H. Structure of humanβ-glucuronidase reveals candidate lysosomal targeting and active-site motifs, Nat. Struct. Biol., 1996, 3(4): 375~381
    [93] Islam M R, Tomatsu S, Shah G N, Grubb J H, Jain S, Sly W S. Active site residues of humanβ-glucuronidase. Evidence for GLU540 as the nucleophile and GLU451 as the acid-base residue, J. Biol. Chem., 1999, 274(33): 23451~23455
    [94] Ray J, Wu Y, Aguirre G D. Characterization ofβ-glucuronidase in the retinal pigment epithelium, Curr. Eye Res., 1997, 16(2): 131~143
    [95] Van Lancker J L, Lentz P L. Study on the site of biosynthesis of beta-glucuronidase and its appearance in lysosome in normal and hypoxic rats, J. Histochem. Cytochem., 1970, 18(8): 529~541
    [96] Eggers D K, Valentine J S. Molecular confinement influences protein structure and enhances thermal protein stability, Protein Sci., 2001, 10(2): 250~261
    [97] Bechet D, Tassa A, Taillandier D, Combaret L, Attaix D. Lysosomal proteolysis in skeletal muscle, Int. J. Biochem. Cell B., 2005, 37(10): 2098~2114
    [98] Zhang G, Foegeding E A, Hardin C C. Effect of sulfated polysaccharides on heat-induced structural changes inβ-lactoglobulin, J. Arg. Food Chem., 2004, 52(12): 3975~3981
    [99] Athès V, Combes D. Influence of additives on high pressure stability ofβ-galactosidase from Kluyveromyces lactis and invertase from Saccharomyces cerevisiae, Enzyme Microb. Tech., 1998, 22(6): 532~537
    [100] Allison S D, Manning M C, Randolph T W, Middleton K, Davis A, Carpenter J F. Optimization of storage stability of lyophilized actin using combinations of disaccharides and dextran, J. Pharm. Sci., 2000, 89(2): 199~214
    [101] Witcher D R, Hood E E, Peterson D, Bailey M, Bond D, Kusnadi A, Evangelista R. Commercial production ofβ-glucuronidase (GUS): A model system for the production of proteins in plants, Mol. Breeding, 1998, 4(4): 301~312
    [102] Back J F, Oakenfull D, Smith M B. Increased thermal stability of proteins in the presence of sugars and polyols, Biochemistry, 1979, 18(23): 5191~5196
    [103] Chen H H, Xu S Y, Wang Z. Interaction between flaxseed gum and meat protein, J. Food Eng., 2007, 80(4): 1051~1059
    [104] Cui L, Du G C, Zhang D X, Chen J. Thermal stability and conformational changes of transglutaminase from a newly isolated Streptomyces hygroscopicus, Bioresource Technol., 2007, article in press
    [105] Sathish H A, Kumar P R, Prakash V. Mechanism of solvent induced thermal stabilization of papain, Int. J. Biol. Macromol., 2007, 41(4): 383~390
    [106]于衍真.水中微颗粒的凝聚沉淀机理与控制,粉体技术, 1997, 3(4): 33~35
    [107] Lin L. Thermal gelation of methylcellulose in water: Scaling and thermoreversibility, Macromolecules, 2002, 35(15): 5990~5998
    [108] Desbrières J, Hirrien M, Ross-Murphy S B. Thermogelation of methylcellulose: Rheological considerations, Polymer, 2000, 41(7): 2451~2461
    [109]陈结霞,徐小龙,刘祥虎,刘清亮. pH值和金属离子对尖吻蝮蛇抗凝血因子Ⅱ二级结构的影响,无机化学学报, 2006, 22(1): 69~72
    [110]韩振为,钟成,王昌秀.圆二色性测定蛋白质在超细粒子上吸附的构象变化,分析测试学报, 2004, 23(2): 27~30
    [111]刘凌云,薛绍白,柳惠图,细胞生物学,北京:高等教育出版社, 2002.26~27
    [112] Fujii T, Ogiwara D, Ohkawa K, Yamamoto H. Alkaline phosphatase encapsulated in gellan-chitosan hybrid capsules, Macromol. Biosci., 2005, 5(5): 394~400
    [113] Blandino A, Macías M, Cantero D. Glucose oxidase release from calcium alginate gel capsules. Enzyme Microb. Technol., 2000, 27(3-5): 319~324
    [114] Thanachasai S, Furukawa H, Yoshida S, Watanabe T. Determination of enzyme immobilized into electropolymerized polymer films, Chem. Lett., 2003, 32(2): 176~177
    [115] Blandino A, Macías M, Cantero D. Immobilization of glucose oxidase within calcium alginate gel capsules, Process Biochem., 2001, 36(7): 601~606
    [116] Dembczynski R, Jankowski T. Determination of pore diameter and molecular weight cut-off of hydrogel-membrane liquid-core capsules for immunoisolation, J. Biomat. Sci-Polym. E., 2001, 12(9): 1051~1058
    [117] De Moura M R, Guilherme M R, Campese G M, Radovanovic E, Rubira A F, Muniz EC. Porous alginate-Ca2+ hydrogels interpenetrated with PNIPAAm networks: Interrelationship between compressive stress and pore morphology, Eur. Polym. J., 2005, 41(12): 2845~2852
    [118] Wang S B, Xu F H, He H S, Weng L J. Novel alginate-poly(L-histidine) microcapsules as drug carriers: In vitro protein release and short term stability, Macromol. Biosci., 2005, 5(5): 408~414
    [119] Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink A L. The flavonoid baicalein inhibits fibrillation ofα-synuclein and disaggregates existing fibrils,J. Biol. Chem., 2004, 279(26): 26846~26857
    [120]仇峰,黄芩苷和氧化苦参碱的物理化学性质和药物动力学研究: [硕士学位论文],沈阳;沈阳药科大学, 2002
    [121] Xing J, Chen X, Zhong D. Stability of baicalin in biological fluids in vitro,J. Pharmaceut. Biomed., 2005, 39(3-4): 593~600
    [122]于波涛,张志荣,刘文胜,王平,杨婷.黄芩苷稳定性研究,中草药,2002, 33(3): 218~220
    [123] Naik R R, Tomczak M M, Luckarift H R, Spain J C, Stone M O. Entrapment of enzymes and nanoparticles using biomimetically synthesized silica, Chem. Commun., 2004, 10(15): 1684~1685
    [124] Coradin T, Livage J. Synthesis, characterization and diffusion properties of biomimetic silica-coated gelatine beads, Mater. Sci. Eng. C, 2005, 25(2): 201~205
    [125] Naik R R, Brott L L, Clarson S J, Stone M O. Silica-Precipitating Peptides Isolated from a Combinatorial Phage Display Peptide Library, J. Nanosci. Nanotechno., 2002, 2(1): 95~100
    [126] Sumerel J L, Yang W, Kisailus D, Weaver J C, Choi J H, Morse D E. Biocatalytically Templated Synthesis of Titanium Dioxide, Chem. Mater., 2003, 15(25): 4804~4809
    [127] Patwardhan S V, Clarson SJ. Silicification and Biosilicification Part 7: Poly-L-Arginine Mediated Bioinspired Synthesis of Silica, J. Inorg. Organomet. Polym., 2003, 13(4): 193~203
    [128] Donati I, Holtan S, M?rch Y A, Borgogna M, Dentini M, Skjak?-Br?k G. New hypothesis on the role of alternating sequences in calcium-alginate gels, Biomacromolecules, 2005, 6(2): 1031~1040
    [129] Nakano M, Kasai K, Yoshida K, Tanimoto T, Tamaki Y, Tobita T. Conformation of the fowl protamine, galline, and its binding properties to DNA, J. Biochem., 1989, 105(1): 133~137
    [130] Raukas E, Mikelsaar R H. Are there molecules of nucleoprotamine?, Bioessays, 1999, 21(5): 440~448
    [131] Arellano A, Canales M, Jullian C, Brunet J E. Fluorescence studies on clupein protamines: evidence for globular conformation, Biochem. Biophys. Res. Commun. 1988, 150(2): 633~639
    [132] Torre M L, Faustini M, Norberti R, Stacchezzini S, Maggi L, Maffeo G, Conte U, Vigo D. Boar semen controlled delivery system: Storage and in vitro spermatozoa release, J. Control. Release, 2002, 85(1-3): 83~89
    [133] Gerstner J A. Cation-exchange displacement chromatography of proteins with protamine displacers: Effect of induced salt gradients, Biotechnol. Progr., 1992, 8(6): 540~545
    [134] Sautière P, Briand G, Gusse M, Chevaillier P. Primary structure of the protamine isolated from the sperm nuclei of the dog-fish Scylliorhinus caniculus, Eur. J. Biochem., 1981, 119(2): 251~255
    [135] Xu S W, Lu Y, Li J, Zhang Y F, Jiang Z Y. Preparation of novel silica-coated alginate gel beads for efficient encapsulation of yeast alcohol dehydrogenase, J. Biomater. Sci. Polymer Edn., 2007, 18(1): 71~80
    [136] Zhou Y, Shimizu K, Cha J N, Stucky G D, Morse D E. Efficient catalysis of polysiloxane synthesis by silicatein a requires specific hydroxy and imidazole functionalities, 1999, Angew. Chem. Int. Edit., 1999, 38(6): 780~782
    [137] Hawkins K M, Wang S S-S, Ford D M, Shantz D F. Poly-L-lysine templated silicas: Using polypeptide secondary structure to control oxide pore architectures, J. Am. Chem. Soc., 2004, 126(29): 9112~9119
    [138] Mitra A, Imae T, Shchipunov Y A. Fibrous silica composites fabricated via sol-gel processing using amino acid surfactant templating, J. Sol-gel. Sci. Techn., 2005, 34(2):127~130
    [139] Coradin T, Lopez P J. Biogenic silica patterning: Simple chemistry or subtle biology?, ChemBioChem, 2003, 4(4): 251~259
    [140] Coradin T, Roux C, Livage J. Biomimetic self-activated formation of multi-scale porous silica in the presence of arginine-based surfactants, J. Mater. Chem., 2002, 12(5): 1242~1244
    [141] Roth K M, Zhou Y, Yang W, Morse D E. Bifunctional small molecules are biomimetic catalysts for silica synthesis at neutral pH, J. Am. Chem. Soc., 2005, 127(1): 325~330
    [142] Iler R K. Association between polysilicic acid and polar organic compounds, J. Phys. Chem., 1952, 56(6): 673~677
    [143] Coffman E A, Melechko A V, Allison D P, Simpson M L, Doktycz M J. Surface patterning of silica nanostructures using bio-inspired templates and directed synthesis, Langmuir, 2004, 20(20): 8431~8436
    [144] Glawe D D, Rodríguez F, Stone M O, Naik R R. Polypeptide-mediated silica growth on indium tin oxide surfaces, Langmuir, 2005, 21(2): 717~720
    [145] Tahir M N, Théato P, Müller W E G, Schr?der H C, Janshoff A, Zhang J, Huth J, Tremel W. Monitoring the formation of biosilica catalysed by histidine-tagged silicatein, Chem. Commun., 2004, 24: 2848~2849
    [146] Pogula S D, Patwardhan S V, Perry C C, Gillespie Jr. J W, Yarlagadda S, Kiick K L. Continuous silica coatings on glass fibers via bioinspired approaches, Langmuir, 2007, 23(12): 6677~6683
    [147] Kim D J, Lee K-B, Chi Y S, Kim W-J, Paik H-J, Choi I S. Biomimetic formation of silica thin films by surface-initiated polymerization of 2-(dimethylamino)ethyl methacrylate and silicic acid, Langmuir, 2004, 20(19): 7904~7906

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700