混凝-Fenton法处理垃圾渗滤液的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾渗滤液经生物处理后仍难达标排放,因此本研究选用混凝与Fenton联用对经厌氧生物处理后的垃圾渗滤液进行深度处理,以期得到较好的处理效果。垃圾渗滤液先经吹脱处理,COD和NH_3-N浓度分别下降到2.37×10~3mg/L和295.7mg/L。
     混凝试验结果表明,硫酸铁、聚合硫酸铁和聚氯化铝铁三种絮凝剂能有效去除垃圾渗滤液的色度和COD,pH值为5的聚合硫酸铁对垃圾渗滤液的色度和COD去除效果最好;投加有机高分子阳离子絮凝剂聚丙烯酰胺作助凝剂,能提高垃圾渗滤液的色度和COD去除率。通过正交试验确定优化条件:pH值为5.2,聚合硫酸铁浓度为9.1 mmol/L,反应时间8 min,助凝剂浓度5 mg/L。此时垃圾渗滤液的色度去除率为75.6%,COD去除率为56.7%。
     将混凝处理后的垃圾渗滤液再分别进行光助芬顿(Photo/Fenton)、超声波协助芬顿(US/Fenton)氧化处理,确定优化条件,比较两者在各自优化反应条件下对垃圾渗滤液COD和色度的去除效果,并对其相关机理进行研究。结果表明,Photo/Fenton反应中,当pH值为2.5,Fe~(2+)浓度为5 mmol/L,H_2O_2浓度为570 mmol/L时,反应120 min,垃圾渗滤液的色度和COD去除率分别达到最高值99.1%和86.2%;在此条件下的表观动力学方程为:V=-dP/dt=2.6×10~(-8)×P~(1.92)×F~(1.79)×E~(1.67)。对于US/Fenton反应,当Fe~(2+)浓度为5 mmol/L,H_2O_2浓度为570 mmol/L,pH值为2.5,超声功率为100 W,超声频率为45 kHz时,反应90 min,垃圾渗滤液的色度和COD去除率分别达到最高值99.1%和83.4%;其表观动力学方程为:V=-dP/dt= 1.0×10~(-7)×P~(0.86)×F~(2.34)×E~(0.87)×H~(0.82)。可以看出,两种方法对垃圾渗滤液色度和COD去除率都高于单独的Fenton反应,日光、超声波的催化诱导方式与Fenton试剂存在协同作用。其中,Photo/Fenton对垃圾渗滤液中的COD去除率最高,但反应时间最长;US/Fenton对垃圾渗滤液中的COD去除率较低,但反应时间较短;两者方法处理后的降解产物的紫外吸收峰都在210~220 nm。垃圾渗滤液经过这两种高级氧化技术处理后,大分子有机物都被氧化为小分子有机物及二氧化碳和水。
Landfill leachate was still difficult to satisfy the requirements of environmental protection standard about discharging after biological treatments. Thus, an effective treatment technology combined Coagulation-flocculation and different Fenton oxidation method of landfill leachate was investigated to emprove the treatment efficiencies. After anaerobia biological treatment, ammonium tripping was employed to attain COD concentration of 2.37×10~3 mg/L and NH3-N concentration of 295.7 mg/L, respectively.
     Subsequently, flocculation process was undertaken to remove color、turbidity and COD using ferric sulphate, polyferric sulphate(PFS) and polyaluminium ferric chloride (PAFC). The results showed that PFS was superior to the other coagulants for the removal of color、turbidity and COD at 5 of pH value. The addition of organic macromolecule flocculate polyacrylamide(CPAM) was found to be effective for the removal of color、turbidity and COD. The optimal conditions of flocculation process obtained by orthogonal experiment were 5.2 of pH value, 9.1mmol/L of PFS and 5 mg/L of CPAM at 8 min. 75.6% of color removal rate and 93.6% of turbidity removal rate, as well as 56.7% of COD removal rate were attained in this condition.
     After flocculation treatment of landfill leachate, Photo/Fenton and US/Fenton process, were carried out to attain their optimal conditions. Color and COD removal efficiency of them were compared, and their degradation mechanisms were further investigated in optimal conditions. The results suggested that 99.1% color and 86.2% COD removal were achieved by using 5 mmol/L of Fe~(2+) and 570 mmol/L of H_2O_2 at pH 2.5 in 120 min in Photo/Fenton process. Under the optimal conditions, apparent kinetics equation of landfill leachate was V=-dP/dt=2.6×10~(-8)×P~(1.92)×F~(1.79)×E~(1.67). For US/Fenton process, the optimal conditions of landfill leachate were ultrasonic frequency of 45 kHz, power input of 100 W, Fe~(2+) concentration of 5 mmol/L, H_2O_2 concentration of 570 mmol/L and pH value of 2.5. Under this condition, maximum color and COD removal of 99.1% and 83.4% were achieved in 90 min, and its apparent kinetics equation was V=-dP/dt= 1.0×10-~(7)×P~(0.86)×F~(2.34)×E~(0.87)×H~(0.82). A comparative study of them indicated that Photo/Fenton and US/Fenton attained more color and COD removal rate than Fenton process, and photo、ultrasonic has synergistic effect with Fenton reagent. Photo/Fenton process achieved maximum COD removal and the longest react time, while US/Fenton process attained minimum COD removal and the shortest react time.The UV-vis spectrum of landfill leachate reveals that UV-vis absorption peak of degradation product ranges from 210 nm to 220 nm regardless of their different degradation mechanisms, and high molecular mass compounds can be oxidized into biodegradable compounds or CO_2 and H_2O after Photo/Fenton and US/Fenton treatment.
引文
[1]国家环境保护总局. 2006年中国环境状况公报[R].北京: 2007.
    [2]聂永丰主编.三废处理工程技术手册—固体废物卷[M].北京:化学工业出版社, 2000.
    [3]刘军,鲍林发,汪苹.运用GC-MS联用技术对垃圾渗滤液中有机污染物成分的分析[J].环境污染治理技术与设备, 2003,4(8):31~33.
    [4] MOSHER F A et al. Leachate recirulation for rapid stabilization of landfills: Theory and practice[J]. Water Qual Intern, 1997,(11/12):33~36.
    [5]孙召强,杨宏毅,武泽平,等.CASS工艺处理垃圾渗滤液工程设计实例[J].给水排水, 2002,28(1):20~21.
    [6] Fikret Kargi, M.Yunus Pamukoglu. Aerobic biological treatment of pre-treated landfill leachate by fed-batch operation[J]. Enzym. Micro. Technol., 2003,33:588~595.
    [7] Fikret Kargi, M. Yunus Pamukoglu. Repeated fed-batch biological treatment of pre-treated landfill leachate by powdered activated carbon addition[J]. Enzym. Micro. Technol., 2004,34: 422~428.
    [8]李军,王宝贞,王淑莹,等.生活垃圾渗滤液处理中试研究[J].中国给水排水, 2002,18(3): 1~6.
    [9]王显胜,黄继国,邹东雷,等.ABR-接触氧化-化学氧化组合工艺处理垃圾渗滤液方法[J].环境污染与防治, 2005,27(1):53~55.
    [10] K. J. Kennedy, E. M. Lenta. Treatment of landfill leachate using sequencing batch and continuous flow up flow anaerobic sludge blanket (UASB) reactors[J]. Wat. Res. Vol., 2000, 34(14): 3640~3656.
    [11] Baris Calli, Bulent Mertoglu, Bulent Inanc. Landfill leachate management in Istanbul: applications and alternatives [J]. Chemosphere, 2005,59:819~829.
    [12] B. Calli, B. Mertoglu, K. Roest, B. Inanc. Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate[J]. Bioresour. Technol., 2006, 97:641~647.
    [13] Taina H. Hoilijoli, et al.Rintala.Nitrification of anaerobically pretreated municipal landfill leachate at low temoerature[J]. Wat. Res. Vol., 2000,34(5):1435~1446.
    [14] Osman Nuri A?da?, Delia Teresa Sponza. Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) systems[J]. Pro. Biochem., 2005,40:895~902.
    [15] M. Altinbas, C. Yangin, I. Ozturk.Struvite precipitation from anaerobically treated municipaland landfill wastewaters[J]. Wat. Sci. Technol., 2002,46:271~278.
    [16] H. A. Aziz, M. N. Adlan, M. S. M. Zahari, S. Alias. Removal of ammoniacal–nitrogen (N-NH3) from municipal solid waste leachate by using activated carbon and lime stone [J]. Waste Manage., 2004,22:371~375.
    [17] S. A. Wasay, S. Barrington, S. Tokunaga. Efficiency of GAC for treatment of leachate from soil washing process [J]. Wat.Air Soil Pollut., 1999,116:449~460.
    [18] F. Karg?, M. Y. Pamukoglu. Adsorbent supplemented biological treatment of pre-treated landfill leachate by fed-batch operation [J]. Bioresour. Technol., 2004, 94:285~291.
    [19] I. Ozturk, M. Altinbas, et al. Advanced physico-chemical treatment experiences on young municipal landfill leachates[J]. Waste Manage., 2003,23:441~446.
    [20] S. K. Marttinen, R. H. Kettunen, et al. Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachate [J]. Chemosphere, 2002, 46:851~858.
    [21] N. Saffaj, H. Loukil, et al. Filtration of solution containing heavy metals and dyes by means of ultrafiltration membranes deposited on support made of Morrocan clay. Desalination, 2004, 168:301~306.
    [22] K. Ushikoshi, T. Kobayashi, et al. Leachate treatment by the reverse osmosis system. Desalination, 2002,150:121~129.
    [23] A. Chianese, R. Ranauro, N. Verdone. Treatment of landfill leachate by reverse osmosis [J]. Water Res., 1999,33: 647~652.
    [24] L. Th?rneby, W. Hogland, et al. Design of a reverse osmosis plant for leachate treatment aiming for safe disposal[J]. Waste Manage. Res., 2003,21:424~435.
    [25] J. Bohdziewicz, M. Bodzek, J. G′orska. Application of pressure driven membrane techniques to biological treatment of landfill leachate. Process Biochem., 2001,36:641~646.
    [26] T. A. Peters. Purification of landfill leachate with reverse osmosis and nanofiltration. Desalination, 1998,119:289~293.
    [27] F. ?e?en, G. Gürsoy. Characterization of landfill leachates and studies on heavy metal removal [J]. Environ. Monit., 2000,2:436~442.
    [28]赵庆良,李湘中.化学沉淀法去除垃圾渗滤液中的氨氮[J].环境科学, 1999,20(9):91~92.
    [29]袁宗宣,郑怀礼,舒型武.絮凝科学与技术的进展[J].重庆大学学报, 2001,(2):143~147.
    [30]尚爱安,赵庆祥,徐美燕,等.混凝在垃圾渗滤液处理中的作用研究[J].中国给水排水, 2004, 20,(1): 50~52.
    [31] A. A. Tatsi, A. I. Zouboulis, K. A. Matis, P. Samaras. Coagulation-flocculation pretreatment of sanitary landfill leachates[J]. Chemosphere, 2003,53:737~744.
    [32] Anastasios I. Zouboulis, Xiao-Li Chai, Ioannis A. Katsoyiannis. The application of bioflocculant for the removal of humic acids from stabilized landfill leachates[J]. Environ. Manag., 2004,70:35~41.
    [33] Jerry J. Wu, Chih-Chao Wu, et al.Treatment of landfill leachate by ozone-based advanced oxidation processes[J]. Chemosphere, 2004,54:997~1003.
    [34] A. C. Silva, M. Dezotti, G.L. SantAnna Jr..Treatment and detoxification of a sanitary landfill leachate [J]. Chemosphere, 2004,55:207~214.
    [35] Daniele M. Bila, A. Filipe Montalv?o, et al. Ozonation of a landfill leachate: evaluation of toxicity removal and biodegradability improvement [J]. Hazard.Mater.B, 2005,117:235~242
    [36] I. Monje-Ramirez, O. Velasquez. Removal of transformation of recalcitrant organic matter from stabilized saline landfill leachate by coagulation–ozonation coupling process[J]. Water Res., 2004,38:2359~2367.
    [37] X. Ntampou, A. I. Zouboulis, P. Samaras. Appropriate combination of physico-chemical methods (coagulation/flocculation and ozonation) for the efficient treatment of landfill leachates[J]. Chemosphere, 2006,62:722~730.
    [38] F. J. Rivas, F. Beltran, et al. Stabilized leachates: ozone-activated carbon treatment and kinetics [J]. Water Res., 2003,37:4823~4834.
    [39] Hui Zhang, Heung Jin Choi, Chin-Pao Huang. Treatment of landfill leachate by Fenton’s reagent in a continuous stirred tank reactor[J]. Hazard.Mater.B, 2006,136:618~623.
    [40] Hui Zhang, Heung Jin Choi, Chin-Pao Huang. Optimization of Fenton process for the treatment of landfill leachate [J]. Hazard.Mater.B, 2005,125:166~174.
    [41] Hung-Yee Shu, Hung-Jung Fan, et al. Treatment of MSW landfill leachate by a thin gap annular UV/H2O2 photoreactor with multi-UV lamps[J]. Hazard.Mater.B, 2006,129:73~79.
    [42] Josmaria Lopes de Morais, Patricio Peralta Zamora. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates[J]. Hazard.Mater.B, 2005,123:181~186.
    [43] Z. P. Wang, Z. Zhang, Y. J. Lin, et al. Landfill leachate treatment by a coagulation–photooxidation process[J]. Hazard. Mater.B, 2002,95:153~159.
    [44] Evelyne Gonze, Nadine Commenges, et al.High frequency ultrasound as a pre or a post- oxidation for paper mill wastewaters and landfill leachate treatment [J]. Chem.Engin., 2003, 92: 215~225.
    [45] Bade, Buying-UK, et al. Treatment of landfill leachate using activated sludge process and electron-beam radiation[J]. Wat.Res., 1999,33(11):2669~2675.
    [46]周爱姣,陶涛,李胜利,等.离子体技术用于垃圾渗滤液预处理[J].中国给水排水, 2003,19(11): 59~61.
    [47] Azevedo B D, Mavinic D S, et al. The effect of ammonia loading andoperating temperature on nitrification and denitrification of a high ammonia landfill leachate Canadian [J]. Journal of Civil Engineering, 1995,22(3):524~534.
    [48] Shiskowski D M, Mavinic D S. Biological treatment of high ammonia landfill leachate using predenitrification and pre/post denitrification processes. 14th Annual Environmental Engineering Specialty Conference, Canadian Society for Civil Engineering, Edmonton, Alberta, 1996.
    [49] Shiskowski D M, Mavinic D S. Biological treatment of high ammonia leachate:influence of external carbon during initial startup[J]. WatRes, 1998,32(8):2533~2541.
    [50] Chian E S K. Stability of organic matter in landfill leachates[J]. Water Research. 1977,11(2): 225~232.
    [51]沈东升.生活垃圾填埋生物处理技术[M].北京:化学工业出版社, 2003.
    [52] Wang F, Smith D W, Gamal E D in M. Application of advanced oxidation methods for landfill leachate treatment: A review [J]. Journal of Environmental Engineering and Science. 2003, 2(6): 413~427.
    [53] Wang Zongping, Zhang Zhe, Lin Yuejuan, et al. Landfill leachate treatment by a coagulation- photooxidation process[J]. Journal of Hazardous Materals, 2002,(B95):153~159.
    [54]赵宗升,刘鸿亮,袁光钰,等.A2/O与混凝沉淀法处理垃圾渗滤液研究[J].中国给水排水, 2001, 17(11):13~16.
    [55]姚重华.混凝剂与絮凝剂[M].北京:中国环境科学出版社, 1991.1~35.
    [56]王东升,韦朝海.无机混凝剂的研究及发展趋势[J].中国给水排水, 1997,13(5):20~21.
    [57]张莉,李本高.水处理絮凝剂的研究进展[J].工业用水与废水, 2001,32(3):5~7.
    [58]田宝珍,张云.铝铁共聚复合絮凝剂的研制及应用[J].工业水处理, 1998,18(1):17~19.
    [59]鲁骎,周恭明.高分子复合铁盐絮凝剂的研究进展[J].工业水处理, 2003,23(2):15~18.
    [60]谢恒星.聚丙烯酰胺与无机凝聚剂对磷精矿沉降性能的影响[J].中国矿业, 1998,7(4): 53~55.
    [61]陈立丰,李明俊,万诗贵,等.有机高分子絮凝剂和聚铁絮凝剂处理高浊度原水的研究[J].水处理技术, 1997,23(6):345~348.
    [62] HUANG C P, DONG C, TANG Z. Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment[J]. Waste Manage, 1993,13:361~377.
    [63] BIGDA R J. Consider Fenton’s chemistry for wastewater treatment[J]. Chem Eng Prog, 1995(91): 62~66.
    [64] KANG YW, HWAG K Y.Effects of reaction condition the oxidation efficiency in the Fentonprocess[J]. Water Research, 2000,34(10):2786~2790.
    [65]陈卫国,朱锡海.电催化产生H2O2和?OH及去除废水中有机污染物的应用[J].中国环境科学, 1998,18(2):148~150.
    [66]赵冰清,陈胜,孙德智,等.Fenton工艺深度处理垃圾渗滤液中难降解有机物[J].哈尔滨工业大学学报, 2007,39(8):1285~1288.
    [67]张晖, Huang C.P. Fenton法处理垃圾渗滤液[J].中国给水排水, 2001,17(3):1~3.
    [68]张晖, Huang C.P. Fenton法处理垃圾渗滤液的影响因素分析[J].中国给水排水[J], 2002,18(3):14~17.
    [69]张晖, Huang Cin-pao.渗滤液生化特性在Fenton处理过程中的变化[J].环境科学与技术, 2004,27(4):25~32.
    [70]程丽华,黄君礼,倪福祥. Fenton试剂生成?OH的动力学研究[J].环境污染治理技术与设备, 2003,4(5):12~15.
    [71]王鹏,方汉平.垃圾渗沥液中难降解有机污染物的Fenton混凝处理[J].应用化学, 2001, 18(5):408~411.
    [72]裴华,曾庆福,章北平,等.UV/Fe3+光催化氧化处理垃圾渗滤液[J].中国给水排水, 2003, 19(13): 103~105.
    [73]杨运平,唐金晶,方芳,等.UV/TiO2/Fenton光催化氧化垃圾渗滤液的研究[J].中国给水排水, 2006,22(7):34~41.
    [74]吴纯德,范瑾初.超声波降解水体中有机物的研究及发展[J].给水排水, 1997,23(10): 61~64.
    [75] Gonze E., et al.Wastewater pretreatment with ultrasonic irradiation to reduce toxicity[J].Chem. Eng., 1999,73:93~100.
    [76] I. Hua, R. H. Hochemer, M. R. Hoffman. Sonochemical degradation of pnitrophenol in a parallel-plate near-field acoustical processor[J]. Environ.Sci. Technol., 1995,29:2790~2796.
    [77] Irfan I. Sonophotochemical destruction of aqueous solution of 2,4,6 trichlorophenol Ultrason [J]. onochem., 1998,5:53~61.
    [78] Hua I.,et al. Sonolytic hydrolysis of pnitrophenyl acetate: The role of supercritical water[J]. Phys. Chem., 1995,99:2335~2342.
    [79]张光明,周吉全,张锡辉,等.超声波处理难降解有机物影响参数研究[J].环境污染治理技术与设备, 2005,6(5):42~45.
    [80] Yoshifumi K. Ultrasonic effects on electroorganic processes—Part 20.Photocatalytic oxidation of aliphatic alcoholsin aqueous suspension of TiO2 power. Ultrason. Sonochem., 2001, 8:69~74.
    [81] Chen Y C. Enhancement of photocatalytic degradation of phenol and chlorophenols byultrasound [J]. Indu.& Eng. Chem. Research, 2002,41(24):5958~5965.
    [82] Wayment D G. Frenquency effect on the sonochemical remediation of alachlor. Ultrason. Sonochem., 2002,9(5):251~257.
    [83] Suzuki Y. Utilization of ultrasonics energy in a photo-catalytic-oxidation process for treating waste water containing surfactants.Japanese Journal of Applied Physics Part 12 Regular Papers Short Notes & Review Papers, 2000,39(5B):2958~2961.
    [84] Theron P. Degradetion of phenyltrifluoromethylketone in water by separate or simultaneous use of TiO2 photocatalysis and 30 or 515 kHz ultrasound[J]. Phys. Chem. Chem. Phys., 1999, 1(19): 4663~4668.
    [85]李春喜,李玉同,王子镐.超声波-光催化联合降解苯酚废水研究[J].环境污染治理技术与设备, 2002,3(8):48~51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700