反义Lox-3基因转化籼稻的遗传体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上最重要的粮食作物之一,全球接近一半的人口以其为主要的食物和能量来源,所以水稻的稳定增产保障了世界的粮食安全。然而,稻谷在储藏过程中由于陈化变质、虫害和霉变等引起大量损失,因此,开展水稻耐储藏特性的相关研究,培育耐储藏水稻新品种,意义重大。
     本研究旨在通过农杆菌介导法,将反义lox-3基因导入籼型恢复系“航1号”中,期望从转基因植株中筛选出脂肪氧化酶低表达的株系,实现提高水稻耐储藏性的目的。围绕此目的,本研究主要得到以下结论:
     1.通过对比“航1号”愈伤组织在6种不同的培养基上的生长情况,分析经过不同时间的培养,愈伤组织的增重情况,确定了其最适培养基。
     2.利用农杆菌介导法,分别将载体pHG1PL, pHG4PL和pHG4P500L导入籼型恢复系“航1号”中,获得124株转基因植株,PCR结果表明,其中有96株检测到标记基因bar,初步说明反义lox-3基因已经整合到籼型恢复系“航1号”的基因组中。
     3.从96株PCR检测为阳性的转基因植株中随机挑取5株进行Southern杂交和斑点杂交检测,结果4株检测到杂交信号,说明反义lox-3基因已经整合到籼型恢复系“航1号”的基因组中;而其中一株没有检测到杂交信号,说明反义lox-3基因没有整合到其基因组中,PCR结果可能为假阳性。
     4.随机选取7株转基因植株,分别提取RNA,进行RT-PCR分析,结果表明7个样品均在mRNA水平上得到了表达,进一步说明反义lox-3基因已经整合到籼型恢复系“航1号”的基因组中。
     5.分别利用常规转化法与快速转化法进行籼型恢复系“航1号”的遗传转化,对比两者的转化效率,发现快速转化法虽然缩短了转化流程,但是转化率却不及常规转化法。
     6.对来自同一克隆的转反义lox-3基因的正常苗与白化苗的根、茎、叶进行显微结构解剖的对比研究,发现其根、茎、叶均存在差异。
Rice is one of the most important grain crops in the world. Almost half of the world’s population takes it as the main source of food and energy. So the stable increasing of rice yield ensures the world’s food supply. However there is a large loss caused by aging deterioration, pests and mildew during rice storage. Therefore, carrying out a series of related researches on rice storable characteristics and breeding new storable rice varieties, both are very important.
     This study was designed to transform Cre/Lox-3 gene into indica restorer line“Hang No.1”, expecting to select lipoxygenase low-expression lines from transgenic plants, making preparation for breeding new varieties with high storage resistance, and achieving the purpose of improving rice resistance to storage. Aiming at this goal, this study obtained the following conclusions:
     1. Analyzed the growth state of“Hang No.1”callus in six different media and their gain weight over different culture time, definited the optimum media for“Hang No.1”.
     2. Plasmid pHG1PL, pHG4PL and pHG4P500L were transformed into indica restorer line“Hang No.1”respectively by Agrobacterium-mediated transformation, and 124 transgenic plants were obtained, the PCR results showed that the marker gene bar can be detected in 96 regenerated plants, preliminary indicating that the Cre/lox-3 gene had been integrated into indica restorer line“Hang No.1”.
     3. Of altogether 96 PCR-positive transgenic plants, five ones were selected to perform Southern blot and dot blot analysis, and the result showed four transgenic plants detected the signal, indicating that the Cre/lox-3 gene had been integrated into their genomes; while one of them failed to detect any signal, indicating that the Cre/lox-3 gene had not been integrated into its genome, and the PCR result may be false positive.
     4. Selected 7 transgenic plants at random, the result of RT-PCR analysis showed that all of them with expression on mRNA lever, further indicated that the Cre/lox-3 gene had been integrated into indica restorer line“Hang No.1.
     5. Compared normal Agrobacterium-mediated transformation with early infection of agrobacterium, it was found that the transformation efficiency of the normal one was higher than the early infection, but it took much more time.
     6. Compared the microstructure of the root, stem and leaf from the normal and albino seedlings which were differentiated from the same clone transformed with Cre/lox-3 gene. It was found that there were some differences between the root, stem and leaf.
引文
1.程式华,李建,现代中国水稻[M],北京:金盾出版社,2007
    2.云昌杰,我国农村储粮问题研究,粮食储藏,1996,25(4):24-27.
    3. Aibarasi, Ismailia, Yamashitah, et al., Changes in Rice Bran Lipids and Fatty Acids during Storage [J], Agricultural Biological Chemistry, 1986, 50: 6652 673.
    4. Takano K, et al., Advances in Cereal Chemistry and Technology in Japan [J], Cereal Foods World, 1993, 38: 6952 698.
    5.王海滨,植物的脂肪氧化酶,植物生理学通讯,1990,(2):63-67.
    6. Goffman F D, Bergman C, et al., Hydrolytic degradation of triacyl Glyce roles and changes in fatty acid composition in rice bran during storage, Cereal Chem, 2003, 80(4): 459-461.
    7. Kloeti, A. & Potrykus, et al., I. Rice improvement by genetic transformation, In Molecular Biology of Rice (ed. Shimamoto, K.) 283–301. (Springer-Verlag, Tokyo, Japan, 1999).
    8. Shimamoto, K., Terada, R., Izawa, T. & Fujimoto H., Fertile transgenic rice plants regenerated from transformed protoplasts, Nature 338, 274–276 (1989).
    9. Datta, S.K., Peterhans, A., Datta, K. & Potrykus, I, Genetically engineered fertile indica-rice recovered from protoplasts, Bio/Technol. 8, 736–740 (1990).
    10. Christou, P., Ford, T.L. & Kofron, M., Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos, Bio/Technol. 9, 957–962 (1991).
    11. Hiei, Y., Ohta, S., Komari, T. & Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA, Plant J. 6, 271–282 (1994).
    12. Davey, M.R., et al., 1991. Plant Sci Lett, 18 :307-313.
    13.沈圣泉,张仁华,舒庆尧等,水稻常用的遗传转化技术及应用现状,中国农学通报,2001,17[1]:37-40.
    14.朱祯,孙宝林,转化脂介导小麦原生质体转化及转基因白化苗的再生,生物工程学报,1993,9[4]:320-323.
    15. Shimzmoto K, et al., Nature: 1989, 338:227-274.
    16. Xu X., Li B, Fertile transgenic rice plants obtained by electroporation of the seed embryo cells, Plant Cell Rep, 1994, 13:237-242.
    17.赵彬,薛庆中,基因枪在水稻遗传转化中的应用及其转化技术的优化,生物技术,1998,8[1]:4-6.
    18.林鸿生,张祥喜,华志华等,水稻遗传转化研究进展,韩山师范学院学报,2000,6[2]:71-74.
    19.孟昭河,刘新军,王玉菊等,利用花粉管通道法将外源DNA导入水稻之研究进展,农业生物技术科学,2006[6]:52-56.
    20.王关林,方宏筠等,植物基因工程(第二版)[M],北京:科学出社,2002:361-363.
    21. Baba A, Hasezawa S, Syono K, et al., Cultivation of rice protoplasts and their transformation mediated by Agrobacterium spheroplasts, Plant Cell Physiol, 1986, 27:463-468.
    22. Raineri D M, Bottino P, Gordon M P, et al., Agrobacterium-mediated transformation of rice (Oryza sativa L.), Bio/ Technol, 1990, 8:33-38.
    23. Chan M T, Lee T M, Chang H H., Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens, Plant Cell Physiol, 1992, 33:577-583.
    24. Chan M T, Chang H H, Ho S L, et al., Agrobacterium-mediated production of transgenic rice plants expressing a chimeric co-amylase promoter/β-glucuronidase gene, Plant Mol. Biol, 1993, 22,491-506.
    25. Hiei Y, Ohta S, Komari T, et al., Efficient transformation of rice mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA, Plant J, 1994, 6 (2):271-282.
    26. Rashid H,Y okoi S, Toriyama K,et a1., Transgenic plant production mediated by Agrobacterium in indica rice, Plant Cell Rep,1996,15:27-730.
    27. Dong J, Teng W, Buchholz W G, et a1., Agrobacterium-mediated transformation of javanica rice,Mo1.Breed,1996,2:267-276.
    28. Zhang J, Xu R J, Malcolm C E, et a1., Agrobacterium mediated transformation of elite indica and jacanica rice cultivars, Mol/Biotechnol,1997,8:223-231.
    29. Dong. J, Kharb P,Teng W, et a1., Characterization of rice transformed via an Agrobacterium-mediated inflorescence approach, Mo1.Breed, 2001,7:187- 194.
    30.林拥军,陈浩,曹应龙等,农杆菌介导的牡丹江8号高效转基因体系的建立,作物学报,2002,28(3):294-300.
    31. Lin Y J, Zhang Q F, et al., Optimising the tissue culture conditions for high efficiency transformation of indica rice, Plant Cell Rep, 2005, 23: 540-547.
    32. Seiichi Toki, Naho Hara, et al., Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice, The Plant Journal (2006) 47, 969–976.
    33. Jianzhong Lin, Bo Zhou, et a1. , Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium-mediated transformation of indica rice, Plant Cell Rep (2009) 28:1065–1074.
    34. Hood E E, Helmer G, Raley R T, et a1., J Bacterio1ogy,1986;168(3):1291-1301.
    35. Komari T., Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542, Plant Cell Reports, 1990; 9:303-306.
    36.李卫,郭光沁,郑国昌等,根癌农杆菌介导遗传转化研究的若干新进展[J],科学通报,2000,45 (8):798-807.
    37.刘巧泉,张景六,王宗阳等,根癌农杆菌介导的水稻高效转化系统的建立,植物生理学报,1998,24(3):259-271.
    38.易自力,曹守云,王力等,提高农杆菌转化水稻频率的研究,遗传学报,2001,28(4):352-358.
    39. Stachel S E, Messens E, Montagu M, et al., Identification of the signal molecules produced by wounded plant cell that activate T-DNA transfer inAgrobacterium tumefaciens Nature,1985,318:624-629.
    40. Vijayachandra K, Palanichelvam K, Veluthanbi K., Rice scutellum induces Agrobacterium tumefaciens vir genes and T–strand generation, Plant Mol Biol, 1995, 29:125-133.
    41.易自力,曹守云,王力等,提高农杆菌转化水稻频率的研究[J],遗传学报,2001,28[4]:352-358.
    42.周玲艳,姜大刚,吴豪等,潮霉素和PPT对水稻愈伤组织筛选效果的比较[J],仲恺农业技术学院学报,2003,16[2]:10-15.
    43. Ayers, N. M. and Park, W. D., Genetic transformation of rice, Critical Reviews in Plant Sciences, 199413:219-239.
    44. Abe T, Futsuhara Y., et al., Genotypic variability for callus formation and plant regeneration in rice, Theor Appl. Genet, 1986, 72:3-10.
    45. Dong J, Teng W, Buchhoh WG, et a1., Agrobacteriumn mediated transformation of javanic rice [J], Mo1.Breed,1996,1[2]:267-276.
    46. Hiei Y, Ohta S, Komari T, et a1., Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacteriumn and sequence analysis of the boundaries of the T-DNA [J], Plant. J. 1994, [6]:271-282.
    47. Aldemita R R, Hodges T K.K., Agrobacteriumn tumefaciens -mediate transformation of javaniea and indica rice varieties[J], Plant,1996,199:612-617.
    48. Mikami T, Kinoshita T, Genotypic effects on the callus formation from different explants of rice (Oryza sativa L.), Plant Cell Tiss Org Cult, 1988, 12:311-314.
    49. Aldemita R R, Hodges T K., Agrobacterium tumefaciens-mediated transformation of jacanica and indica rice varieties, Planta, 1996, 199:612-617.
    50. Chan M T, Chang H H, Ho S L, et a1., Agrobacterltma-mediated pruduction of transgenic rice plants expressing a chimerica-amylase promoter/ b-glucuronidase gene[J], Plant Mol Bio,1993,22:491-560.
    51. Hanid R, Yokois, Toriyama K, et al., Transgenic plant production mediated by Agrobacteriumin indica rice [J], Plant Cell Report, 1996, 15: 727-730.
    52.程志强,陈旭君等,转基因植物中抗生素抗性基因的安全性评价[J],生命科学,2002,14(1):14-16.
    53.吴志平,徐步进,转基因植物释放后在环境中成为杂草的风险性,生物工程进展,1999,19(1):9-13.
    54.王兴春,杨长登,转基因植物生物安全性标记基因,中国生物工程杂志, 2003,23(4):19-22.
    55. Kuiper HA, Kleter GA, Noteborn HP et al., Assessment of food safety issues related to genetically modified foods, Plant J, 2001, 27: 503-528.
    56.闫新甫,转基因植物,北京:科学出版社,2003.214-238.
    57. de Vetten N, Wolters A-M, Raemakers K et al., A transformation method for obtaining marker-free plants of a cross pollinating and vegetatively propagated crop, Nat Biotechnol, 2003, 21: 439-442.
    58.王兴春,杨长登,转基因植物生物安全性标记基因,中国生物工程杂志, 2003,23(4):19-22.
    59. Reynolds PA, et al., Characterization of crude lipoxygenase extract from green pea using a modified spectrophotometric method, J Food Sci, 1982, 47:1999.
    60. Schewe T, et al., Lipoxygenase type V from soybean, Methods in Enzymology, 1981, 71:430.
    61. Axelrod B et al., Lipoxygenase from soybeans, Methods in Enzymology, 1981, 71: 441.
    62. SuzukiY, YasuiT, MastukuraU, et al., Oxidative stability of bran lipids from rice variety (Oryza sativa L.) lacking lipoxygenase in seeds [J], J Agric Food Chem, 1996, 44:3479-3483.
    63. Tingzhang Hu, et al., Advances in plant lipoxygenases research, Chin J Biotech 2009, January 25; 25(1): 1-9.
    64. Andre E et a1., Compte Rendu Acad Sci (paris) 1932, 194:645.
    65. Kaloyereas S A., Rancidity as a factor in the loss of viability of pine and other seeds [J], Journal of the American Oil Chemists Society, 1958, 35:176-179.
    66. Yamamoto A, Fujii Y, Yasumoto K, et al., Partial purification and study ofsome properties of rice germ lipoxygenase [J], Agri Biol Chem, 1980, 44(2):443-445.
    67. SIda Y, MasakiMorita Y, et al., The isolation of multiple forms and product specificity of rice lipoxygenase [J], Agric Biol Chem, 1983, 47:637.
    68. Ohta, H, IdaS, Mikami B, et al., Purification and characterization of rice lipoxygenase component from embryos [J], Agric Biol Chem, 1986, 50:3165-3171.
    69. Gardner H W, et al., Lipoxygenase pathway in Cereals [A], In: Pomeranz, Yeds. Adv. Cereal Sci Tech[C], Am Assoc Cereal Chemists Inc, 1988.161-215.
    70. Hildebrand D F, et al., Lipoxygenases [J]. Physiol Plant, 1989, 76:249-253.
    71. Siedow J N, et al., Plant lipoxygenase: structure and function, Annu Rev Plant Physiol Plant Mol Biol, 1991, 42:145-188.
    72. Rajeewa D A., Pamela J R, Chris E C, et al., The Environment of the Lipoxygenase Iron Binding Site Explored with Novel Hydroxypyridinone Iron Chelators, Jour Biol Chem, 1996, 271(14):7965-7972.
    73. Axelrod B, Cheesbrough TM, Lassko S, et al., Lipoxygenase from soybeans. Methods Enzymol, 1981, 71:441-451.
    74. SuzukiY,Matsukura U, et al., Lipoxygenase activity in maturing and germination rice seeds with and without Lipoxygenase3 in mature seeds, Plant Sci.1997, 125:119-126.
    75.吴跃进,吴先山,沈宗海等,水稻耐储藏种质创新及相关技术研究,粮食储藏技术,第34卷,2005(1)71-91.
    76.龚继平,吴方喜,吴跃进等,籼稻脂肪酶基因的遗传分析及定位,中国水稻科学(Chinese J Rice Sci),2008,22(2):125-130.
    77.蒋家月,宋美,吴跃进等,水稻种胚脂肪氧化酶Lox1,Lox2缺失对种子储藏特性的影响,激光生物学报,第17卷第3期,2008年6月,395-399.
    78. Suzuki Y, Nagamine T, Kobayashi A, Ohtsubo K. Japan J Breed, 1993, 43: 405-409.
    79.柳武革,王丰,李金华等,水稻耐储藏特性相关基因QTL及上位性分析,作物学报,第31卷,第12期,2005,1672-1675.
    80. Wan Jianmin, Cloning mapping and breeding application of rice (Oryza sativa L.) storable gene Lox2, 3, Beijing: In: Abstracts of International Rice Congress. 2002, 307-308.
    81.柳武革,王丰,刘振荣等,水稻耐储藏特性研究进展,生物技术通报,Biotechnology Bulletin 2006,15-26.
    82.肖娅萍,胡雅琴,任耀辉等,地灵组培白化苗的超微结构变化研究,西北植物学报,2003,23(7):1279-1282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700