EGSB与BAF耦合的废水处理新工艺及其影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将已经富集好的特殊功能结构厌氧颗粒污泥(具有甲烷化、反硝化和厌氧氨氧化等功能)的膨胀颗粒污泥床(EGSB)同曝气生物滤池(BAF)反应器技术集成,开发集厌氧甲烷化、厌氧氨氧化和短程硝化反硝化为一体的废水处理新工艺,采用合成废水试验研究该新工艺的主要影响因素。结果表明,该新工艺克服了厌氧处理出水含氨氮高的缺点,在高容积负荷速率下同时去除COD和营养氨组分,可以用于处理一般生活废水和高浓度工业废水,同时可以节约大量曝气供氧的能源消耗,将废水中大量COD转化成生物能源甲烷予以回收。
     ①将已富集好的好氧氨氧化菌接种到BAF中,控制DO范围:0.8~1.2 mg/L,pH值范围:7.8~8.5,温度范围:32℃~35℃,进水流量为13 mL/min,进水氨氮为50 mg/L左右、COD为100 mg/L左右和回流比为200%时,经过20多天的运行,出水氨氮小于0.1 mg/L、COD小于30 mg/L、亚硝态氮为45.55 mg/L和硝态氮为4.18 mg/L,成功实现了稳定的短程硝化。
     ②将EGSB和BAF集成,EGSB出水进入BAF进行短程硝化,BAF出水外回流至EGSB反应器为后者提供NO_2~--N,在不需外部投加NO_2~--N的条件下实现厌氧氨氧化、甲烷化和短程硝化反硝化的耦合。系统处理含氨氮40 mg/L和COD 500 mg/L合成废水,当外回流比为200%时,系统去除效果达到最好,出水氨氮浓度1.05 mg/L、亚硝态氮浓度4.3 mg/L、硝态氮浓度2.56 mg/L、COD浓度35.28 mg/L,COD、总氮、氨氮负荷去除速率分别为1.7718 kg/(m~3.d)、0.1368 kg/(m~3.d)、0.1639 kg/(m~3.d)。与传统活性污泥过程相比较,系统节约O2 9.1303×10~(-4) kg/d和COD 2.9292×10~(-3) kg/d,回收甲烷1.03 L/d。
     ③集成系统处理含氨氮30 mg/L和COD 300 mg/L的合成废水a,当外回流比为200%时,出水氨氮浓度1.06 mg/L、亚硝态氮浓度3.4 mg/L、硝态氮浓度1.13 mg/L、COD浓度18.2 mg/L,COD、总氮、氨氮去除负荷速率分别为1.1799 kg/(m~3.d)、0.1069 kg/(m~3.d)、0.1246 kg/(m~3.d),表明集成系统可以用于处理该条件的合成废水,得到较好的处理效果。
     ④集成系统处理含氨氮40 mg/L和COD 900 mg/L的合成废水c,当外回流比为200%时,出水氨氮浓度1.07 mg/L、亚硝态氮浓度4.39 mg/L、硝态氮浓度1.97 mg/L、COD浓度70.47 mg/L,COD、总氮、氨氮去除负荷速率分别为3.4571 kg/(m~3.d)、0.1398 kg/(m~3.d)、0.1647 kg/(m~3.d),表明集成系统可以用于处理该条件的合成废水,得到较好的处理效果。
     ⑤EGSB-BAF集成系统处理含氨氮120 mg/L和COD 900 mg/L的合成废水d,当外回流比为200%时,出水氨氮浓度2.05 mg/L、亚硝态氮浓度12.89 mg/L、硝态氮浓度2.6 mg/L、COD浓度44.08 mg/L、COD、总氮、氨氮去除负荷速率分别为3.5633 kg/(m~3.d)、0.4334 kg/(m~3.d)、0.4948 kg/(m~3.d),表明集成系统可以用于处理该条件的合成废水,达到较好的处理效果。
     ⑥EGSB-BAF集成系统处理含氨氮120 mg/L和COD 1200 mg/L的合成废水e,当外回流比为200%时,出水氨氮浓度3.21 mg/L、亚硝态氮浓度10.62 mg/L、硝态氮浓度3.04 mg/L、COD浓度86.67 mg/L,COD、总氮、氨氮去除负荷速率分别为4.6342 kg/(m~3.d)、0.435 kg/(m~3.d)、0.4885 kg/(m~3.d),表明集成系统可以用于处理该条件的合成废水,达到较好的处理效果。
     ⑦比较试验a-e的结果表明,进水COD浓度越高,厌氧氨氧化菌活性越低,EGSB中氨氮去除效率越低。EGSB中污泥的反硝化和甲烷化活性,BAF中污泥的反硝化活性则随着有机物浓度的增大均得到不同程度增强。集成系统处理高有机物浓度废水时,只要氨氮达到一定的浓度,使得BAF中的短程硝化作用产生充足的亚硝态氮通过外回流进入EGSB中,就能缓解厌氧氨氧化和反硝化之间的基质竞争,使污泥的厌氧氨氧化活性增强,系统在得到较好去除效果的同时能够节约更多曝气供氧的能源消耗和有机碳源。
The EGSB reactor, in which anaerobic ammonium oxidation, methanogenesis and denitrification were already coupled, and BAF reactor were integrated to develop a new technology of wastewater treatment which made anaerobic ammonium oxidation, methanogenesis and shortcut nitrification-denitrification coupled in a system in the study. Different synthectic wastewaters were treated by the integrated system to demonstrate main effective factors. The results indicated the integrated system is adapted to treat domestic wastewater and high strenth industrial wastewater. It could also save plentiful energy expend by aeration, simultaneity converse a plentiful amount of COD in wastewater to CH_4. It could conquer high effluent concentration of NH_4~+-N in the anaerobic treatment and saved energy and organic substances requirements under the conditions of simultaneous removal of COD and ammonium at high loadings.
     ①Steady shortcut nitrification was achieved in BAF reactors inoculated with aerobic ammonia oxidation bacteria after the start-up operation of 20d. The concentration of NH_4~+-N and COD in the effluent was below 0.1 mg/L and 30 mg/L respectively, the concentration of NO_2~--N and NO_3~--N in the effluent was 45.55 mg/L and 4.18 mg/L respectively under the performance conditions that DO was between 0.8 and 1.2 mg/L, pH was controlled between 7.8 and 8.5, temperature was between 32~35℃,influent flux was 13 mL/min, the concentration of ammonium and COD in the inflow was 50 mg/L and 500 mg/L respectively and outer recycle ratio was 200%.
     ②The anaerobic ammonium oxidation, methanogenesis and shortcut nitrification-denitrification were successfully coupled in a system integrating EGSB and BAF reactors without adding NO_2~--N in the influent. The effluent of EGSB was treated by shortcut nitrification in BAF, while the effluent of BAF recycled to EGSB to provide NO_2~--N for the later. A synthetic wastewater containing COD of 500 mg/L and NH_4~+-N of 40 mg/L was treated by the EGSB-BAF integrated system, when different outer recycle ratios were used. The experimental results demonstrated that integrated system gained the best removal effect at the outer recycle ratio of 200%. The concentrations of NH_4~+-N, NO_2~--N, NO_3~--N and COD in the effluent of the system were 1 mg/L, 4.3 mg/L, 2.56 mg/L and 40 mg/L respectively on this recycle ratio condition. The removal loading rates of COD, total nitrogen and ammonium were 1.7718 kg/(m~3.d), 0.1368 kg/(m~3.d) and 0.1639 kg/(m~3.d), respectively. Compared with conventional activated sludge process, EGSB-BAF integrated system saved O_2 of 9.1303×10~(-4) kg/d and COD of 2.9292×10~(-3) kg/d, simultaneity reclaimed CH_4 of 1.03 L/d form the wastewater.
     ③A synthetic wastewater containing COD of 300 mg/L and NH_4~+-N of 30 mg/L was treated by the EGSB-BAF integrated system.The experimental results demonstrated the concentrations of NH_4~+-N, NO_2~--N, NO_3~--N and COD in the effluent of the system were 1.06 mg/L, 3.4 mg/L, 1.13 mg/L and 18.2 mg/L respectively at the outer recycle ratio of 200%. The removal loading rates of COD, total nitrogen and ammonium were 1.1799 kg/(m~3.d)、0.1069 kg/(m~3.d)、0.1246 kg/(m~3.d), respectively.The results indicated the integrated system adapted to treat synthetic wastewater on this condition and reached better removal effect.
     ④A synthetic wastewater containing COD of 900 mg/L and NH_4~+-N of 40 mg/L was treated by the EGSB-BAF integrated system.The experimental results demonstrated the concentrations of NH_4~+-N, NO_2~--N, NO_3~--N and COD in the effluent of the system were 1.07 mg/L, 4.39 mg/L, 1.97 mg/L and 70.47 mg/L respectively at the outer recycle ratio of 200%. The removal loading rates of COD, total nitrogen and ammonium were 3.4571 kg/(m~3.d)、0.1398 kg/(m~3.d)、0.1647 kg/(m~3.d), respectively. The results indicated the integrated system adapted to treat synthetic wastewater on this condition and reached better removal effect.
     ⑤A synthetic wastewater containing COD of 900 mg/L and NH_4~+-N of 120 mg/L was treated by the EGSB-BAF integrated system.The experimental results demonstrated the concentrations of NH_4~+-N, NO_2~--N, NO_3~--N and COD in the effluent of the system were 2.05 mg/L, 12.89 mg/L, 2.6 mg/L and 44.08 mg/L respectively at the outer recycle ratio of 200%. The removal loading rates of COD, total nitrogen and ammonium were 3.5633 kg/(m~3.d)、0.4334 kg/(m~3.d)、0.4948 kg/(m~3.d), respectively. The results indicated the integrated system adapted to treat synthetic wastewater on this condition and reached better removal effect.
     ⑥A synthetic wastewater containing COD of 1200 mg/L and NH_4~+-N of 120 mg/L was treated by the EGSB-BAF integrated system.The experimental results demonstrated the concentrations of NH_4~+-N, NO_2~--N, NO_3~--N and COD in the effluent of the system were 3.21 mg/L, 10.62 mg/L, 3.04 mg/L and 86.67 mg/L respectively at the outer recycle ratio of 200%. The removal loading rates of COD, total nitrogen and ammonium were 4.6342 kg/(m~3.d)、0.435 kg/(m~3.d)、0.4885 kg/(m~3.d), respectively. The results indicated the integrated system adapted to treat synthetic wastewater on this condition and reached better removal effect.
     ⑦The higher the concentration of COD in the inflow was, the lower the activity of anammox bacteria was, and the lower the removal efficiencies of NH_4~+-N from EGSB was compared the results among test a and test e. The activity of denitrification and methanogenesis in EGSB, denitrification in BAF were enhanced at different extent accompanying the concentration of organics increased. When the integrated system treated wastewater with high concentration of organics, it also could achieve better removal efficiencies, simultaneity saved more energy expend of O_2 and organic substances requirements on conditon that the concentration of NH_4~+-N increased to a certain degree to provide enough NO_2~--N outer recycling to EGSB by shortcut nitrification process in BAF in order to relieve the competition of interstitial substance between anaerobic ammonium oxidation and denitrification bacteria, and enhance the ability of anaerobic ammonium oxidation.
引文
[1] Verstraete W, Vandevivere P. Broader and newer application of anaerobic digestion [J]. Crit Rev Env Sci Tec, 1999, 28:151-173.
    [2] Kao M, Field JA and Lettinga G. The anaerobic treatment of low strength wastewater in UASB and EGSB reactor [J]. Water Sci Technol, 1997, 36(6-7):375-382.
    [3] Villaverde S. Recent developments on biological nutrient removal processes for wastewater treatment [J]. Reviews in Environmental Science and Bio/Technology, 2004, 3:171~183.
    [4]何连生,朱迎波.高效厌氧生物反应器研究动态及趋势[J].环境工程, 2004, 22(1):7-13.
    [5] Schmidt JE, Ahring BK.Granular Sludge Formation in Upflow Anaerobic Sludge Blanket (UASB) Reactors[J]. Biotechnol Bioeng, 1996, 49 : 229-246.
    [6]周琪.升流式厌氧污泥层反应器处理生活污水工艺与机理的研究[D].清华大学博士论文,1993.
    [7] Rebac S. High rate anaerobic treatment of malting wastewater in apilot-scale EGSB system under psychrophilic conditions[J]. Chem Tech Biotechnol, 1997, 68: 135-146.
    [8] ander LARM, Lettinga G. Anaerobic treatment of domestic sewage under moderate climatic (Dutch) conditions using upflow reactors at increased superficial level cities[J]. Wat Sci Tech ,1992, 25 (7) :167-178.
    [9] Austermann-Haun U, Meyer H, Seyfried CF, et al. Full scale experiences with anaerobic treatment plants in the food and beverage industry[J].Wat Sci Tech, 1999, 40(1): 305-312.
    [10] Zoutberg George R, Eker Z.Anaerobic treatment of potato processing wastewater[J].Wat Sci Tech, 1999, 40 (1): 297-304.
    [11] Dries J, Smul AD, Goethals L. High rate biological treatment of sulfate-rich wastewater in an acetate fed EGSB reactor[J]. Biodegradation, 1998, 9: 103-111.
    [12] Hwu CS, van Lier JB, Lettinga G. Physicochemical and biological performance of expanded granular sludge bed reactors treating long-chain fatty acids[J]. Process Biochemistry ,1998. 33(1) :75-81.
    [13] Zoutberg G R ,Franking R. Anaerobic treatment of chemical and brewery waste water with a new type of anaerobic reactor:the Biobed or EGSB reactor[J].Wat Sci Tech, 1996, 34(5- 6):375-381.
    [14]左剑恶,王妍春,陈浩,等. EGSB反应器的启动运行研究[J].给水排水, 2001,27 (3) :25-31.
    [15]任洪强,丁丽丽,陈坚,等. EGSB反应器中颗粒污泥床工作状况及污泥性质研究[J].环境科学研究, 2001, 14(3) :33-38.
    [16] Akunna JC, Bizeau C and Moletta R. Nitrate reduction by anaerobic sludge using glucose at various nitrate concentrations-ammonification-denitrification and methanogenic activities[J]. Environ Technol, 1994, 15:41-49.
    [17] Fetzer S and Conrad R.Effect of redox potential on methanogenesis by Methanosarcina barkeri[J]. Arch Microbiol, 1993, 160:108-113.
    [18] Roy R, Conrad R. Effect of methanogenic precursors (acetate,hydrogen,propionate) on the suppression of methane production by nitrate in anoxic rice field soil[J]. FEMS Microbiology Ecology, 1999, 28:49-61.
    [19] Kluber HD, Conrad R. Inhibitory effects of nitrate,nitrite,NO and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii[J]. FEMS Microbiol Ecol, 1998, 25:331-339.
    [20] Belay N, Jung KY, Rajogopal BS,et al. Nitrate as a sole nitrogen source for Methanococcus thermolithotrophicus and its effect on growth of several methanogenic bacteria[J].Curr Microbiol, 1990, 21:193-198.
    [21] Fischer R, Thauer RK. Methanogenesis from acetate in cell extracts of Methanosarcina barkeri: Isotope exchange between CO2 and the carbonyl group of acetyl-CoA, and the role of H2[J].Arch Microbiol, 1990, 153:156-162.
    [22] Clarens M, Bernet N, Delgenes JP, et al. Effects nitrogen oxides and denitrification by pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei[J].FEMS Microbiology Ecology, 1998, 25:271-276.
    [23]祖波,张代钧,白玉华.厌氧氨氧化菌特性及其在生物脱氮中的应用[J].微生物学通报, 2006, 33(1):149-153.
    [24]康晶,王建龙. COD对颗粒污泥厌氧氨氧化反应性能的影响[J].应用与环境生物学报, 2005, 11(5):604-607.
    [25] Kartala B, Rattray Jayne, van Niftrika LA,et al.Candidatus‘‘Anammoxoglobus propionicus’’a new propionate oxidizingspecies of anaerobic ammonium oxidizing bacteria [J]. Systematic and Applied Microbiology, 2007, 30: 39-49.
    [26] Guven D, Dapena A, Kartal B, et al. Propionate Oxidation by and Methanol Inhibition of Anaerobic Ammonium-Oxidizing Bacteria [J]. Applied and Environmental Microbiology, 2005 , 71 (2): 1066-1071.
    [27] Akunna JC, Bizeau C,Moletta R. Nitrate and nitrite reductions with anaerobic sludge using glucose at various carbon sources:glucose, glycerol,acetic acid,lactic acid and methanol[J].Wat Res , 1993, 27:1303-1312.
    [28] Akunna JC, Bizeau C and Moletta R. Denitrification in anaerobic digesters:possibilities andinfluence of wastewater COD/N-NOX ratio[J].Environ Technol, 1992, 13:825-836.
    [29]张波,徐剑波,蔡伟民.有机废物厌氧消化过程中氨氮的抑制性影响[J].中国沼气, 2003, 21 (3):26-31.
    [30] Calli B, Mertoglu B, Inanc B, et al.Effects of high free ammonia concentrations on the performances of anaerobic bioreactors[J].Process Biochemistry, 2005, 40: 1285-1292.
    [31] Hao X, Heijinen J J ,Van Loosdrecht M C M, et al. Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX biofilm process[J]. Water Research, 2002, 36:4 839-4 849.
    [32] Ying-Feng L, Kuo-Cheng C. Denitrification and methanogenesis in a coimmobilized mixed culture system[J].Wat Res, 1995, 29(1):35-43.
    [33] Hendriksen HV, Ahring BK. Integrated removal of nitrate and carbon in an upflow anaerobic sludge blanket (UASB)reactor: operating performance[J].Wat Res, 1996, 30(6): 1451-1458.
    [34] Jetten M S M, Horn S J, van Loosdrecht M C M. Towards a more sustainable municipal wastewater treatment system[J]. Water Sci Technol, 1997, 35:171-80.
    [35] Jeong-Hoon IM, Hae-Jin W, Myung-Won C, et al. Simultaneous organic and nitrogen removal from municipal landfill leachate using an Anaerobic-aerobic system[J].Wat Res, 2001, 35(10): 2403-2410.
    [36] Mosquera-corral A, Sanchez M, Campos JL, et al.Simultaneous methanogenesis and denitrification of pretreated effluents from a fish canning industry[J]. Wat Res, 2001, 35(2): 411-418.
    [37] Tal Y, Watts JEM, Schreier SB, et al. Characterization of the microbial community and nitrogen transformation processes associated with moving bed bioreactors in a closed recirculated mariculture system[J].Aquaculture, 2003, 215:187-202.
    [38] Zhang Daijun. The integration of methanogensis with denitrification and anaerobic ammonium oxidation in an expanded granular sludge bed reactor[J]. J of Environ Sci,2003,15 (3):423-432.
    [39] Eiroa M, Kennes C, Veiga MC.Formaldehyde and urea removal in a denitrifying granular sludge blanket reactor[J].Wat Res, 2004, 38:3495-3502.
    [40] Reyes-Avila J, Razo-Flores E, Gomez J.Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification[J].Wat Res, 2004, 38:3313-3321.
    [41] Jianlong W, Jing K.The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor[J].Process Biochemistry, 2005, 40: 1973-1978.
    [42] Sumino Tatsuo, Isaka Kazuichi, Ikuta Hajime,et al.Nitrogen Removal from Wastewater Using Simultaneous Nitrate Reduction and Anaerobic Ammonium Oxidation in Single Reactor[J]. Journal of bioscience and bioengineering, 2006, 102(4):346-351.
    [43] Chen J J, McCarty D, Slack D, et al. Full scale case studies of a simplified aerated filter (BAF)for organics and nitrogen removal[J].Water Science and Technology, 2000, 41(4-5):1-4.
    [44]邱立平,杜茂安,冯琦.二段曝气生物滤池处理生活污水的试验研究[J].环境工程, 2001, 19(2):22-24.
    [45] Cromphout J. Design of an upflow biofilm reactor for the elimination of high ammonia concentrations in eutrophic surface water ammonia concentrations in eutrophic surface water[J].Water Supply, 1992, 10(3):145-150.
    [46]李汝琪,孔波,钱易.曝气生物滤池处理生活污水试验[J].环境科学, 1999, 20(5):69-71.
    [47] Pujol Roger. Process improvements for upflow submerged biofilters[J]. Water 21, 2000, 4: 25-29.
    [48] Fdz-Polanco F, Mendez E, Uruena M A,et al. Spatial distribution of heterotrophs and nitrifiers in a submerged biofilter for nitrification[J].Water Res, 2000, 34(16):4081-4089.
    [49] Chen Shing-Der, Chen Chiu-Yang, Wang Yu-Feng.Treating high-strength nitrate wastewater by three biological processes[J].Water Sci Technol, 1999, 39(10-11):311-314.
    [50] Goncalves R F,Le Grand L, Rogalla F.Biological phosphorus uptake in submerged biofilters with nitrogenremoval[J].Water Sci Technol, 1993, 29(10-11):135-143.
    [51] Pujol R, Hamon M,Kandel X,et al.Biofilters: flexible, reliable biological reactors[J].Water Sci Technol, 1994, 29(10-11):33-38.
    [52]周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备, 2000,16(2):29-31.
    [53] Hellinga C.,Schellen A.A.J.C, van Loosdrecht J.W.M, et al. The SHARON process:and innovative method for nitrogen removal from ammoniu-rich wastewater[J].Water Res, 1998, 31(9):133-142.
    [54] Hellinga C., Schellen A.A.J.C, Mulder J.W., et al.The SHARON process:an innovative method for nitrogen removal from ammonium-rich wastewater[J].Water Sci Technol, 1998,37:135-142.
    [55] van Dongen U., Jetten M. S .M. , van Loosdrecht M.C.M..The SHARON-Anammox process for treatment of ammonium rich wastewater[J].Waster Sci Technol, 2001, 44(1):153-160.
    [56]李春杰,耿琰,顾国维等.SMSBR处理焦化废水中的短程硝化反硝化[J].中国给水排水, 2001, 17(1):8-12.
    [57]方士,李莜焕.高氨氮味精废水的亚硝化反亚硝化脱氮的研究[J].环境科学学报, 2001, 21(1):79-83.
    [58]马军,邱立平.曝气生物滤池中的亚硝酸盐积累及其影响因子[J].环境科学, 2003, 24(1): 84-90.
    [59] Lazarova, V.and J.Manem. Biofilm characterization and activity analysis in water and wastewater treatment[J].Water Res, 1995, 29:2227-2245.
    [60] Su J.L. and Ouyang C.F. Nutrient removal using a combined process with activated sludge andbiofilm[J].Water Sci Technol, 1997, 34(1-2):477-486.
    [61] T.T.LEE, et al. Dynamic Modeling and Simulation of Activated Sludge Process Using Orthogonal Collocation Approach[J].Water.Res, 1999, 33(1):73-86.
    [62] Wanner, O. and P.Reichert. Mathematical modeling of mixed-culture bilfilms[J].Biotechnol Bioeng, 1996(49):172-184.
    [63]刘雨,赵庆良等.生物膜法污水处理技术[M].中国建筑工业出版社, 2000.
    [64]王志盈,刘翔超等.高氨浓度下生物流化床内亚硝化过程的选择特性研究[J].西安建筑科技大学学报, 2000, 32(1)1-7.
    [65] Randall CW, Bath D. Nitrite build-up in actived sludge resulting from temperature effects[J]. Water Sci Technol, 1979, 8(1):256-263.
    [66]于德爽等,彭永臻,张相忠等.中温短程硝化反硝化的影响因素研究[J].中国给水排水, 2003, 9(1):40-42.
    [67]徐冬梅,聂梅生,金承基.亚硝酸型硝化的试验研究[J].给水排水, 1999, 25(7):37-39.
    [68]唐光临,孙国新,徐楚韶.亚硝化反硝化生物脱氮[J].工业水处理, 2001, 21(11):11-13.
    [69]史一欣,倪晋仁.晚期垃圾渗滤液短程硝化影响因素研究[J].环境工程学报, 2007, 1(7): 110-114.
    [70] Blackburne R, Yuan Z, Keller J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor[J]. Biodegradation, 2008, 19: 303-312.
    [71] Sliekers AO, Haaijer SCM, Stafsnes MH, et al. Competition and coexistence of aerobic ammonium and nitrite oxidising bacteria at low oxygen concentrations[J]. Appl Microbiol Biotechnol, 2005, 68: 808–817.
    [72] Pochana K, Keller J. Study of factors affecting simultaneous nitrification and denitrification (SND)[J]. Water Sci Technol, 1999, 39(6): 61–68.
    [73] Kuai LP and Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system[J]. Appl Environ Microbiol, 1998, 64: 4500–4506.
    [74] Kampschreur MJ, Tan NCG, Picioreanu C, et al. Role of nitrogen oxides in the metabolism of ammonia-oxidising bacteria[J]. Biochem Soc Trans, 2006, 34: 179–181.
    [75] Third KA, Sliekers AO, Kuenen JG, et al. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria[J]. Syst Appl Microbiol, 2001, 24: 588–596.
    [76] Peng YZ, Chen Y, Peng CY, et al. Nitrite accumulation by aeration controlled in sequencing batch reactors treating domestic wastewater[J]. Water Sci Technol, 2004, 50(10): 35–43.
    [77] Blackburne R, Yuan Z, Keller J. Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater[J]. Water Res, 2008, 42: 2166– 2176.
    [78] Pambrun V, Paul E, Sperandio M. Control and modelling of partial nitrification of effluents with high ammonia concentrations in sequencing batch reactor[J]. Chem Eng Proc, 2008, 47: 323–329.
    [79] Hwang B-H, Hwang K-Y, Choi E-S, et al. enhanced nitrite build-up proportion to increasing the ratio of alkality to NH4 of influent in biofilm reactor[J]. Biotechnol Lett, 2000, 22: 1287–1290.
    [80] Ciudad G, Gonzalez R, Bornhardt C, et al. Modes of operation and pH control as enhancement factors for partial nitrification with oxygen transport limitation[J]. Water Res, 2007, 41: 4621–4629.
    [81] Kim D-J, Lee D-I, Keller J. Effect of temperature and free ammonia on nitrification and nitrite accumulation by FISH[J]. Bioresource Technol, 2006, 97: 459–468.
    [82] Vadivelu VM, Keller J, Yuan Z. Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter[J]. Water Sci Technol, 2007, 56(7): 89–97.
    [83] Volcke EIP, Loccufier M, Noldus EJL, et al . Operation of a SHARON nitritation reactor, practical implications from a theoretical study[J]. Water Sci Technol, 2007, 56 (6): 145–154.
    [84] Tarre S and Green M. High-Rate Nitrification at Low pH in Suspended- and Attached-Biomass Reactors[J]. Appl Environ Microbiol, 2004, 70: 6481–6487.
    [85] Bernet N, Peng D, Delgenes J-P, et al. Nitrification at low oxygen concentration in biofilm reactor[J]. J Environ Eng ASCE, 2001, 127: 266-271.
    [86] Yun H-J and Kim D-J. Nitrite accumulation characteristics of high strength ammonia wastewater in an autotrophic nitrifying biofilm reactor[J]. J Chem Technol Biotechnol, 2003, 78:377–383.
    [87] Valentis G, Lesavre J. Waste-water treatment by attached-growth microorganisms on a geotextile support[J]. Water Sci Technol, 1989, 22(1-2):43-51.
    [88] Kent T D, Fitzpatrick C S, Williams S C. Testing of biological aerated filter(BAF) media[J]. Water Sci Technol, 1996, 29(10-11):197-208.
    [89]江萍,胡九成.国产轻质球型陶粒用于曝气生物滤池的研究[J].环境科学学报, 2002, 22(4): 459-464.
    [90]国家环境保护局.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社, 2002.
    [91]祖波,张代钧,阎青.一种新厌氧氨氧化菌的16S-rRNA基因序列的测试[J].环境科学, 2008, 29(2):469-473.
    [92]国际水协废水生物处理设计与运行数学模型课题组.活性污泥数学模型[M].张亚雷,李咏梅译.上海:同济大学出版社, 2002.
    [93]王春荣,王宝贞,王琳.两段曝气生物滤池的同步硝化反硝化特性[J].中国环境科学, 2005, (25):170-74.
    [94]祖波,张代钧,白玉华,等. EGSB反应器中耦合厌氧氨氧化与甲烷化反硝化的研究[J].环境科学研究, 2007, 20 (2):51-57.
    [95]朱静平,胡勇有,闫佳.有机碳源条件下厌氧氨氧化ASBR反应器中的主要反应[J].环境科学, 2006, 27(7):1353-1357.
    [96] Kalyuzhnyi S, Gladchenko M, Mulder A, et al. DEAMOX - New biological nitrogen removal process integrated on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite[J]. Wat Res, 2006, 40: 3637 -3645.
    [97] Kalyuzhnyi SV, Gladchenko MA, Kang H, et al. Development and optimisation of VFA driven DEAMOX process for treatment of strong nitrogenous anaerobic effluents[J]. Water Sci Technol, 2008, 57(3): 323-328.
    [98] Oskar Modina, Kensuke Fukushib, Kazuo Yama- motoc. Denitrification with methane as external carbon source[J]. Water Research, 2007, 41: 2726– 2738.
    [99] Boetius A, Ravenschlag K, Schubert C, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407: 623–626.
    [100] Hoehler TM, Alperin MJ, Albert DB, et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium[J]. Glob Biogeochem Cycles, 1994, 8: 451–463.
    [101] Nauhaus K, Boetius A, Kruger M, et al. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area[J]. Environ Microbiol, 2002, 4: 296–305.
    [102] Nauhaus K, Treude T, Boetius A, et al. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME -II communities[J]. Environ Microbiol, 2005, 7: 98–106.
    [103] Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440: 918-921.
    [104] Sabumon PC. Anaerobic ammonia removal in presence of organic matter: A novel route[J]. J Hazard Mat, 2007, 149: 49-59.
    [105] Holmes AJ, Gostello A, Lidstrom ME, et al. Envidence that particulate methane monoxygenase and ammonia monaxygenase may be evolutiona- rily related[J]. FEMS Microbiol Lett, 1995, 132: 203-208.
    [106] Murrell JC and Holmes AJ. Molecular biology of particulate methane monooxygenase. Proceeding of the 8th international symposium on Microbial Growth on C1 compounds.Netherlands : Kluwer Academic Pulishers, 1996.
    [107]杨洋,左剑恶,沈平,等.温度、pH值和有机物对厌氧氨氧化污泥活性的影响[J].环境科学, 2006, 27(4): 691-695.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700