高纤维素降解放线菌的筛选与功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从不同生境中筛选得到一株高纤维素降解放线菌SD1-4,通过形态、生理和分子研究,初步鉴定为链霉菌(Streptomyces sp.)。
     对SD1-4液态发酵产酶条件进行优化,结果表明:初始pH为8.0,最适温度为39℃,最适氮源为酵母膏,最佳无机盐添加量为60mgKCI和15mg CaCl2,最佳灭菌时间为40min、最适装液量为50ml/250ml;0.15%Triton X-100抑制产酶,0.05%Triton X-100促进产酶,PEG8000和吐温-20两种浓度均呈促进作用,SDS均呈抑制作用;第9天产酶达到高峰。
     对天然碳源(菌草)的研究表明:象草叶为最适碳源;筛选能源草的具体指标为高纤维素、低直链淀粉、低葡萄糖、低果糖、高蔗糖、高蛋白质含量;筛选种质资源的统计学工具为相关分析、主成分分析、回归分析和聚类分析,而灰色关联分析和通径分析不适合。象草营养成分含量(可溶性糖为9.04%、可溶性蛋白质为3.37%时,淀粉含量为5.95%时,粗纤维素含量为65.95% )为象草发酵的最佳成分含量。
     采用Box-Bohnken设计,以最终的纤维素酶产量作为研究目标,构建纤维素酶产量(内切酶、外切酶和糖苷酶)和7个因子(温度、pH、颗粒大小、蛋白胨浓度、湿度、接种量和时间)之间的关系模型,比较了GA-ANN、ANN和RSM在优化能力上的差异,优化条件下为0.869、0.906和0.867(R值),相比不优化条件的0.796、0.881和0.840,表明GA-ANN在捕捉系统非线性行为的独特优势。
     通过PEG浓缩、硫酸铵沉淀、乙醇洗涤和Sephadex G-200、DEAE A-50、Sephadex G-200,从SD1-4胞外粗酶液中分离得到一种内切葡聚糖酶,经SDS-PAGE检测为单一条带,分子量约为38KD,能水解CMC-Na,最适温度为60℃和pH值为7.0,Vmax、Km分别为22.57U·ml-1·min-1和0.14%;0.2mM Co2+对该酶有较强的促进作用,0.8 mM Co2+对该酶有弱抑制作用。
In this study, a cellulose-degrading Actinomyces called SD1-4 screened from different habitats was identified as Streptomyces (Streptomyces sp.) based on the result of morphological, physiological and molecular studies.
     Liquid fermentation conditions of the strain SD1-4 were optimized for enzyme production, the results show that the initial pH was 8.0,, and optimum temperature was set at 39℃, and the optimum nitrogen source was yeast extract, the best salt addition level was 60 mgKCI and 15mg CaCl2, the best Sterilization time 40 min, the optimum liquid volume 50ml/250ml. The result also indicated that 0.15% Triton X-100 inhibit the enzyme production, reverse was true at 0.05% Triton X-100 treatment , PEG8000 and Tween -20 at two treatment concentrations showed promotion on the enzyme, however, SDS showed inhibitory effect on it; for enzyme production reached to the peak.detected at the first 9 days
     The result also showed Pennisetum purpereum Schumach was the most suitable carbon source; the index of selection energy grass was high in the contents of fiber, sugar , and proteins but low in the contents of amylose, glucose and fructose. were relatation analysis, principal component analysis, regression analysis and cluster analysis were used as the optimal statistical tools, but gray correlation analysis and path analysis were not suitable for screening. The nutrient content (9.04% soluble sugar, soluble protein was 3.37%, the starch content of 5.95%, the crude fiber content of 65.95%) of Pennisetum purpereum Schumach was the best fermentation ingredients.
     Designed by Box-Bohnken a related model has been constructed between cellulase production (endogulucanase, exoglucanase and glucosidase) and seven factors (temperature, pH, particle size, peptone concentration and humidity, inoculum and time). The difference of three models (GA-ANN, ANN and RSM) in optimization was compared. The R values were 0.869, 0.906 and 0.867 in the optimum conditions, compared to the R values of 0.796, 0.881 and 0.840 in non-optimal conditions ,, indicating that GA-ANN showed thw best in capturing nonlinear behavior.
     A kind of endoglucanase from the extracellular crude enzyme of SD1-4 was purified and concentrated by PEG, ammonium sulfate precipitation, ethanol washing, Sephadex G-200, DEAE A-50 and Sephadex G-200. The enzyme was monomer with a molecular weight, about 38KD and visuated in a band in SDS-PAGE. It could hydrolyze CMC-Na, and the optimum temperature was 60℃and pH 7.0. Vmax and Km, were 22.57 U·ml-1·min-1 and 0.14%. respectively. It wass found that 0.2 mM Co2+ added to media had a strong role in promoting enzyme,activity, but 0.8 mM Co2+ showed inhibitory effect on the enzyme activity.
引文
[1] Abdul J, Muhammad H R, Muhammad R J, et al. Kinetics and thermodynamics of a novel endoglucanase (CMCase) from Gymnoascella citrina produced under solid-state condition[J]. Journal of Industrial Microbiology and Biotechnology, 2008, 35(6): 515-524.
    [2] Adeyeye, Ademola D, Oyawale, et al. Mixture Experiments and their Applications in Welding Flux Design[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2008, 10-12(4): 319-326.
    [3] Ajay S, Jonathan D, Van D, et al. Surfactants in microbiology and biotechnology (Part 2): application aspects[J]. Biotechnology Advances, 2007, 25: 99-121.
    [4] Alam M Z, Muyibi S A, Wahid R. Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic wastewater sludge[J]. Bioresource Technology, 2008, 99: 4709-4716.
    [5] Amita R, Datta M. Xylanase production by a newly isolated Aspergillus foetidusstrain and its characterization[J]. Process Biochemistry, 2005, 40: 1763-1771.
    [6] Amrane A, Prignent Y. Lactic acid production from lactose in batch culture: analysis of data with the help of a mathematical model; relevance for nitrogen source and preculture assesmant[J].Appl Microbiol Biotechnol , 1994, 40: 644-9.
    [7] Anderson W F, Akin D E. Structural and chemical properties of grass lignocelluloses related to conversion for biofuels[J]. J Ind Microbiol Biotechnol, 2008, 35:355-366.
    [8] Andre L G, Rodrigo P N, Elba P S, et al. Streptomyces drozdowiczii cellulase production using agro-industrial by-products and its potential use in the detergent and textile industries [J]. Enzyme and Microbial Technology, 2005, 37(2):272-277
    [9] Antoni D, Zverlov V V, SchwarzW H. Biofuels from microbes[J]. Appl Microbiol Biotechnol, 2007, 77: 23-35
    [10] Arnold L D, Jose L A. Contributions of Microorganisms to Industrial Biology[J]. Mol Biotechnol , 2008, 38: 41–55
    [11] Awafo V A, Chahal D S, Simpson B K. Evaluation of combination treatments of sodium hydroxide ad steam exposion for the production of cellulose systems by the Trichoderma reesei mutants under solid-state fermentation conditions[J]. Bioresource Technol, 2000, 73: 235-245.
    [12] Ayhan D. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections[J]. Energy Conversion and Management, 2008, 49: 2106-2116.
    [13] Babitha S, Soccol C R, Pandey A. Solid-state fermentation for the production of Monascus pigments from jackfruit seed[J]. Bioresource Technol, 2007, 98, 1554-1560.
    [14] Babu K P, Satyanarayana T..Αlpha amylase production by thermophilic Bacillus
    [15] Bach K K. The nutritional significance“dietary Fibre”analysis[J]. Anim Feed Sci Technol, 2001, 90: 1-2.
    [16] Bhat M K. Cellulases and related enzymes in biotechnology[J]. Biotechnology Advances, 2000, 18: 355-383
    [17] Burke R M, Cairney J W G. Carbohydrolase production by the ericiod mycorrhizal fungus Hymenoscyphus ericae under solidstate fermentation conditions[J]. Mycol Res,1997,101:1135-1139.
    [18] Campbell C J, Laherrere J H. The end of cheap oil [J]. Sci Am, 1998, 30: 78-83.
    [19] Cerf O, Davey K R, Sadoudi A K. Thermal inactivation of bacteria -a new predictive model forthe combined effect of three environmental factors: temperature, pH and water activity[J]. Food Research International, 1996, 29: 219-226.
    [20] Chahal P S, Chahal D S, Ble G B. Production of cellulase in solid-state. Fermentation with Trichoderma reesei MCG80 on wheat straw. Appl Biochem Biotech, 1996, 57/58:433-442.
    [21] Chinn M S, Nokes S E, Strobel H J. Influence of Moisture Content and Cultivation Duration on Clostridium thermocellum 27405 in Solid Substrate Cultivation on Avicel[J]. Bioresource Technology, 2008, 99(7): 2664-2671.
    [22] Christopher E F. Synthetic biology and biomass conversion: a match made in heaven? [J]. J. R. Soc. Interface, 2009, 6: S547-S558.
    [23] Clarke D, Jablonski S, Moran B, et al. How can accelerated development of bioenergy contribute to the future UK energy mix? Insights from a MARKAL modelling exercise[J]. Biotechnology for Biofuels, 2009, 2:13
    [24] Cláudia P P, Sule Y, Carlos M S, et al. Enhancement of grape seed oil extraction using a cell wall degrading enzyme cocktail[J]. Food Chemistry, 2009, 115(1): 48-53
    [25] Creuly C, Larroche C, Gros J B. Bioconversion of fatty acids into methyl ketones by spores of Penicillium roqueforti in a water-organic solvent two-phase system[J]. Enzyme Microb, 1992, 14: 669-678.
    [26] Deepak R K, Cheng J J. Switchgrass for bioethanol and other value-added applications: A review[J]. Bioresource Technology, 2009, 100: 1515-1523.
    [27] Desai K M, Survase S A, Saudagar P S, et al. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan[J]. Biochemical Engineering Journal, 2008, 41: 266-273.
    [28] Doelle H W, Mitchell D A, Rolz C E. Solid Substrate Cultivation[J]. Elsevior Applied Science, England, 1992.
    [29] Dogaris I, Vakontios G, Kalogeris E, et al. Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol[J]. Industrial Crops and Products, 2009, 29: 404-411.
    [30] Elisashvili V, Kachlishvili E, Penninckx M. Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes[J]. Ind Microbiol Biotechnol, 2008, 35:1531-1538.
    [31] Elisashvili V, Penninckx M, Kachlishvili E, et al. Use of Pleurotus dryinus for lignocellulolytic enzymes production in submerged fermentation of mandarin peels and tree leaves[J]. Enzyme Microb Technol, 2006, 38:998-1004.
    [32] Faiez A, William A A, Murray M Y. New isolate of Streptomyces sp. with novel thermoalkalotolerant cellulases[J]. Biotechnol Lett, 2008, 30: 123-126.
    [33] Franois T, Estelle B, Agata Z, et al. Extraction of Green Labeled Pectins and Pectic Oligosaccharides from Plant Byproducts[J]. J. Agric. Food Chem., 2008, 56(19): 8926–8935
    [34] Gao J-M, Weng H-B, Zhu D-H, et al. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillusnext term terreus M11 under solid-state cultivation of corn stover[J]. Bioresource Technology, 2008, 99(16): 7623-762
    [35] Gervais, Patrick, Molin, et al. The role of water in solid-state fermentation[J]. Biochemical Engineering Journal, 2003, 13:85-101
    [36] Gervaisnext P, Molin P. The role of water in solid-state fermentation[J]. BiochemicalEngineering Journal, 2003, 13(2-3): 85-101.
    [37] Gomes J, Velho L, Silva F W, et al. Motion Processing Using Variable Harmonic Components[J]. COMPUTER ANIMATION, 2000, 5: 62
    [38] Helle S S, Duff S J B, Cooper D G. Effect of surfactants on cellulose hydrolysis[J]. Biotechnology and Bioengineering, 1993, 42: 611-617.
    [39] Hoekman S K. Biofuels in the U.S.-Challenges and Opportunities[J]. Renewable Energy, 2009, 34:14-22.
    [40] Horikoshi K. Alkaliphiles: some applications of their products for biotechnology[J]. Microbiol Mol Biol Rev, 1999, 63:735-750.
    [41] Ikasari L, Mitchell D A. Leaching and characterization of Rhizopus oligosporus acid protease from solid-state fermentation[J]. Enzyme Microb Technol, 1996, 19: 171-175.
    [42] Ikehata K, Buchanan I D, Smith D W. Recent developments in the production of extracellular fungal peroxidases and laccases for waste treatment[J]. Environ. Eng. Sci, 2004, 3:1-19.
    [43] Ito S. Alkaline cellulases from alkaliphilic Bacillus: enzymatic properties, genetics and application to detergents[J]. Extremophiles, 1997, 1:61-66.
    [44] Jain A K, Duin R P W, Mao J. Statistical pattern recognition: A review[J]. Transactions on Pattern Analysis and Machine Intelligence , 2000, 22, 4–37.
    [45] Jecu L. Solid state fermentation of agricultural wastes for endoglucanase production[J]. Ind. Crops Products, 2000, 11: 1-5.
    [46] J?rgensen H, Eriksson T, B?rjesson J, et al. Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888 [J]. Enzyme and Microbial Technolog, 2003, 32(7): 851-861
    [47] Kaal J E E, Field A J, Joyce W T. Increasing ligninolytic enzyme activities in several white-rot Basidiomycetes by nitrogen-sufficient media. [J]. Bioresour Technol, 1995, 53: 133-139.
    [48] Kachlishvili E, Penninckx M J, Tsiklauri N, et al. Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation[J]. World J. Microbiol,Biotechnol, 2006, 22: 391–397.
    [49] Kachlishvili E, Penninckx M J, Tsiklauri N, et al. Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation[J]. World Journal of Microbiology & Biotechnology, 2006, 22(4): 391-394.
    [50] Kagliwal L D, Survase S A, Singhal R S. A novel medium for the production of cephamycin C by Nocardia lactamdurans using solid-state fermentation[J]. Bioresource technology, 2009, 100(9): 2600-2606
    [51] Kang S W, Park Y S, Lee J S, et al. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass[J]. Bioresource Technology, 2004, 91: 153-156.
    [52] Kang S W, Park, Y S, Lee J S. et al. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass[J]. Bioresource Technology, 2004, 91: 153-156.
    [53] Karnik S R, Gaitonde V N, Davim J P. A comparative study of the ANN and RSM modeling approaches for predicting burr size in drilling[J]. Int J Adv Manuf Technol, 2008, 38:868–883
    [54] Karthikeyan R S, Rakshit S K, Baradarajan A. Optimization of batch fermentation conditions for dextran production[J]. Bioprocess Eng, 1996, 15: 247-251.
    [55] Kim B K, Le B H, Lee Y J, et al. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53 [J]. Enzyme andMicrobial Technology, 2009, 44(6-7): 411-416.
    [56] Kim J H, Hosobuchi M, Kishmoto M, et al. Cellulase production by solid-state culture system[J]. Biotechnol. Bioeng, 1995, 27: 1445–1450.
    [57] Kim J Y, Hur S H, Hong J H. Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810[J]. Biotechnology Letters, 2005, 27(5): 313-316.
    [58] Kormas K A, Tivey M K, Damm K V, et al. Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermalvent site[J]. Environmental Microbiology, 2006, 8(5): 909-920.
    [59] Kovács K, Szakacs G, Zacchi G. Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride[J]. Bioresource Technology, 2009, 100(3): 1350-1357
    [60] Kumar P, Satyanarayana T. Optimization of culture variables for improvingglucoamylase production by alginate-entrapped Thermomucor indicaeseudaticae using statistical methods[J]. Bioresource Technol, 2007, 98: 1252–1259.
    [61] Kumar R, Singh S, Singh O V. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives[J]. Journal of industrial microbiology & biotechnology, 2008, 35: 377-391.
    [62] Laxman R S, Sonawane A P, More S V, et al. Optimization and scale up of production of alkaline protease from Conidiobolus coronatus[J]. Process Biochemistry, 2005, 40: 3152-3158
    [63] Levin l, Herrmann C, Papinutti V L. Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology[J]. Biochemical Engineering Journal, 2008, 39(1): 207-214.
    [64] Li X Z. Streptomyces cellulolyticus sp. nov., a New Cellulolytic Member of the Genus Streptomyces[J]. Int J Syst Bacteriol, 1997, 47: 443-445.
    [65] Li X, Gao P. Isolation and partial properties of cellulose-decomposing strain of cytophaga sp LX-7 from soil[J]. Journal of Applied Microbiology, 1997, 82: 73-80.
    [66] Lissens G,Thomsen A B. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste[J]. Environ.Sci.Technol, 2004, 38: 34182-34241.
    [67] Liu C, Sun Z T, Du J H, et al. Response surface optimization of fermentation conditions for producing xylanase by Aspergillus niger SL-05[J]. Ind Microbiol Biotechnol, 2008, 35: 703-711.
    [68] Liu Y T, Long C N, Xuan S X, et al. Evaluation of culture conditions for cellulase production by two Penicillium decumbens under liquid fermentation conditions[J]. Biotechnology, 2008,136(1):328.
    [69] Lopez P, Bapteste E. Molecular phylogeny: reconstructing the forest[J]. Comptes Rendus Biologies, 2009, 332: 171-182.
    [70] Lu L M, Li Y L, et al. Purification and characterization of an endocellulase from the thermophilic fungus Chaetomium thermophilum CT2 [J]. Enzyme and Microbial Technology,2003,33(7):932-937
    [71] Lynd L R, Weimer P J, Zyl W H V, et al. Microbial cellulose utilization: fundamentals and biotechnology, Microbiol[J]. Mol. Biol. Rev, 2002, 66: 506–577.
    [72] Mandels m, Parrish F W, Reese E T. Sphorose as an inducer of cellulase in TrichodermaViride [J]. J Bacteriol, 1962, 83(2): 400-408.
    [73] Manteagudo J M, Rincon J, Rodriguez L, et al. Determination of the best nutrient medium for production of L lactic acid from beet molasses a statistical approach[J]. Acta Biotechnol, 1995, 13: 103-110.
    [74] Mason M G, Ball A S, Brandon J R, et al. Extracellular heme peroxidase in actinomycetes: a case of mistaken identity[J]. Applied and Environmental Microbiology, 2001, 67: 4512-4519.
    [75] Meinke A, Damude G, Tomme P, et al. Enhancement of the endo-beta- 1,4- glucanase activity of an exocellobiohydrolase by detetion of a surface loop[J]. Bio. chem., 1995,27(9): 4383- 4386.
    [76] Melaka N K, Singhania R R, Sukamaran R K, et al. Cellulase production under SSF by T. reesei: Statistical optimization of process parameters[J]. Appl Biochem. Biotechnol, 2008, 151:122-131.
    [77] Membrillo I, Sanchez C, Meneses M, et al. Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains[J]. Bioresource Technology, 2008, 99: 7842-7847
    [78] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Anal. Chem. ,1959,31:426–428.
    [79] Mirzaakhmedov S Y, Ziyavitdinov Z F, Akhmedova Z R, et al. Isolation, purification, and enzymatic activity of cellulase components of the fungus Aspergillus terreus[J]. Fermentation Biotechnology, 2007, 43(5): 594-597.
    [80] Mohana S, Shah A, Divecha J, et al. Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash[J]. Bioresource Technology, 2008, 99(16): 7553-7564.
    [81] Narayanan N K, Kumar S R, Parukuttyamma P. Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation[J]. Journal of industrial microbiology & biotechnology,2007;34(10):665-74
    [82] Nascimento R P, Junior N A, Pereira J N, et al. Brewer's spent grain and corn steep liquor as substrates for cellulolytic enzymes production by Streptomyces malaysiensis[J]. Letters in Applied Microbiology, 2009, 48(5): 529 - 535.
    [83] Palmer T. Enzymes: biochemistry, biotechnology, clinical chemistry[M]. Horwood Publishing, Chichester, UK,2001.
    [84] Panagiotou G, Kekos D, Macris B J, et al. Production of cellulytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation[J]. Ind. Crops Products, 2003, 18:37–45
    [85] Pandey A, Soccola C A, Mitchell D.. New developments in solid state fermentation: I-bioprocesses and products[J]. Process Biochemistry, 2000, 35(10): 1153-1169.
    [86] Pandey A. Solid-state fermentation[J]. Biochemical Engineering Journal, 2003, 13: 81-84.
    [87] Pardo A G. Effect of surfactants on cellulase production by Nectria catalinensis[J]. Current Microbiology, 1996, 33: 275-278.
    [88] Pérez J, Muňoz-Dorado J, Rubia T, et al. Biodegradation andbiological treatments of cellulose, hemicellulose and lignin: anoverview[J]. International Microbiology, 2002, 5(2): 53-63.
    [89] Po R W, Guh Y T, Yang M S. A new clustering approach using data envelopment analysis[J]. European Journal of Operational Research, 2009, 199:276-284.
    [90] Prior B A, Du Preez J C, Rein P W. Environmental parameters. In: Solid-substrate cultivation.[M]. Elsevier Applied Science, 1992, 65-86.
    [91] Rabinovich M L, Melnick M S, Bolobova A V. The Structure and Mechanism of Action of Cellulolytic Enzymes[J]. Biochemistry (Moscow), 2002, 67(8): 850-871.
    [92] Rajesh K, Rekha S. An alkali stable cellulase by chemicalmodification using maleic anhydride[J]. Carbohydrate Polymers, 2002, 47: 137-141.
    [93] Raman B, Pan C, Hurst G B, et al. Impact of Pretreated Switchgrass and Biomass Carbohydrates on Clostridium thermocellum ATCC 27405 Cellulosome Composition: A Quantitative Proteomic Analysis[J]. PLos One, 2009, 4(4): e5271
    [94] Rao J K, Kim C, Rhee S. Statistical optimization of medium for theproduction of a novel bioflocculant from Halomonas sp. V3a′using response surface methodology[J]. Biresource Technology, 2009, 100(23):5922-5927
    [95] Reese E T, Manguire A. Surfactants as stimulants of enzyme production by microorganisms[J]. Appl Microbiol, 1969, 17:242-245
    [96] Riveros T A, Porcasi L, Muliadi S, et al. Application of artificial neural networks in the prediction of product distribution in electrophoretically mediated microanalysis[J]. Electrophoresis, 2009, 30:2385-2389
    [97] Roling W F M, Schuutmans F P, Tiomtius K H, et al. Influence of prebrining treatments on microbial changes during the baceman stage in Indonesian kacap (soy sauce) production[J]. Ferment Bioeng, 1994, 77: 400-406.
    [98] Rumelhart D, Hinton G, Williams R. Learning representations by backpropagating errors[J]. Nature, 1986, 323:533–534.
    [99] Saha B C. Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides[J]. Process Biochemistry, 2004, 39(12):1871-1876
    [100] Sánchez O J, Cardona C A. Trends in biotechnological production of fuel ethanol from different feedstocks[J]. Bioresource Technology, 2008, 99: 5270-5295.
    [101] Sandro G, Pandy A, Osaku C A, et al. Characterization and stability of proteases from Penicillium sp. produced by solid-state fermentation[J]. Enzyme and Microbial Technology, 2003,32:246–251.
    [102] Saparrat M C N, Arambarri A M, Balatti P A. Growth response and extracellular enzyme activity of Ulocladium botrytis LPSC 813 cultured on carboxy-methylcellulose under a pH range[J]. Biology and Fertility of Soils, 2007, 44(2): 383-386.
    [103] Sarath G, Mitchell R B, Sattler S E, et al. Opportunities and roadblocks in utilizing forages and small grains for liquid fuels[J]. Ind. Microbiol. Biotechnol., 2008, 35(5): 343-54.
    [104] Saravanana D, Vasanthib N S, Ramachandranc T. A review on influential behaviour of biopolishing on dyeability and certain physico-mechanical properties of cotton fabrics[J]. Carbohydrate Polymers, 2009, 76(1): 1-7
    [105] Saxena R C, Adhikari D K, Goyal H B. Biomass-based energy fuel through biochemical routes: A review[J]. Renewable and Sustainable Energy Reviews, 2009, 13:167-178.
    [106] Shi J G, Zeng G M, Yuan X Z, et al. The stimulatory effects of surfactants on composting of waste rich in cellulose[J]. World Journal of Microbiology and Biotechnology, 2006,22(11):1121-1127
    [107] Singh A, Hayashi K. Microbial cellulases: protein architectures, molecular properties and biosynthesis[J]. Advances in Applied Microbiology, 1995, 40: 1-44.
    [108] Singh V, Khan M, Khan S, et al. Tripathi Optimization of actinomycin V production byStreptomyces triostinicus using artificial neural network and genetic algorithm[J]. Appl Microbiol Biotechnol, 2009, 82:379-385.
    [109] Sowbhagya H B, Chitra V N. Enzyme-Assisted Extraction of Flavorings and Colorants from Plant Materials[J]. Critical Reviews in Food Science and Nutrition, 2010, 50(2):146-161
    [110] Srinivasan S. The food v. fuel debate: A nuanced view of incentive structures[J]. Renewable Energy, 2009, 39(4): 950-954.
    [111] Stajic M, Persky L, Friesem D, et al. Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species[J]. Enzyme and Microbial Technology, 2006, 38: 65-73.
    [112] Stocsits R R, Letsch H, Hertel J, et al. Accurate and efficient reconstruction of deep phylogenies from structured RNAs[J]. Nucleic Acids Research, 2009, 37(18): 6184-6193
    [113] Sukumarana R K, Singhaniaa R R, Mathew G M, et al. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production[J]. Renewable Energy, 2009, 34(2): 421-424.
    [114] Sun Y, Cheng J Y. Hydrolysis of lignocellulosie materialsfor ethanol production: a review[J]. Bioresource Technol, 2002, 83(1): 1-11.
    [115] Taragano V, Pilosof A. Application of Doehlert designs for water activity, pH, and fermentation time optimization for Aspergillus niger pectinolytic activities production in solid-state and submerged fermentation[J].Enzyme Microb. Technol., 1999, 25:411-419.
    [116] Teather M R, Wood P J. Use of congo red-polysaccaride interaction in enumeration and characterization of cellulilytic bacteria from The bovine rumen[J]. Applied and Environmental Microbilogy, 1982, 38: 148-158.
    [117] Tena L N, Ima W T, Kim M K, et al. Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates[J]. Journal of Microbiological Methods, 2004, 56: 375-382
    [118] Tengerdy R P. Solid substrate fermentation[J]. Trends Biotechnol, 1985, 3: 96-99.
    [119] Viniegra-Gonza′lez G, Favela-Torres E, Aguilar C N, et al. Advantages of fungal enzyme production in solid state over liquid fermentation systems[J]. Biotechnology Engineering Journal, 2003, 13:157-167.
    [120] Wang C Y, Hsieh Y R, Ng C C, et al. Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05[J]. Enzyme and Microbial Technology, 2009, 44:373-379.
    [121] Wang F, Xiong X R, Liu C Z. Biofuels in China: opportunities and Biofuels in China: opportunities and challenges[J]. In Vitro Cell.Dev.Biol.-Plant, 2009, 45:342-349.
    [122] Watanabe H, Tokuda G. Animal cellulases[J]. Cell Mol Life Sci, 2001, 58(9): 1167-1178.
    [123] Xu Z H, Bail Y L, Xu X, et al. Production of alkali-tolerant cellulase-free xylanase by Pseudomonas sp. UN024 with wheat bran as the main substrate[J]. World J Microbiol. Biotechnol., 2005, 21:575-581.
    [124] Yamanaka T. The effect of pH on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro[J]. Mycologia, 2003, 95:584-589
    [125] Yang X X,Chen H Z. Bioconversion of corn straw by coupling ensiling and solid state fermentation[J] .Bioresourse Technol, 2001, 78(3): 277-280.
    [126] Yang Y.H., Wang B.C., Wang Q.H., et al. Research on solid state fermentation on rice chaff with a microbial consortium[J]. Colloid Surf, 2004,34: 1-6
    [127] Yoo I K, Chang H N, Lee E G, et al. Effect of B vitamins on the lactic acid fermentation by Lactobacillus casei[J]. J Ferment Bioeng, 1997, 84(2):172-175.
    [128] Yoon J J, Cha C J, Kim Y S, et al. Degradation of cellulose by the major endoglucanase produced from the brown-rot fungus Fomitopsis pinicola[J]. Biotechnology Letters, 2008, 30(8): 1373-1378.
    [129] Zhou J, Wang Y-H, Chu J, et al. Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14[J]. Bioresource Technology, 2008, 99(15): 6826-6833.
    [130]布坎南,吉本斯.伯杰细菌鉴定手册[M].北京:科学出版社,1984.591-607, 910-1182.
    [131]蔡凤.黑曲霉产纤维素酶系中内切酶的纯化和性质[J].齐鲁药事, 2006, 25(9): 553-555.
    [132]岑沛霖,蔡谨.工业微生物学[M].北京:化学工业出版社, 2000, 116-118.
    [133]陈冠军,杜娟,庄蕾等.脱墨用棘孢曲霉SM-L22纤维素酶系中内切酶的纯化及性质[J].微生物学报, 2001, 41(4): 469-474.
    [134]陈洪章.纤维素生物技术[M].北京:化学工业出版社,2005, 126-132.
    [135]陈健旋,陈莲.绿色木霉在啤酒糟基质上产纤维素酶条件的优化[J].亚热带植物科学, 2007, (3):23-26.
    [136]陈士成,曲音波.产中性纤维素酶芽孢杆菌Y106产酶条件优化[J].应用与环境生物学报, 2000,6(5):457-461.
    [137]陈天寿.微生物培养基的制造与应用[M].北京:中国农业出版社, 1995: 18-19.
    [138]成娟丽,张福元.霉菌固态发酵产酶的研究进展[J].饲料博览,2006,8:7-10.
    [139]程池,乐易林,熊涛,等.对里氏木霉Rut C-30所产非淀粉多糖酶系的分析[J].食品与发酵工业,30(6):64-67.
    [140]杜宗军,陈冠军,高培基等.黑色葡萄状穗霉纤维素酶的纯化和性质[J].青岛海洋大学学报, 2002, 32(1): 79-84.
    [141]段峰.玉米种皮固态发酵绿色木霉生产纤维素酶的研究[J].纤维素科学与技术,2007,15(4):49-54.
    [142]葛文中,李楠.绿色木霉应用的研究进展[J].黑龙江八一农垦大学学报, 2005, 17(2): 75-80.
    [143]谷淑波,樊广华,张晓艳. HPLC法快速测定墨西哥玉米和苏丹草中的糖类[J].现代仪器, 2005, 11(6): 25-27.
    [144]郭春腾,傅蓉,邓文汉,等.黑曲霉内切β-葡聚糖酶的纯化和性质[J].中国食品学报,2002,2(1):12-16
    [145]侯晓娟,王卫卫,李忠玲,等.一株产碱性纤维素酶放线菌的分离及酶学特性[J].西北大学学报(自然科学版), 2007, 5: 781-784.
    [146]胡标林,余守武,万勇,等.东乡普通野生稻全生育期抗旱性鉴定[J].作物学报, 2007, 33 (3) : 425 - 432
    [147]胡利勇,钟卫鸿.纤维素酶基因克隆及其功能性氨基酸研究进展[J].生物技术, 2003, 13(2): 43- 45.
    [148]黄丹莲,曾光明,黄国和,等.微生物产酶的不确定性因素确定化的一种方法[J].湖南大学学报(自然科学版), 2005, 32, 4: 94-98
    [149]黄飞,侯友夫,牛超超,等.基于遗传算法的盘式制动器碟形弹簧优化设计[J].机械设计与制造, 2009, 5(5): 27-29
    [150]黄太鹏,丁冉峰.机械预处理对纤维素酶降解的影响[J].西南民族大学学报(自然科学版), 2008, 34(5): 960-965.
    [151]冀春雪,杜风光,史吉平.纤维乙醇用纤维素酶的研究进展[J].酿酒科技, 2007, 7: 118-121
    [152]江华,于兆海.里氏木霉纤维素酶系的分离及其酶学性质[J].南京林业大学学报(自然科学版), 2007, 31(6): 48-52
    [153]姜秋会,熊亚,刁治民.康氏木霉固态发酵纤维素酶的初步研究[J].青海草业, 2004, 13(1): 6-9.
    [154]姜绪林,孙瑶,杨毅,等.霉固态发酵纤维素酶生物量的测定及发酵培养基的初步优化[J].食品与生物技术学报, 2005, 24(3): 101-105.
    [155]解新明,周峰,赵燕慧,等.多年生能源禾草的产能和生态效益[J].生态学报, 2008, 28(5): 2329-2342.
    [156]李高扬,李建龙,王艳等.优良能源植物筛选及评价指标探讨[J].可再生能源, 2007, 6: 84-89.
    [157]李合生,陈翠连,洪玉枝.植物生理生化实验原理和技术[M].武汉:华中农业大学出版社,1998:211-212
    [158]李合生,孙群,赵世杰.植物生理生化实验原理与技术[M].北京:高等教育出版社, 2000: 184-195.
    [159]李素波,孙智敏,周剑平等.康宁木霉菌株的诱变选育及固态发酵条件的优化[J].中国酿造, 2008, 13: 30-33.
    [160]李艳丽,许少春,许尧兴.碱性纤维素酶发酵工艺的初步研究[J].浙江农业学报2007, 19 (3) :202-205.
    [161]梁光义,贺祝英,武孔云,等.麻杏石甘汤麻黄碱含量影响因素的研究[J].中国中药杂志, 2007, 32(24): 2600-2613.
    [162]梁英彩.桂牧1号杂交象草选育研究[J].中国草地, 1999, 1: 19-22.
    [163]林英,吕淑霞,张蓓蓓,等.绿色木霉原生质体诱变筛选纤维素酶高产菌株[J].生物技术, 2006, 16(2): 50-5l.
    [164]林英,秦萍,杜志强,等.产纤维素酶绿色木霉F-UV264产酶条件优化[J].安徽农业科学, 2006, 34(11): 2312-2314.
    [165]林占熺,林辉.菌草学[M].北京:中国农业技术出版社, 2003
    [166]刘建国,周玉杰,张建安,等.以聚氨酯泡沫为载体固态发酵纤维素酶的工艺条件研究[J].现代化工, 2007, 27增刊(2): 338-341.
    [167]刘娜,石淑兰.木质纤维素转化为燃料乙醇的研究进展[J].现代化工, 2005, 25(3): 19-22
    [168]刘小飞,李科云,孟可爱,等.氮肥对桂牧一号杂交象草产草量、蛋白质产量及经济效益的影响[J].养殖与饲料, 2006, 1: 12-14.
    [169]刘韫滔,淑霞,龙传南,等.纤维素降解菌L-06的筛选、鉴定及其产酶条件的分析[J].生物工程学报, 2008, 24(6): 1112-1116.
    [170]陆克中,王汝传,章家顺.最优化问题全局寻优的PSO-BFGS混合算法[J].计算机应用研究2007, 24(5): 17-19.
    [171]路梅,李多川,张成省.嗜热毛壳菌内切β-葡聚糖酶的分离纯化及特性[J].微生物学报,2002,42(4):471-477
    [172]聂剑初.生物化学简明教程[M].高等教育出版社, 1995.
    [173]曲音波.纤维素乙醇产业化[J].化学进展,2007,19(7/8):1098-1108.
    [174]邵继海,胡俊林,孙毓临,等.一株产耐热纤维素酶放线菌的固体发酵研究[J].饲料工业, 2006, 27(24): 37-39.
    [175]沈志扬,郭春腾,邓文汉,等.分离纯化内切β-葡聚糖苷酶和部分N-末端序列分析[J].生物技术, 2001, 11(6): 7-9.
    [176]石长波,徐忠,杨铭铎.变性豆粕康氏木霉固态发酵及酶水解的研究[J].食品科学,2004,25(11): 210-212.
    [177]宋波,邓小文.一株能分解纤维素放线菌的固态发酵研究[J].生物技术, 2005, 15(6): 71-74.
    [178]宋金柱,杨谦,陈中祥,等.黄绿木霉纤维素酶提纯及其性质研究[J].哈尔滨工业大学学报, 2006, 38(11): 1923-1926.
    [179]孙冬梅,杨谦,宋金柱,等.黄绿木霉固定化生产纤维素酶及酶学特性的研究[J].林产化学与工业, 2006, 26(2): 79-82.
    [180]孙志强,王向中,王毓民等.基于均匀设计条件下的混料设计在油品配方中的应用[J].润滑与密封, 2005, 3(2): 143-147.
    [181]谭文彪,覃培龙.象草常规营养成分及总能含量分析[J].西南林学院学报, 2008, 28(3) 45-47
    [182]万泉,肖祥希.福建生物柴油木本能源植物概况、存在问题及展望[J].生物质化学工程, 2006,40(B12): 235-239.
    [183]王菁莎,王颉,刘景彬.康宁木霉固态发酵秸秆生产纤维素酶的研究[J].纤维素科学与技术,2005, 13(4): 26-28.
    [184]王锡彬,吴周新,林强,等.碳源对一株酵母菌产生纤维素酶的影响[J].中国食品学报, 2003,增刊: 53-57
    [185]王鑫,张希彪,刘建新,等.混料试验设计在西瓜包膜控释尿素配比研究中的应用[J].土壤通报, 2006, 37(6): 1142-1145
    [186]王在贵,何瑞国,张宏福,等.特异腐质霉纤维素酶的分离纯化与性质[J].激光生物学报,2008,17(4):554-558
    [187]吴斌,胡肄珍.产纤维素酶放线菌的研究进展[J].中国酿造, 2008, 178: 5-8.
    [188]吴大付,任秀娟,李东方,等.纤维素酶的应用现状与前景[J].广西轻工业,2007, 23(12): 1-2
    [189]吴兴泉,张一村,娄玉华,等.康宁木霉产纤维素酶固态发酵条件研究[J].河南工业大学学报(自然科学版),2008,29(3): 43-46.
    [190]吴雪昌,缪克排,钱凯先.链霉菌基因组及次生代谢研究进展[J].遗传学报, 2005, 32 (11): 1221-1227
    [191]夏法锋,贾振元,吴蒙华,等.用人工神经网络优化Ni-纳米TiN复合镀层的超声-电沉积工艺[J].稀有金属材料与工程,2008,37(8): 1379-1382.
    [192]夏黎明.可再生纤维素资源酶法降解的研究进展[J].林产化工通讯, 1999,33(1): 23-28.
    [193]肖春玲,徐常新.微生物纤维素酶的应用研究[J].微生物学杂志, 2002, 22(2): 33-35.
    [194]辛婷,张兴,谢逸萍,等.影响稻草降解及其产纤维素酶的几个关键性因素[J].食品工程技术, 2008, 10: 117-110.
    [195]徐杰,杨谦.一株高活力纤维素酶产生菌-链霉菌C-5产酶研究[J].太阳能学报, 2009, 30(5): 682-685.
    [196]杨永彬,谚谚,林跃鑫.纤维素酶的结构及分子多样性[J].生命的化学, 2004, 24(3): 211- 213.
    [197]杨在君,张利,杨瑞武,等.中药丹参及其近缘种中微量元素的主成分和聚类分析[J].光谱学与光谱分析, 2008, 28(10): 2441-2445
    [198]游文娟,陈大明.生物能源国际相关专利分析[J].生物产业技术, 2009, 5: 79-88
    [199]余雪梅.美国矮象草的引种试验[J].四川畜牧兽医, 2003, 30(4): 40-40.
    [200]袁晓华,杨中汉.植物生理生化实验[M].北京:高等教育出版社, 1983:1-5
    [201]张辉,黄德裕,李忠正.皇竹草的生物特性与化学组成[J].中国造纸, 2003, 22(5): 1-4.
    [202]张建新,刘起丽,李学梅等.康氏木霉固态发酵生产纤维素酶条件的研究[J].西北农林科技大学学报(自然科学版), 2005, 33(11): 99-102.
    [203]赵丽坤,郭会灿.微生物培养基优化方法概述[J].石家庄职业技术学院学报, 2008, 20(4): 50-52.
    [204]周剑忠,黄开红,董明盛,等.混料设计在藏灵菇奶纯培养发酵剂配方设计中的应用[J].中国农业科学, 2008, 41(3): 816-822
    [205]周晓宏,陈洪章,李佐虎.固态发酵中纤维素基质降解过程初步研究[J].过程工程学报, 2003, 3(5): 447-452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700