中国土壤微生物类脂物对现代过程的响应及其古环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类脂物作为生物标志化合物,其结构和组成的改变能够记录环境的变化,已经被广泛应用于多种沉积载体古环境的重建中。然而,根据“将今论古”的原理,类脂物的环境指示意义必须在现代过程中证实才能应用于恢复古环境变化。现代过程中类脂物对环境温度和降雨等响应的研究是类脂物应用于古环境重建的前提和基础。植物只能在较大时间尺度上才能响应环境的变化,而微生物类脂物的结构和组成变化能够迅速灵敏地记录下生存环境温度等的变化,在第四纪古环境研究中越来越显示出其重要的地位。土壤作为全球变化研究中的一个焦点,其微生物类脂物丰富,容易采集,且在不同气候带分布广泛,是研究现代过程中微生物类脂物对环境温度、降雨等响应的理想材料。
     本文选取了海南尖峰岭不同海拔表层土壤和中国不同气候带土壤对其中的微生物类脂物进行研究。不同海拔带来的温度差异和不同气候带的温度和降雨量差异为检验和建立基于微生物类脂物的有机地球化学指标提供了良好的条件。通过气相色谱-质谱仪与液相色谱-质谱仪检测了包括脂肪酸、脂肪醇、古细菌膜脂甘油四烷基链甘油四醚化合物(GDGTs),细菌支链GDGTs在内的多种微生物标志物,并尝试以这些微生物类脂物为基础建立新的古温度计。同时,对中国不同气候带表层土壤中的细菌支链GDGTs进行调查,查明了其分布的环境控制因素,建立适合中国区域范围内的古温度指标MBT/CBT指数的校正公式,并探索陆源输入指标BIT指数的环境影响因素。此外,还利用过氧化氢氧化土壤中GDGTs化合物,以模拟地质体中氧化条件下TEX86、MBT/CBT指数、BIT指数等所受的影响,为准确恢复古环境变化提供依据。上述的研究主要得到以下几点认识:
     1)尖峰岭不同海拔表层土壤中存在(反)异构脂肪酸,(反)异构脂肪醇、不饱和脂肪醇、3-羟基脂肪酸、2-羟基脂肪酸、古菌GDGTs与支链GDGTs等微生物标志物。土壤中微生物(反)异构脂肪醇是以蜡脂形式存在的,只有经过皂化才能释放出支链脂肪醇。在纯培养的革兰氏阳性菌和海洋好氧不产氧光合细菌中发现了含量明显的异构脂肪醇,为异构脂肪醇来源于微生物提供了直接证据。通过尖峰岭土壤微生物类脂物,建立了反异构十五酸/异构十五酸、反异构十五醇/异构十五醇、反异构十五醇/正构十五醇、不饱和十八醇/饱和十八醇四种新的古温度指标。反异构十五醇/异构十五醇比值、反异构十五醇/正构十五醇比值、不饱和十八醇/饱和十八醇比值均与海拔之间呈负相关关系,而反异构十五酸/异构十五酸比值却随海拔升高而逐渐增大。这其中,反异构十五醇/正构十五醇比值与由海拔换算成的年平均温度MAT、土壤pH的线性关系最为显著,其校正公式为α15/n-15=0.114*pH+0.0234*MAT-0.773(R2=0.80)。微生物脂肪酸和脂肪醇与海拔之间的相关关系,是微生物细胞膜适应温度变化的结果。此外,古细菌GDGTs与细菌支链GDGTs化合物均能够响应不同海拔温度变化,在陆地古环境重建中有较好的应用前景。
     2)细菌支链GDGTs与古细菌类异戊二烯GDGTs广泛存在于中国不同气候带土壤中,其相对含量变化主要受土壤pH控制。土壤pH在8.0以下时,细菌支链GDGTs较古菌GDGTs含量高;而在pH大于8.0的盐碱化土壤中,古细菌GDGTs一般比支链GDGTs丰度高很多。这些说明泉古菌更适合于盐碱化土壤中生存,而合成支链GDGTs的细菌则更适应酸性环境。古细菌GDGTs中无环的GDGTV (Cald)大部分来源于广古菌门,包括产甲烷古菌和嗜盐古菌等,而泉古菌醇GDGTⅣ与IV'(Cren)则主要来源于营氨氧化功能的泉古菌。基于此构建的古菌群落指数ACI= Cald/(Cald+Cren)表现出与土壤pH的相关性。ACI指数随土壤pH的变化呈现倒抛物线趋势,即随土壤pH增大,ACI值先变小再变大。ACI值的变化指示的是土壤中古菌群落的变化,即土壤pH在6.0~8.0之间时,泉古菌占主导地位;而当pH大于8并继续增大时,ACI值也逐渐增大,土壤中嗜盐古菌的丰度逐渐增加;在酸性环境中,泉古菌不太适合生存,因此酸性土壤中广古菌的相对含量有所增加。
     3)中国土壤支链GDGTs的甲基化指数MBT与环化指数CBT具有很好的环境指示意义。中国土壤中支链GDGTs的MBT与年平均降雨量或土壤pH的相关性高于年平均温度MAT,而在全球校正中MBT却主要与MAT相关,证明了全球校正在中国区域条件下会产生较大偏差;而环化指数CBT与土壤pH有很好的负相关关系,与全球校正一致。综合上述关系,建立了中国区域内陆地古温度重建校正公式MBT=-0.02+0.21*CBT+0.03*MAT(R2=0.83)和古降雨量重建公式MBT=0.134+0.109*CBT+0.000318*MAP(R2=0.86),提高了支链GDGTs应用于中国区域古环境重建中的准确性。
     4)陆源输入指数BIT值受土壤pH影响显著。土壤pH值增大时,其BIT值减小。pH大于6.0的土壤其BIT值大多小于1,这明显动摇了海洋沉积物BIT值正确估算陆源输入的前提,即BIT值必须接近于1。因此,在利用海洋沉积物BIT值估算陆源输入时,必须考虑陆源土壤的pH,以陆源土壤BIT值为基础,才能避免陆源输入的低估。
     5)随氧化程度加强,土壤TEX86逐渐减小,而CBT值却逐渐增大,说明含环的GDGTs较无环的GDGTs更容易被氧化。支链GDGTs甲基化指数MBT在氧化实验中保持稳定,古温度指标MBT/CBT受氧化影响很小。陆源输入指标BIT随氧化加强逐渐变大,表明支链GDGTs较古细菌GDGTs更抗氧化。因此,存在有机质氧化等降解过程的沉积物中使用BIT值容易造成高估。氧化实验的结果将对古环境重建中准确评估基于GDGTs所建立的指标受氧化等影响造成的偏差提供依据。
Lipids as biomarkers can record environmental change on basis of variations of their structures and compositions, and therefore have been widely applied to reconstruct paleoenvironment in diverse geologic settings. However, the present is the key to the past. The feasibility of proxies for paleoenvironment should be validated in the modern processes prior to their use in paleoenvironment interpretation. The study on the response of lipids to environmental temperatures and precipitation can provide the prerequisite and basis for application of lipids on paleoenvironment reconstruction. Plants can only respond to the environmental change at a large time scale while the structures and compositions of microbial lipids can sensitively track the ambient environmental change such as temperatures etc., thus playing a more and more important role in the Quarternary paleoenvironment research. Soils, as a focus of global change research, are the ideal materials for studying the response of microbial lipids to environments because soils are rich in microbial lipids, readily collected and widely distributed in different climate zones.
     This dissertation will focus on microbial lipids in the surface soils across an alitude transect of Mt. Jianfengling and from different climate zones of China. The temperature and precipitation difference as a result of altitudes and climate zones can provide favorable conditions for validating and establishing novel organic geochemical proxies in terms of microbial lipids. So many kinds of microbial lipids including fatty acids, fatty alcohols and archaeal or bacterial glycerol dialkyl glycerol tetraethers (GDGTs) have been detected by gas chromatogram and mass spectrometry as well as liquid chromatogram and tandem mass spectrometry, and also used to establish new paleothermometers. The factors controlling branched GDGTs distribution in surface soils from different climate zones of China have been investigated and the equation for MBT/CBT index has been calibrated to cater for its use in Chinese regional environment. Besides, the environmental factors influencing the terrestrial input index, BIT has also been determined. We also simulate the impact of oxidation on paleoenvironmental proxies including TEX86, MBT/CBT and BIT index by hydrogen peroxide, which may provide the basis for accurate paleoenvironmental interpretation. Integrated with progress in above research, conclusions were drawn as follows.
     1) The microbes in the surface soils of Mt. Jianfengling can produce diverse biomarkers including (anteiso) iso fatty acids,(anteiso) iso fatty alcohols, unsaturated fatty alcohols, 3-hydroxy fatty acids,2-hydroxy fatty acids, archaeal and bacterial GDGTs. The branched fatty alcohols in the soils occur as wax and can only be released by saponification. The iso fatty alcohols have been found in pure-cultured gram-positive bacterium and AAPB, thus providing direct evidence for the sources of branched fatty alcohols. Four novel paleothermometers including the ratios of a15/i15 (acids), a15/i15 (alcohols), a 15/n-15(alcohols) and unsatured/saturated octadecanol were established based on microbial lipids in the soils of Mt. Jianfengling, where the ratios of a15/i15 (alcohols), a 15/n-15(alcohols) and unsaturated/saturated octadecanol correlate negatively with altitudes while the ratio of a15/i15 (acids) increase with increasing altitudes. The most significant correlation exists between the ratio of a15/n-15(alcohols), altitudes-derived mean annual temperature (MAT) and soil pH, yielding a calibration equation a15/n-15= 0.114*pH+ 0.0234* MAT-0.773 (R2=0.80). The response of microbial fatty acids and alcohols to the altitude in fact results from the adaptation of microbial membrane to ambient temperature. Moreover, archaeal and bacterial GDGTs both show great potential in reconstructing terrestrial paleoenvironment due to their response to temperature change in Mt. Jianfengling.
     2) The microbial branched GDGTs and archaeal GDGTs are widely distributed in soils from different climate zones of China and their relative abundance are primarily controlled by soil pH. The microbial branched GDGTs have higher abundance than archaeal GDGTs when soil pH is below 8.0, while in the alkaline soils with pH higher than 8.0 the achaeal GDGTs markedly exceed in abundance over bacterial GDGTs. Archaeal GDGT V without rings are known to primarily come from Euryarchaeota including methanogens and halophilic archaea whereas crenarchaeol are mainly derived from ammonia-oxidizing Crenarchaeota. On this point, archaeal commomunity index (ACI) was defined to describe the relative abundance of Euryarchaeota and Crenarchaeota. The ACI shows a close relationship with soil pH, i.e. the ACI values decrease with higher soil pH first and then increase when soil pH is higher than 8.0. The ACI shows that the Crenarchaeota dominate when soil pH is between 6.0 and 8.0 while the abundance of halophilic archaea increase when soil pH is higher than 8.0. The reliance of ACI on soil pH indicates that the most suitable environment for ammonia-oxidizing Crenarchaeota to flourish may have pH between 6.0 and 8.0.
     3) The MBT and CBT index of branched GDGTs in Chinese soils show good environmental significance. The correlation coefficient between MBT in Chinese soils and mean annual precipitation (MAP) or soil pH is much higher than MBT vs. MAT while in global calibration MBT is closely related to MAT rather than MAP, indicating that global calibration for MBT and MAT does not fit for the paleoenvironment reconstruction in Chinese geologic settings. However, CBT index in Chinese soils also shows good negative correlation with soil pH, in consistent with its global calibration. Integrated with above relations, two new calibrations for paleotemperature and paleoprecipitation reconstruction in China were established, i.e. MBT=-0.02+0.21*CBT+ 0.03* MAT (R2=0.83) and MBT=0.134+0.109*CBT+0.000318*MAP (R2=0.86), which improved the accuracy in Chinese regional paleoenvironment reconstruction.
     4) The terrestrial input index, BIT is remarkably influenced by pH of Chinese soils. The BIT values decrease with higher soil pH. Most BIT values in the soils with pH higher than 6.0 are lower than 1, which can not fit for the prerequisite to accurately and correctly estimate the terrestrial input, i.e. the BIT values of soils should approximate to 1. Therefore, soil pH in the river drainage basin should be considered before terrestrial input estimation via BIT index. If the BIT values of soils are much lower than 1.0, terrestrial input estimation should be based on BIT values of soils to avoid underestimate.
     5) The TEX86 values decrease while CBT values increase with increasing oxidation of GDGTs in soils, suggesting that ring-bearing GDGTs are more readily degraded than GDGTs without rings. The MBT of branched GDGTs in soils keep constant throughout the oxidation experiment, leading to neglectable change in MBT/CBT-derived temperatures. The BIT values increase with enhanced oxidation, implying that branched GDGTs are more resistant to oxidation than archaeal GDGTs. Therefore, the oxidation of GDGTs in sediments may result in overestimate of terrestrial input via BIT index. The results in the oxidation simulation experiments will provide basis for accurately reconstructing paleoenvironment based on TEX86, MBT/CBT and BIT.
引文
[1]Sachs J P, Anderson R F, and Lehman S J. Glacial surface temperatures of the southeast Atlantic Ocean. Science,2001,293(5537):2077-2079.
    [2]Oppo D W, McManus J F, and Cullen J L. Abrupt climate events 500,000 to 340,000 years ago:Evidence from subpolar north Atlantic sediments. Science,1998, 279(5355):1335-1338.
    [3]Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science,2001, 294(5550):2345-2348.
    [4]Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon:Links to solar changes and North Atlantic climate. Science,2005,308(5723):854-857.
    [5]Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth and Planetary Science Letters,2008, 266(3-4):221-232.
    [6]Sartori M, Evans M E, Heller F, et al. The last glacial/interglacial cycle at two sites in the Chinese Loess Plateau:Mineral magnetic, grain-size and Be-10 measurements and estimates of palaeoprecipitation. Palaeogeography Palaeoclimatology Palaeoecology, 2005,222(1-2):145-160.
    [7]Hao Q Z, Oldfield F, Bloemendal J, et al. Particle size separation and evidence for pedogenesis in samples from the Chinese Loess Plateau spanning the past 22 m.y. Geology,2008,36(9):727-730.
    [8]Johnsen S J, DahlJensen D, Gundestrup N, et al. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations:Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science,2001,16(4):299-307.
    [9]Huang Y S, Street-Perrott F A, Perrot R A, et al. Glacial-interglacial environmental changes inferred from molecular and compound-specific delta C-13 analyses of sediments from Sacred Lake, Mt. Kenya. Geochimica et Cosmochimica Acta,1999, 63(9):1383-1404.
    [10]Bale R J, Robertson I, Leavitt S W, et al. Temporal stability in bristlecone pine tree-ring stable oxygen isotope chronologies over the last two centuries. Holocene,2010, 20(1):3-6.
    [11]Garfin G M, Hughes M K, Yu L, et al. Exploratory temperature and precipitation reconstructions from the Qinling Mountains, north-central China. Tree-Ring Research, 2005,61(2):59-72.
    [12]Bingham E M, McClymont E L, Valiranta M, et al. Conservative composition of n-alkane biomarkers in Sphagnum species:Implications for palaeoclimate reconstruction in ombrotrophic peat bogs. Organic Geochemistry,41(2):214-220.
    [13]Jia G D, Wei K, Chen F J, et al. Soil n-alkane delta D vs. altitude gradients along Mount Gongga, China. Geochimica et Cosmochimica Acta,2008,72(21):5165-5174.
    [14]Bai Y, Fang, X. M., Wang, Y.L., Kenig, F., Miao, Y., Wang, YX. Distribution of aliphatic ketones in Chinese soils:Potential environmental implications. Organic Geochemistry,2006,37:860-869.
    [15]Brassell S C, Eglinton G, Marlowe I T, et al. Molecular Stratigraphy-a New Tool for Climatic Assessment. Nature,1986,320(6058):129-133.
    [16]Huguet C, Smittenberg R H, Boer W, et al. Twentieth century proxy records of temperature and soil organic matter input in the Drammensfjord, southern Norway. Organic Geochemistry,2007,38(11):1838-1849.
    [17]Kim J H, Schouten S, Hopmans E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochimica et Cosmochimica Acta,2008, 72(4):1154-1173.
    [18]Schouten S, Hopmans E C, Schefuss E, et al. Distributional variations in marine crenarchaeotal membrane lipids:a new tool for reconstructing ancient sea water temperatures? Earth and Planetary Science Letters,2002,204(1-2):265-274.
    [19]Wuchter C, Schouten S, Coolen M J L, et al. Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota:Implications for TEX86 paleothermometry. Paleoceanography,2004,19(4):-
    [20]Wuchter C, Schouten S, Wakeham S G, et al. Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter:Implications for TEX86 paleothermometry. Paleoceanography,2005,20(3):-
    [21]Weijers J W H, Schefuss E, Schouten S, et al. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation. Science,2007, 315(5819):1701-1704.
    [22]Mulch A, Graham S A, and Chamberlain C P. Hydrogen Isotopes in Eocene River Gravels and Paleoelevation of the Sierra Nevada. Science,2006,313:87-89.
    [23]Kim J H, Huguet C, Zonneveld K A F, et al. An experimental field study to test the stability of lipids used for the TEX86 and U-37(K') palaeothermometers. Geochimica et Cosmochimica Acta,2009,73(10):2888-2898.
    [24]Huguet C, de Lange G J, Gustafsson O, et al. Selective preservation of soil organic matter in oxidized marine sediments (Madeira Abyssal Plain). Geochimica et Cosmochimica Acta,2008,72(24):6061-6068.
    [25]Peterse F, Schouten S, van der Meer J, et al. Distribution of branched tetraether lipids in geothermally heated soils:Implications for the MBT/CBT temperature proxy. Organic Geochemistry,2009,40(2):201-205.
    [26]Peterse F, Kim J-H, Schouten S, et al. Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway). Organic Geochemistry,2009,40(6):692-699.
    [27]Weijers J W H, Schouten S, van den Donker J C, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochimica et Cosmochimica Acta,2007,71(3):703-713.
    [28]Woese C R, Kandler O, and Wheelis M L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A, 1990,87(12):4576-9.
    [29]Wakeham S G, Pease T K, and Benner R. Hydroxy fatty acids in marine dissolved organic matter as indicators of bacterial membrane material. Organic Geochemistry, 2003,34(6):857-868.
    [30]Lee A K Y, Chan C K, Fang M, et al. The 3-hydroxy fatty acids as biomarkers for quantification and characterization of endotoxins and Gram-negative bacteria in atmospheric aerosols in Hong Kong. Atmospheric Environment,2004, 38(37):6307-6317.
    [31]Jagersma G C, Meulepas R J W, Heikamp-de Jong I, et al. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment. Environmental Microbiology,2009, 11(12):3223-3232.
    [32]Bouloubassi I, Nabais E, Pancost R D, et al. First biomarker evidence for methane oxidation at cold seeps in the Southeast Atlantic (REGAB pockmark). Deep-Sea Research Part Ii-Topical Studies in Oceanography,2009,56(23):2239-2247.
    [33]Turich C, Freeman K H, Bruns M A, et al. Lipids of marine Archaea:Patterns and provenance in the water-column and sediments. Geochimica Et Cosmochimica Acta, 2007,71(13):3272-3291.
    [34]Summons R E, Jahnke L L, Hope J M, et al.2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature,1999,400(6744):554-557.
    [35]Xie S C, Pancost R D, Yin H F, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature,2005,434(7032):494-497.
    [36]Rashby S E, Sessions A L, Summons R E, et al. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proceedings of the National Academy of Sciences of the United States of America,2007, 104(38):15099-15104.
    [37]Zhang C L, Pancost R D, Sassen R, et al. Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico. Organic Geochemistry,2003,34(6):827-836.
    [38]Zhang C L, Li Y L, Wall J D, et al. Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico. Geology,2002,30(3):239-242.
    [39]Elvert M, Hopmans E C, Treude T, et al. Spatial variations of methanotrophic consortia at cold methane seeps:implications from a high-resolution molecular and isotopic approach. Geobiology,2005,3(3):195-209.
    [40]Boumann H A, Hopmans E C, van de Leemput I, et al. Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups. Ferns Microbiology Letters,2006,258(2):297-304.
    [41]Jaeschke A, den Camp H J M O, Harhangi H, et al.16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs. FEMS Microbiology Ecology,2009,67(3):343-350.
    [42]Blumenberg M, Kruger M, Nauhaus K, et al. Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environmental Microbiology,2006, 8(7):1220-1227.
    [43]Vilcheze C, Llopiz P, Neunlist S, et al. Prokaryotic Triterpenoids-New Hopanoids from the Nitrogen-Fixing Bacteria Azotobacter-Vinelandii, Beijerinckia-Indica and Beijerinckia-Mobilis. Microbiology-Uk,1994,140:2749-2753.
    [44]Talbot H M, Rohmer M, and Farrimond P. Structural characterisation of unsaturated bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry. Rapid Communications in Mass Spectrometry,2007,21(10):1613-1622.
    [45]Knani M h, Corpe W A, and Rohmer M. Bacterial hopanoids from pink-pigmented facultative methylotrophs (PPFMs) and from green plant surfaces. Microbiology,1994, 140:2755-2759.
    [46]Damste J S S, Rijpstra W I C, Schouten S, et al. The occurrence of hopanoids in planctomycetes:implications for the sedimentary biomarker record. Organic Geochemistry,2004,35(5):561-566.
    [47]Madigan M and Martinko J, eds. Brock Biology of Microorganisms 11th ed.2005.
    [48]Lau A P S, Lee A K Y, Chan C K, et al. Ergosterol as a biomarker for the quantification of the fungal biomass in atmospheric aerosols. Atmospheric Environment,2006, 40(2):249-259.
    [49]Greenwood P F and Summons R E. GC-MS detection and significance of crocetane and pentamethylicosane in sediments and crude oils. Organic Geochemistry,2003, 34(8):1211-1222.
    [50]Huang K and Armstrong D W. GC-MS analysis of crocetane, phytane and some of their stereoisomers using cyclodextrin-based stationary phases. Organic Geochemistry,2009, 40(2):283-286.
    [51]Cvejic J H, Bodrossy L, Kovacs K L, et al. Bacterial triterpenoids of the hopane series from the methanotrophic bacteria Methylocaldum spp.:phylogenetic implications and first evidence for an unsaturated aminobacteriopanepolyol. Fems Microbiology Letters, 2000,182(2):361-365.
    [52]Gattinger A, Gunthner A, Schloter M, et al. Characterisation of Archaea in Soils by Polar Lipid Analysis. Acta Biotechnologica,2003,23(1):21-28.
    [53]DeLong E F. Archaea in coastal marine environments. Proc Natl Acad Sci U S A,1992, 89(12):5685-9.
    [54]MacGregor B J, Moser D P, Alm E W, et al. Crenarchaeota in Lake Michigan sediment. Applied and Environmental Microbiology,1997,63(3):1178-1181.
    [55]Karner M B, DeLong E F, and Karl D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature,2001,409(6819):507-10.
    [56]Juottonen H, Galand P E, and Yrjala K. Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Res Microbiol,2006, 157(10):914-21.
    [57]Dumitrescu M, Brassell S C, Schouten S, et al. Instability in tropical Pacific sea-surface temperatures during the early Aptian. Geology,2006,34(10):833-836.
    [58]Menzel D, Hopmans E C, Schouten S, et al. Membrane tetraether lipids of planktonic Crenarchaeota in Pliocene sapropels of the eastern Mediterranean Sea. Palaeogeography Palaeoclimatology Palaeoecology,2006,239(1-2):1-15.
    [59]Hofmann P, Stusser I, Wagner T, et al. Climate-ocean coupling off North-West Africa during the Lower Albian:The Oceanic Anoxic Event lb. Palaeogeography Palaeoclimatology Palaeoecology,2008,262(3-4):157-165.
    [60]Blaga C I, Reichart G J, Heiri O, et al. Tetraether membrane lipid distributions in water-column particulate matter and sediments:a study of 47 European lakes along a north-south transect. Journal of Paleolimnology,2009,41(3):523-540.
    [61]Damste J S S, Hopmans E C, Pancost R D, et al. Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments. Chemical Communications, 2000(17):1683-1684.
    [62]Weijers J W H, Schouten S, Schefuβ E, et al. Disentangling marine, soil and plant organic carbon contributions to continental margin sediments:A multi-proxy approach in a 20,000 year sediment record from the Congo deep-sea fan. Geochimica et Cosmochimica Acta,2009,73(1):119-132.
    [63]Nishihara M and Koga Y. Sn-Glycerol-1-Phosphate Dehydrogenase in Methanobacterium-Thermoautotrophicum-Key Enzyme in Biosynthesis of the Enantiomeric Glycerophosphate Backbone of Ether Phospholipids of Archaebacteria. Journal of Biochemistry,1995,117(5):933-935.
    [64]Weijers J W H, Schouten S, Hopmans E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environmental Microbiology,2006,8(4):648-657.
    [65]Brocks J J and Pearson A. Building the biomarker tree of life. Reviews in Mineralogy and Geochemsitry,2005,59:233-258.
    [66]Lee S, Kang S, Kim J N, et al. Structural analyses of the novel phosphoglycolipids containing the unusual very long bifunctional acyl chain, a,co-13,16-Dimethyloctacosanedioate in Thermoanaerobacter ethanolicus. Bull Korean Chem Soc,2002,23:1778-1784.
    [67]Damste Jaap S S, Ossebaar J, Abbas B, et al. Fluxes and distribution of tetraether lipids in an equatorial African lake:Constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings. Geochimica et Cosmochimica Acta,2009,73(14):4232-4249.
    [68]Schouten S, van der Meer M T J, Hopmans E C, et al. Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of Yellowstone National Park. Applied and Environmental Microbiology,2007,73(19):6181-6191.
    [69]Schouten S, Ossebaar J, Brummer G J, et al. Transport of terrestrial organic matter to the deep North Atlantic Ocean by ice rafting. Organic Geochemistry,2007,38(7):1161-1168.
    [70]Huguet A, Fosse C, Metzger P, et al. Occurrence and distribution of extractable glycerol dialkyl glycerol tetraethers in podzols. Organic Geochemistry,2010,41(3):291-301.
    [71]Hopmans E C, Weijers J W H, Schefu E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth and Planetary Science Letters,2004,224(1-2):107-116.
    [72]Weijers J W H, Panoto E, van Bleijswijk J, et al. Constraints on the Biological Source(s) of the Orphan Branched Tetraether Membrane Lipids. Geomicrobiology Journal,2009, 26(6):402-414.
    [73]Barns S M, Cain E C, Sommerville L, et al. Acidobacteria Phylum Sequences in Uranium-Contaminated Subsurface Sediments Greatly Expand the Known Diversity within the Phylum. Applied and Environmental Microbiology,2007,73(9):3113-3116.
    [74]Smith R W, Bianchi T S, and Savage C. Comparison of lignin phenols and branched/isoprenoid tetraethers (BIT index) as indices of terrestrial organic matter in Doubtful Sound, Fiordland, New Zealand. Organic Geochemistry, In Press, Corrected Proof.
    [75]Kim J H, Buscail R, Bourrin F, et al. Transport and depositional process of soil organic matter during wet and dry storms on the Tet inner shelf (NW Mediterranean). Palaeogeography Palaeoclimatology Palaeoecology,2009,273(3-4):228-238.
    [76]Kim J H, Schouten S, Buscail R, et al. Origin and distribution of terrestrial organic matter in the NW Mediterranean (Gulf of Lions):Exploring the newly developed BIT index. Geochemistry Geophysics Geosystems,2006,7.
    [77]Weijers J W H, Schouten S, Schefuss E, et al. Estimating soil organic carbon input to marine sediments. Geochimica et Cosmochimica Acta,2009,73(13):A1425-A1425.
    [78]van Dongen B E, Semiletov I, Weijers J W H, et al. Contrasting lipid biomarker composition of terrestrial organic matter exported from across the Eurasian Arctic by the five great Russian Arctic rivers. Global Biogeochemical Cycles,2008,22(1).
    [79]Kim J H, Ludwig W, Schouten S, et al. Impact of flood events on the transport of terrestrial organic matter to the ocean:A study of the Tet River (SW France) using the BIT index. Organic Geochemistry,2007,38(10):1593-1606.
    [80]Kim J H, Buscail R, Bzarzycka B, et al. Tracking soil organic matter export across the continent-ocean interface:A case study of the NW Mediterranean using the BIT index. Geochimica et Cosmochimica Acta,2008,72(12):A472-A472.
    [81]Weijers J W H, Schouten S, Spaargaren O C, et al. Occurrence and distribution of tetraether membrane lipids in soils:Implications for the use of the TEX86 proxy and the BIT index. Organic Geochemistry,2006,37(12):1680-1693.
    [82]Rueda G, Rosell-Mel A, Escala M, et al. Comparison of instrumental and GDGT-based estimates of sea surface and air temperatures from the Skagerrak. Organic Geochemistry, 2009,40(2):287-291.
    [83]Sluijs A, Schouten S, Pagani M, et al. Subtropical arctic ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature,2006,441(7093):610-613.
    [84]Verschuren D, Damste J S S, Moernaut J, et al. Half-precessional dynamics of monsoon rainfall near the East African Equator. Nature,2009,462(7273):637-641.
    [85]Hedges J I and Oades J M. Comparative organic geochemistries of soils and marine sediments. Organic Geochemistry,1997,27:319-361.
    [86]Huang W Y and Meinschein W G. Sterols as source indicators of organic materials in sediments. Geochimica et Cosmochimica Acta,1976,40:323-330.
    [87]Hugueta C, Lange G J d, Gustafsson O, et al. Selective preservation of soil organic matter in oxidized marine sediments (Madeira Abyssal Plain). Geochimica et Cosmochimica Acta,2008,72(24):6061-6068.
    [88]Weijers J W H, Schouten S, Sjuijs A, et al. Warm arctic continents during the Palaeocene-Eocene thermal maximum (vol 261, pg 230,2007). Earth and Planetary Science Letters,2008,268(1-2):243-243.
    [89]Guckert J B, Hood M A, and White D C. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae:increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Applied and Environmental Microbiology,1986, 52(4):794-801.
    [90]Kieft T L, Ringelberg D B, and White D C. Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and dessication in a porous medium. Applied and Environmental Microbiology,1994,60(9):3292-3299.
    [91]Schouten S, Eldrett J, Greenwood D R, et al. Onset of long-term cooling of Greenland near the Eocene-Oligocene boundary as revealed by branched tetraether lipids. Geology, 2008,36(2):147-150.
    [92]Damste J S S, Ossebaar J, Schouten S, et al. Altitudinal shifts in the branched tetraether lipid distribution in soil from Mt. Kilimanjaro (Tanzania):Implications for the MBT/CBT continental palaeothermometer. Organic Geochemistry,2008, 39(8):1072-1076.
    [93]周璋,李意德,林明献,等.海南岛尖峰岭热带山地雨林区26年的热量因子变化特征.生态学杂志,2009,28(6):1006-1012.
    [94]邱治军,邱坚锐,周光益,等.吊罗山与尖峰岭热带林区气象要素对比研究南吊罗山与尖峰岭热带林区气象要素.生态科学,2003,23(4):338-341.
    [95]蒋有绪,卢俊培,eds.中国海南岛尖峰岭热带林生态系统.1991,科学出版社:北京.18-28.
    [96]Bligh E G and Dyer W J. A rapid method of total lipid extraction and purification. Can. J. Physiol. Pharmacol.,1959,37(8):911-917
    [97]魏彦昌,欧阳志云,鸿苗,等.尖峰岭自然保护区土壤性质空间异质性.生态学杂志,2007,26(2):197-203.
    [98]郭正堂,吴海斌,魏建晶,等.用古土壤有机质碳同位素探讨青藏高原东南缘的隆升幅度.第四纪研究,2001,21(5):392-398.
    [99]司彬,温锐林,肖举乐.植物有机碳同位素及其在古环境研究中的应用.中国矿业,2007,16(9):100-102.
    [100]Frostegard A, Tunlid A, and Baath E. Phospholipid Fatty-Acid Composition, Biomass, and Activity of Microbial Communities from 2 Soil Types Experimentally Exposed to Different Heavy-Metals. Applied and Environmental Microbiology,1993, 59(11):3605-3617.
    [101]Zink K G, Wilkes H, Disko U, et al. Intact phospholipids-microbial "life markers" in marine deep subsurface sediments. Organic Geochemistry,2003,34(6):755-769.
    [102]Rajendran N, Matsuda O, Urushigawa Y, et al. Characterization of Microbial Community Structure in the Surface Sediment of Osaka Bay, Japan, by Phospholipid Fatty-Acid Analysis. Applied and Environmental Microbiology,1994,60(1):248-257.
    [103]Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil:a review. Biology and Fertility of Soils, 1999,29(2):111-129.
    [104]Harwood J L and Russell N J, eds. Lipids in Plants and Microbes.1984, G Allen & Unwin:London.
    [105]Gharaibeh A A and Voorhees K J. Characterization of lipid fatty acids in whole-cell microorganisms using in situ supercritical fluid derivatization/extraction and gas chromatography mass spectrometry. Analytical Chemistry,1996,68(17):2805-2810.
    [106]Xie S C, Chen F H, Wang Z Y, et al. Lipid distributions in loess-paleosol sequences from northwest China. Organic Geochemistry,2003,34(8):1071-1079.
    [107]White D C, Stair J O, and Ringelberg D B. Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. Journal of Industrial Microbiology,1996, 17(3-4):185-196.
    [108]Keinanen M M, Korhonen L K, Martikainen P J, et al. Gas chromatographic-mass spectrometric detection of 2-and 3-hydroxy fatty acids as methyl esters from soil, sediment and biofilm. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2003,783(2):443-451.
    [109]Matsumoto G I, Watanuki K, and Torii T. Hydroxy acids in Antarctic lake sediments and their geochemical significance. Organic Geochemistry,1988,13(4-6):785-790.
    [110]Huang X Y, Cui J W, Pu Y, et al. Identifying "free" and "bound" lipid fractions in stalagmite samples:An example from Heshang Cave, Southern China. Applied Geochemistry,2008,23(9):2589-2595.
    [111]Matsumoto G I, Shioya M, and Nagashima H. Occurrence of 2-hydroxy acids in microalgae. Phytochemistry,1984,23(7):1421-1423.
    [112]张巍,冯玉杰.松嫩平原不同盐渍土条件下蓝藻群落的生态分布.生态学杂志,2008,27(5):718-722.
    [113]Ishige T, Tani A, Sakai Y R, et al. Wax ester production by bacteria. Current Opinion in Microbiology,2003,6(3):244-250.
    [114]Waltermann M, Hinz A, Robenek H, et al. Mechanism of lipid-body formation in prokaryotes:how bacteria fatten up. Molecular Microbiology,2005,55(3):750-763.
    [115]Treignier C, Derenne S, and Saliot A. Terrestrial and marine n-alcohol inputs and degradation processes relating to a sudden turbidity current in the Zaire canyon. Organic Geochemistry,2006,37(9):1170-1184.
    [116]Thiel V, Peckmann J, Seifert R, et al. Highly isotopically depleted isoprenoids:molecular markers for ancient methane venting. Geochimica et Cosmochimica Acta,1999, 63(23-24):3959-3966.
    [117]De Boever E, Birgel D, Thiel V, et al. The formation of giant tubular concretions triggered by anaerobic oxidation of methane as revealed by archaeal molecular fossils (Lower Eocene, Varna, Bulgaria). Palaeogeography, Palaeoclimatology, Palaeoecology, 2009,280(1-2):23-36.
    [118]Pearson A, Huang Z, Ingalls A E, et al. Nonmarine crenarchaeol in Nevada hot springs. Applied and Environmental Microbiology,2004,70(9):5229-5237.
    [119]Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature,2006,442(7104):806-809.
    [120]Hren M T, Pagani M, Erwin D M, et al. Biomarker reconstruction of the early Eocene paleotopography and paleoclimate of the northern Sierra Nevada. Geology,2010, 38(1):7-10.
    [121]Zhu K, Bayles D O, Xiong A M, et al. Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain alpha-keto acid dehydrogenase. Microbiology-Sgm,2005,151:615-623.
    [122]Annous B A, Becker LA, Bayles D O, et al. Critical role of anteiso-C-15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Applied and Environmental Microbiology,1997,63(10):3887-3894.
    [123]Rilfors L. Difference in Packing Properties between Iso and Anteiso Methyl-Branched Fatty-Acids as Revealed by Incorporation into the Membrane-Lipids of Acholeplasma-Laidlawii Strain-A. Biochimica Et Biophysica Acta,1985, 813(2):151-160.
    [124]Edgcomb M R, Sirimanne S, Wilkinson B J, et al. Electron paramagnetic resonance studies of the membrane fluidity of the foodborne pathogenic psychrotroph Listeria monocytogenes. Biochimica Et Biophysica Acta-Biomembranes,2000,1463(1):31-42.
    [125]Suutari M and Laakso S. Microbial Fatty-Acids and Thermal Adaptation. Critical Reviews in Microbiology,1994,20(4):285-328.
    [126]Willecke K and Pardee A B. Fatty acid-requiring mutant of Bacillus subtilis defective in branched chain a-keto acid dehydrogenase. The Journal of Biological Chemistry,1971, 246:5264-5272.
    [127]Eglinton T I and Eglinton G Molecular proxies for paleoclimatology. Earth and Planetary Science Letters,2008,275(1-2):1-16.
    [128]Rommerskirchen F, Eglinton G, Dupont L, et al. Glacial/interglacial changes in southern Africa:Compound-specific delta C-13 land plant biomarker and pollen records from southeast Atlantic continental margin sediments. Geochemistry Geophysics Geosystems, 2006,7.
    [129]Xie S C, Yi Y, Huang J H, et al. Lipid distribution in a subtropical southern China stalagmite as a record of soil ecosystem response to paleoclimate change. Quaternary Research,2003,60(3):340-347.
    [130]Chihib N E, Tierny Y, Mary P, et al. Adaptational changes in cellular fatty acid branching and unsaturation of Aeromonas species as a response to growth temperature and salinity. International Journal of Food Microbiology,2005,102(1):113-119.
    [131]Mudge S M. Fatty Alcohols-a review of their natural synthesis and environmental distribution.2005.
    [132]Suutari M and Laakso S. Unsaturated and Branched-Chain Fatty-Acids in Temperature Adaptation of Bacillus-Subtilis and Bacillus-Megaterium. Biochimica Et Biophysica Acta,1992,1126(2):119-124.
    [133]Wada M, Fukunaga N, and Sasaki S. Effect of Growth Temperature on Phospholipid and Fatty-Acid Compositions in a Psychrotrophic Bacterium, Pseudomonas Sp Strain E-3. Plant and Cell Physiology,1987,28(7):1209-1217.
    [134]Prahl F G and Wakeham S G Calibration of Unsaturation Patterns in Long-Chain Ketone Compositions for Paleotemperature Assessment. Nature,1987,330(6146):367-369.
    [135]Zachos J C, McCarren H, Bohaty S, et al. The magnitude of ocean warming during the PETM:Implications for forcing and climate sensitivity. Geochimica et Cosmochimica Acta,2007,71(15):A1150-A1150.
    [136]Zachos J C, Schouten S, Bohaty S, et al. Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum:Inferences from TEX86 and isotope data. Geology,2006,34(9):737-740.
    [137]熊永强,吴丰昌,王铜山,等.滇池湖泊沉积物中甘油二烷基甘油四醚脂的组成特征.沉积学报,2009,27(6):1191-1198.
    [138]Powers L A, Werne J P, Johnson T C, et al. Crenarchaeotal membrane lipids in lake sediments:A new paleotemperature proxy for continental paleoclimate reconstruction? Geology,2004,32(7):613-616.
    [139]Zink K-G, Vandergoes M J, Mangelsdorf K, et al. Application of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) to develop modern and past temperature estimates from New Zealand lakes. Organic Geochemistry, In Press, Accepted Manuscript.
    [140]Tierney J E and Russell J M. Distributions of branched GDGTs in a tropical lake system: Implications for lacustrine application of the MBT/CBT paleoproxy. Organic Geochemistry,2009,40(9):1032-1036.
    [141]Damste J S S, Ossebaar J, Abbas B, et al. Fluxes and distribution of tetraether lipids in an equatorial African lake:Constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings. Geochimica et Cosmochimica Acta,2009, 73(14):4232-4249.
    [142]璩向宁,王惠荣.宁夏盐池县近50年气候变化特征分析.宁夏工程技术,2006,5(4):321-322.
    [143]何璐瑶,胡超涌,曹振华,等.湖北清江和尚洞洞穴温度对气候变化的响应.中国岩溶,2008,27(3):273-282.
    [144]朱芸,陈晔,赵志军,等.神农架大九湖泥炭藓泥炭α-纤维素δ13C记录的1000~4000 a BP间环境变化.科学通报,2009,54(20):3108-3116.
    [145]王锐萍,刘强,文艳,等.鼎湖山和尖峰岭土壤及凋落物中微生物数量季节动态.土壤通报,2005,36(6):933-937.
    [146]Huguet C, Hopmans E C, Febo-Ayala W, et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Organic Geochemistry,2006,37(9):1036-1041.
    [147]Sinninghe Damste Jaap S, Ossebaar J, Schouten S, et al. Altitudinal shifts in the branched tetraether lipid distribution in soil from Mt. Kilimanjaro (Tanzania): Implications for the MBT/CBT continental palaeothermometer. Organic Geochemistry, 2008,39(8):1072-1076.
    [148]Damste J S S, Schouten S, Hopmans E C, et al. Crenarchaeol:the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. Journal of Lipid Research,2002,43(10):1641-1651.
    [149]de la Torre J R, Walker C B, Ingalls A E, et al. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environmental Microbiology,2008, 10(3):810-818.
    [150]Pearson A, Pi Y, Zhao W, et al. Factors Controlling the Distribution of Archaeal Tetraethers in Terrestrial Hot Springs. Applied and Environmental Microbiology,2008, 74(11):3523-3532.
    [151]胡璐,李心清,黄代宽,等.中国北方-蒙古干旱半干旱区土壤铵态氮的分布及其环境控制因素.地球化学,2008,37(6):572-580.
    [152]Schouten S, Hopmans E C, and Damste J S S. The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry. Organic Geochemistry, 2004,35(5):567-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700