分段进水多级生物膜反应器脱氮效能与动力学模型仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对部分城镇污水处理厂进水碳氮比较低,反硝化碳源不足和碳源有效利用率低,脱氮效果不理想等问题,以研发城镇污水高效脱氮工艺为目标,开发出分段进水多级生物膜反应器。通过分点进水数量、容积分配和流量分配等进水方式对脱氮效能的影响研究,确定了多级生物膜反应器较佳的分段进水方式,提高了碳源的利用率。在此基础上,对影响多级生物膜反应器同时硝化反硝化脱氮的关键因素:溶解氧(DO)、负荷、碱度及温度等进行了系统研究,得出了系统高效脱氮的关键参数。同时,建立了分段进水多级生物膜反应器同时硝化反硝化动力学模型,并采用Java软件进行了编程仿真。应用该模型的计算机仿真,可根据不同进水水质和处理目标,确定反应器级数,分段进水流量分配比及关键设计参数,为反应器的科学优化设计提供了强有力的理论依据。研究得出如下主要研究结论:
     ①反应器填料筛选试验表明:在相同试验条件下,采用悬浮填料和半软性组合填料的反应器总氮去除率分别为70%和69.4%,填料种类对反应器脱氮效果无显著影响,工程中建议采用防堵性能较好的半软性组合填料。
     ②分段进水方式研究表明:分点进水数量、容积分配和流量分配对反应器脱氮效能影响显著。在水温为25℃、溶解氧为5mg/L、挂膜密度为30%、有机负荷为1.2kgCOD/m~3.d和氮负荷为0.22kgTN/m~3.d的条件下,采用第1、3、6级分段进水和2:2:1的流量分配方式时,可使COD、NH_4~+-N和TN分别为205mg/L、32.5mg/L和36.8mg/L的城镇污水,出水COD、NH_4~+-N和TN分别为38mg/L、1.5mg/L和11.1mg/L,去除率分别为80%、95.3%和69.2%,达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A类排放标准。
     ③脱氮效能影响因素研究表明:DO、负荷、碱度及温度对反应器脱氮效能影响显著。当水温为15~20℃时,负荷由0.5kgCOD/m~3.d和0.14kgTN/m~3.d增加至1.5kgCOD/m~3.d和0.38kgTN/m~3.d时,硝化速率和反硝化速率分别由4.7gN/m~3.h和3.9gN/m~3.h,增加至11.8gN/m~3.h和8.8gN/m~3.h;同时硝化反硝化过程使系统碱度得到及时补充,使反应器中碱度保持在较高的水平,有利于反应器脱氮。水温≥15℃时,温度对同时硝化反硝化脱氮效果影响较小;当水温≤15℃时,硝化速率受温度的影响较显著,温度由15℃降低至5℃时,硝化速率由10.8gN/m~3.h下降至6.2gN/m~3.h,下降43%,反硝化速率由7.3gN/m~3.h下降至4.4gN/m~3.h,下降40%。
     ④在试验基础上,建立了分段进水多级生物膜反应器同时硝化反硝化动力学模型:
     ⑤同时硝化反硝化模型的计算机仿真研究表明:为了使COD、NH_4~+-N和TN分别为300mg/L、50mg/L和60mg/L的城镇污水达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A类排放标准,分段进水多级生物膜反应器最佳的反应器级数应为8级,各级的进水流量分配百分比分别为35%、15%、10%、15%、10%、10%、10%和0%,所需的水力停留时间≥7h。
     上述研究结果为分段进水多级生物膜反应器的工程应用提供了科学依据,为城镇污水处理提供了新途径,具有重要的理论意义及实用价值。
According to the problems that water sewage treatment plants in some cities and towns are in low carbon-nitrogen ratio, lack of carbon source for denitrification, low effective utilization of carbon source and non-ideal condition of nitrogen removal effect, aiming at the goal to develop the urban sewage efficient nitrogen removal technology, Step Feed Multi-stage Biofilm Reactor is developed. Through the study on the Nitrogen Removal Efficiency by the number of Step-feed point, volume distribution and flow distribution, and so on, Step Feed mode of Multi-stage Biofilm Reactor is established which increased the utilization of carbon sources. On this basis, A systematic study is made on the impact of simultaneous nitrification and denitrification in Multi-stage Biofilm Reactor such as dissolved oxygen (DO), load, ALK and temperature ,then the key parameters in systematic efficient nitrogen removal is obtained. At the same time, dynamic model of simultaneous nitrification and denitrification in step feed multi-stage biofilm reactor is established, and use the Java software for programming simulation. Applied the model of computer simulation, and according to the different water treatment and water quality objectives ,the model can identify reactor series, step-feed flow ratio and distribution of key design parameters of the simulation which provides a powerful tool for scientific designing optimization of the reactor . Major conclusions of the study are as follows:
     ①The screening test of packing in the reactors indicates that:under the same test conditions, the total nitrogen removal rate of reactor used suspended packing and semi-soft combined packing are respectively 70% and 69.4%, while it has no significant effect on nitrogen removal, and semi-soft combined packing which has a better anti-blocking performance is suggested in the engineering.
     ②The study of Step-feed indicates that: the number of Step-feed point, volume distribution and flow distribution have significant impact on the performance of nitrogen removal efficiency of the reactor. Under the condition of water temperature at 25℃, dissolved oxygen of 5mg/L, the biofilm density of the reactor of 30 percent, organic load of 1.2kgCOD/m~3.d, nitrogen load of 0.22kgTN/m~3.d, using section 1, 3, 6 Step-feed with 2:2:1 flow rate distribution can treat COD, NH_4~+-N and TN from 205mg/L、32.5mg/L and 36.8mg/L to 38mg/L, 1.5mg/Land 11.1mg/L respectively, with the removal rate respectively 80%, 95.3% and 69.2%, which achieved the A in first grade discharge standard of“Discharge standard of pollutants for municipal wastewater treatment plant”(GB18918-2002).
     ③The study of influencing factors of nitrogen removal efficiency indicates that: DO, load, temperature and alkalinity of the reactor affected the performance of nitrogen removal efficiency significantly, when the temperature is between 15℃and 20℃, the load increases from 0.5kgCOD/m~3.d and 0.14kgTN/m~3.d to 1.5kgCOD/m~3.d 0.38kgTN/m~3.d, nitrification rate and denitrification rate increased from 4.7gN/m~3.h and 3.9gN/m~3.h to 11.8gN/m~3.h and 8.8gN/m~3.h respectively. The process of simultaneous nitrification and denitrification decrease nitrification rate and denitrification rate of the system, when the water temperature is up 15℃, temperature has little influence on nitrogen removal efficiency in simultaneous nitrification and denitrification process; when the water temperature is below 15℃, nitrification rate is affected by the temperature notably; while the temperature declines from 15℃to 5℃, nitrification rate decreases from 10.8gN/m~3.h to 6.2gN/m~3.h, declined about 43 percent, and denitrification rate decreases from 7.3gN/m~3.h to 4.4gN/m~3.h, declined about 40 percent.
     ④On this basis, dynamic model of simultaneous nitrification and denitrification in step feed multi-stage biofilm reactor is established.
     ⑤The study on the simultaneous nitrification and denitrification model of computer simulation indicates that: in order to make the municipal sewage (COD、NH_4~+-N and TN is respectively 300mg/L、50mg/L and 60mg/L) reach the A in first grade discharge standard of“Discharge standard of pollutants for municipal wastewater treatment plant”(GB18918-2002), for optimum reaction series the step feed multi-stage biofilm reactor should be 8 series, and the water flow at all levels allocated to the respective percentages is 35%, 15%, 10%, 15% , 10%, 10%, 10% and 0%, and HRT≥7h.
     The results of the study provides a scientific basis for the Engineering application of step feed multi-stage biofilm reactor and a new way for urban sewage treatment. It has an important practical value and practical significance.
引文
[1]中国环境状况公报[J].国家环保局. 2007.
    [2] ICU Nam, JH Lee, CW Kimm and TJ Park. Enhanced biological nutrients removal using the combined fixed-film reactor with bypass flow[J], Water Res. 2000,34(5):1570~1576.
    [3] Khin Than. Annachhatre it P, Novel microbial nitrogen removal processes[J]. Biotechnology Advances. 2004,22:519~532.
    [4] M.C. M van Loosdrecht, M.S. M Jetten and T. Kuba. Microbiological Conversions in Nitrogen Removal. Wat Sci Tech[J]. 1998,38( 1):1~7.
    [5]高廷耀,夏四清,周增炎.城市污水生物脱氮除磷机理研究进展[J].上海环境科学,1999,18(1):16~18.
    [6] Y. Ma, Y.Z. Peng, S.Y. Wang, X.L.Wang. Fuzzy control of nitrate recirculation and external carbon addition in A/O nitrogen removal process[J]. Chinese Journal of Chemical Engineering. 2005,13(2):244~249.
    [7] J.A. Baeza, D. Gabriel, J. Lafuente. Effect of internal recycle on the nitrogen removal efficiency of an anaerobic/anoxic/oxic (A2/O) wastewater treatment plant (WWTP) [J]. Process Biochemistry. 2004,39:1615~1624.
    [8]曹国民,赵庆祥,张彤.单级生物脱氮技术的进展[J].中国给水排水. 2000,16(2):20~24.
    [9] Zhang Fengjun, et al. Invesigation of Sediment Pollutants in Guanting, Proceedings of International Conference on Environmental Concerns and Emerging Abatement Technologies, Volume II Beijing China. 2001,11:9~12.
    [10]吕锡武.同时硝化反硝化的理论和实践[J].环境化学. 2002 ,21(6): 564~570.
    [11] Pochana K, Keller J. Study of factors affecting simultaneous nitgrification and denitrification (SND) [J]. Water Science and Technology. 1999,39(6): 681~683.
    [12] Pochana K, Keller J. PaulLant. Model development for simultaneous nitrification and denitrification [J]. Water Science and Technology. 1999,39(1):235~243.
    [13] Zhao H W, Donald SMavinic, William KOldham.Controlling Factors for Simultaneous Nitrification and Denitrification in a Two Stage Intermittent Aeration Process Treating Domestic Sewage [J]. Wat.Res. 1999,33(4):971~978.
    [14] Daigger G T, Littleton, H X. Orbal氧化沟同时硝化/反硝化及生物除磷的机理研究[J].中国给水排水. 1999,15(3):1~7.
    [15]吕锡武,李锋,稻森悠平.氨氮废水处理过程中的好氧反硝化[J].给水排水. 2000,26(4):17~20.
    [16]高廷耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化反硝化现象[J].给水排水. 1998,24 (12): 6~9.
    [17] Steller K,Holley K. Simultaneous nitrification and denitrification in activated sludge floc [J]. Dissertation Abstracts International. 2003,64(5):23~38.
    [18]高景峰,彭永臻,王淑莹.有机碳源对低碳氮比生活污水好氧脱氮的影响[J].安全与环境学报. 2005,5(6):11~15.
    [19] Klangduen Pochana and Jurg Keller. Study of factors affecting simultaneous nitrification and denitrification(SND) [J]. Wat. Sci. Tech. 1999,39(6):61~68.
    [20] Carrio L,Streett F,Mahoney K,et al.Practical consider-allon for design of a step-feed biological nutnent removal system[A]. Proceedings of 73rd Annual Conference and Exposition.USA: Anaheim,California, 2000.
    [21]徐伟锋,孙力平. DO对同步硝化反硝化的影响[J].城市环境与城市生态. 2003,(2):8~10.
    [22]赵玲,张之源.复合SBR系统中同步硝化反硝化现象及其脱氮效果[J].工业用水与废水. 2002,33(2):4~6.
    [23]王伟,彭永臻等.溶解氧对分段进水生物脱氮工艺的影响[J].中国环境科学. 2006,26(3): 293~297.
    [24]杨青,刘遂庆,甘树应. Carrousel氧化沟中的同时硝化/反硝化(SND)现象研究[J].环境科学. 2002,23(12):40~43.
    [25]姜苏,周集体,郭海燕等.一体化A /O生物膜反应器脱氮特性研究[J].环境科学与技术. 2005,28(2):71~73.
    [26]周健,李志刚,龙腾锐等.一体化多级生物膜反应器处理高氮小城镇污水脱氮试验研究[J].环境科学学报. 2007,11(11):1804~1808.
    [27] P.Klangduen,K.Jurg. Study of Factors Affecting Simultaneous Nitrification and Denitrification [J]. Wat. Sci. Tech. 1999, 39(6):61~68.
    [28] K. S. Honey. Simultaneous Nitrification and Denitrification in Activated Sludge Floc. University of MISSOURI-ROLLA[J], For Doctor Degree. 2003:3~15.
    [29] P.C.Chui.Y.Terashima, J.H. Tay and H.Ozaki,Wastewater treatment and nitrogen removal using submerged filter systems[J], Wat.Sci.Tech. 2001,43(1):225~232.
    [30] Collivignare C, Bertanza G. Simultaneous Nitrification-Denitrification process Sci Tech in Activated sludge plants performance and Applicability [J], Wat.Sci.Tech. 1999,40(45): 187~194.
    [31]郭海燕,周集体,姜苏等.一体化生物膜反应器处理生活污水试验研究[J].环境污染与治理. 2004,26(6):437~440.
    [32]周健,林明波,龙腾锐等.一体化间歇曝气多级生物膜反应器处理低温、低浓度城镇污水[J].中国给水排水. 2007,23(7):40~43.
    [33]周健,钟于涛,龙腾锐等. SBBR反应器处理粪便污水厌氧出水脱氮效能研究[J].给水排水. 2007,33(5):145~148.
    [34]蒋山泉,翟俊,肖海文等.序批式生物膜(SBBR)工艺同步脱氮除磷研究[J].四川大学学报(工程科学版). 2008,40(1):64~68.
    [35]高艳玲,许春生.生物脱氮反应器同步硝化反硝化研究[J].低温建筑技术. 2006,6: 131~133.
    [36]石利军,王旭江,杨凤林等.循环流生物膜反应器同时硝化反硝化实验研究[J].环境科学与技术. 2005,28(6):93~94.
    [37]齐唯.一体式膜一生物反应器(SMBR)中同步硝化反硝化研究.上海交通大学硕士学位论文. 2003.12.
    [38]周少奇,方汉平.低COD/NH4+-N比废水的同时硝化反硝化生物处理策略[J].环境污染与防治. 2000,22(1):18~21.
    [39] Ruiza q Jeisonb D, Chamy R. Nitrification with High Nitrite Accumulation for the Treatment of Wastewater with High Ammonia Concentration[J]. Water Res. 2003,37:1371~1377.
    [40] Wang J.L., Yang N. Partial Nitrification under Limited Dissolved Oxygen Conditions[J]. Process Biochemistry. 2004,39:1223~1229.
    [41]陈清后,李飞,张雁秋等.一种新型短程同步硝化反硝化生物膜工艺[J].环境科学与管理. 2007,32(10):87~89.
    [42]邱兆富,周琪等.低碳氮比城市污水短程生物脱氮试验研究[J].工业水处理.2006,26 (11):35~38.
    [43] Van Kempen R,Mulder JW,Uijterllnde CA,van Loosdrecht MCM.Overview:full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering[J].Water Sci Technol. 2001,44:145~152.
    [44]曾薇,彭永臻,王淑莹等.两段SBR法去除有机物及短程硝化反硝化[J].环境科学. 2002, 23(2):50~55.
    [45] Villaverde S, FDZ-POlanco and Garcia P. A. Nitrifying biofilm acclimation to free ammonia in submerged biofilters[J]. Start-up influence.Wat.Res.,2000,34(2):602~610.
    [46]林进条,林涛,刘丽玲.新型生物脱氮工艺的研究进展.净水技术. 2005,24(2):48~50.
    [47] Third KA,Slieker AO,Kuenen JG,Jetten MAM.The CANON system(Completely Autotrophic Nitrogen removal Over Nitrite)under Ammonium Limitation:Interaction and Competition between Three Groups of Bacteria[J]. Systematic and Applied Microbiology. 2001,24(4): 588~596.
    [48] Mike S. M. Jetten, Wagner M,Fuerst J., M. C. M. van Loosdrecht, Kuenen G, Strous M. Microbiology and Application of the Anaerobic Ammonium Oxidation (ANAMMOX) Process[J]. Curr Opin Biotechnol. 2001,12:283~288.
    [49] Linping Kuai, Willy Verstraete. Ammonium removal by the oxygen-limited autotrophic nitrificanon-denitrification system[J]. Appl. Envir. Microbial. 1998,64: 4500~4506.
    [50]贾呈玉,李道棠,杨虹.低碳氮比废水生物脱氮新技术[J].上海环境科学.2003,22(5): 349~352.
    [51] C. Hellinga, A.A.J.C. Schellen, J.W. Minder, M.C.M. van Loosdrecht, J.J. Jeijnen. The SHARON Process: an Innovative Method for Nitrogen Removal from Ammonium Rich Wastewater[J]. Wat. Sci. Tech. 1998,37:135~142.
    [52] Hyungseok Yoo, Kyu H.A., Hyung-Jie L., Kwang-Hwan L., Youn-Jung K., Kyung-Guen S. Nitrogen Removal from Synthetic Wastewater by Simultaneous Nitrification and Denitrification via Nitrite in an Intermittently-aerated Reactor[J]. Res. 1999 ,33(1):146~149.
    [53]祝贵兵,彭永臻,吴淑云等. C/N比对分段进水生物脱氮的影响[J].中国环境科学.2005, 25(6):641~645.
    [54] G.B. Zhu, YZ. Peng, S.Y Wu, S.YWang. Automatic control strategy for step feed biological nitrogen removal process[J]. Journal of Environmental Science. 2005,17(3): 455~457.
    [55] YZ. Peng, GB. Zhu and S.Y Wang. Use Parameter for Improved Nitrogen Removal Process. Environmental Informatics of C/N Ratio as Fuzzy in Step-Feed Biological Control Nitrogen Archives. 2004, 2: 706~713.
    [56] Shigeo Fuji.i Theoretical analysis on nitrogen removal of the step-feed anoxic-oxic activated sludge process and it’s application for the optimal operation[J]. Water Sci and Tech. 1996, 34(1-2): 459~466.
    [57] GORGUN E, ARTAN E, ORHON D,et al.Evaluation of nitrogen removal by step feeding in large treatment plants[J]. WaterSci and Tech. 1996,34(1-2): 253~260.
    [58]邱慎初,丁堂堂.分段进水的生物除磷脱氮工艺[J].中国给水排水. 2003,19(4):32~36.
    [59]吴淑云.分段进水生物脱氮工艺性能的研究.哈尔滨工业大学硕士学位论文. 2006.6.
    [60]祝贵兵,彭永臻,吴淑云等.分段进水生物脱氮工艺的优化控制运行研究[J].中国给水排水.2006,22(21):1~5.
    [61]吴淑云,祝贵兵,彭永臻.分段进水生物脱氮工艺最高脱氮率的探讨.哈尔滨工业大学学报. 2007,39(4):594~598.
    [62]鞠兴华,王社平等.采用遗传算法优化分段进水生物脱氮工艺的流量分配[J].中国给水排水.2006,22(21):89~92.
    [63]郭建华,彭永臻等.脉冲SBR处理城市污水深度脱氮的工艺特性[J].中国环境科学. 2007,27(1):62~66.
    [64]王伟,王淑莹,王海东等.连续流分段进水生物脱氮工艺控制要点及优化[J].环境污染治理技术与设备. 2006,7(10):83~87.
    [65]王伟,彭永臻,孙亚男.污泥回流比对分段进水A/O生物脱氮工艺的影响[J].中国环境科学. 2008,28(2):116~200.
    [66]刘秀红,王淑莹等.短程硝化的实现、维持与过程控制的研究现状[J].环境污染治理技术与设备. 2004,5(12):7~10.
    [67]《水和废水监测分析方法》(第四版) [M].中国环境科学出版社. 2002,12.
    [68]徐伟峰. DO对同步硝化反硝化影响及动力学[J].城市环境与城市生态. 2003,16(1):8~10.
    [69]室外排水设计规范(GB50014-2006).中国标准出版社. 2006.
    [70]张锡辉译.废水生物处理(第二版) [M].化学工业出版社.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700