复合冷凝过程热力学仿真与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相比常规的制冷系统,复合冷凝空调系统可回收冷凝器排放的废热、增加了系统的制冷能力、降低了压缩机的排气压力。然而,复合冷凝空调系统在应用中仍有一些问题有待解决。这些问题包括:由于增加了热回收装置,系统运行参数发生改变,导致系统效率降低或不能平稳运行;冷热源设备匹配不合理,整体优化差而造成能量浪费;卫生热水装置与冷凝器联合工作的运行参数选择有盲目性;实际运行和测试中缺乏简便的评价和操作方法;替代制冷剂在复合冷凝系统中的运行特性不同于系统的运行制冷剂为R22。而这些研究方向对系统的稳定运行及提升系统的性能具有重要作用。针对上述出现的问题,本文研究了应用复合冷凝技术之后系统的运行特性。由于大温差变化所导致的传热过程随时间的变化,论文对几种典型复合冷凝过程开展了仿真研究:包括大型水冷离心式制冷机组、风冷热泵机组、多功能热泵热水机组实验装置和替代制冷剂复合冷凝过程的仿真。
     第一,应用(?)分析对大容量的离心式冷水机组水冷+水冷模式的复合冷凝过程建立了卫生热水水温上升的动态数学模型和机组的动态数学模型。提出将卫生热水水温从进口初始温度上升到用户要求温度所需的时间为一计算周期来评价和计算热回收系统的性能。提出了机组热回收效率(卫生热水生产效率)和机组效率的积分累积数学模型。为机组效率的计算提供了更合理的计算方法。应用SIMULINK仿真软件搭建了离心式冷水机组复合冷凝过程的仿真模型,并用实验数据进行了验证。得出了系统运行参数与时间的关系,然后利用该仿真模型求得系统优化参数。
     第二,应用(?)析对风冷热泵机组的复合冷凝过程建立了卫生热水水温上升的代数累积数学模型,并据此建立了风冷热泵机组复合冷凝过程的代数累积数学模型。提出了机组热回收效率(卫生热水生产效率)和机组效率的求和计算方法。然后运用SIMULINK软件建立了风冷热泵机组复合冷凝过程的仿真模型,并用实验数据进行了验证。
     第三,对多功能热泵热水空调机组进行了实验研究。分析了机组各部件性能参数随运行时间的变化情况。并将实验结果与风冷热泵复合冷凝热回收仿真结果进行了对比分析。验证了风冷热泵复合冷凝仿真模型的可靠性。然后,应用机组热回收效率(卫生热水生产效率)和机组效率的计算方法,结合风冷+水冷模式的热泵机组实例,提出了便于实际测量的测试方法。
     最后,分析了替代制冷剂在复合冷凝系统中应用的趋势。应用风冷热泵机组复合冷凝过程的代数累积数学模型,建立了氟系替代制冷剂R407C和R410A在风冷热泵复合冷凝系统中的SIMULINK仿真模型。对仿真模型在制冷模式下的可靠性进行了验证。然后将该仿真模型应用于氟系替代制冷剂R407C和R410A在风冷热泵系统复合冷凝过程中的运行特性计算,与R22系统的性能作了对比分析。并针对CO2制冷/热泵系统进行了仿真分析,应用风冷热泵机组复合冷凝过程的离散模型数学模型,建立了在制冷和复合冷凝过程的SIMULINK仿真模型。对CO2制冷/热泵系统制冷循环模式下的仿真模型进行了验证,然后对CO2制冷/热泵系统复合冷凝模式进行了计算,与R22系统的性能作了对比分析。并将CO2制冷/热泵系统应用复合冷凝模式前后机组的性能做了比较。为替代制冷剂在复合冷凝过程中的应用提供了理论基础。
Compared to the conventional air conditioning system, the air conditioning system with compound condensation process can produce the sanitary hot water,it have the advantages of recovering the condensation heat, improving the refrigerate capability, reducing the exhaust temperature of the compressor. However, there are still some problems needed to be solved in the development process of air conditioning system with the compound condensation process. They are as follows: Due to the addition of the sanitary hot water supply equipment, the system operating parameter has been changed, the system may not operating smoothly; the system component may not match rationally, it lead to the energy waste; the blindness of choosing the operating parameter of the combined sanitary hot water supply system and the condenser; there are no simple and convenient method to evaluate and test the performance of the system; the system characteristic with alternative refrigerant is different to the R22system. And due to the big temperature gap change of the condensation process, the heat transfer process is vary with the operating time. In order to solve these problems, this paper separately analyzed the principle and characteristic of water condensing+water condensing mode and air condensing+water condensing mode of the compound condensing process. It include the performance exam of four aspects:the decentralized water-cooling chiller unit, the air cooling heat pump unit, the muti-function heat pump system and the substitute refrigerate in the compound condensation process.
     Firstly, the exergy analysis method has also been employed to analysis the two condensers condensation process. The dynamic models of the temperature improve of the sanitary hot water and the compound condensation process has been established based on the decentralized chiller unit. The calculation methods about the exergy efficiency of the sanitary hot water and the compound condensation unit have been given out. The period of the sanitary hot water temperature from the initial input temperature to the temperature the user demand was taken as a calculation circle. Then the performance of the system can be evaluated. The problem that the compound condensation process cannot described and simulated by the traditional thermodynamics is solved. The SIMULINK software is employed to build the simulation model. The experiment dates have been employed to exam the dynamic model. The relationship of the outlet temperature of sanitary hot water, the exergy efficiency of the system, and the outlet pressure of the compressor versus the operation time has been gotten. Then, the optimal mass flow of the sanitary hot water under the given condensation temperature and maximum exergy efficiency of the compound condensation process have been gotten.
     Secondly, the finite-time thermodynamics and the exergy analysis method have been employed to analysis the two condensers condensation process. The decentralized models of the temperature improve of the sanitary hot water and the compound condensation process has been established based on the air-cooling heat pump unit. The SIMULINK software is employed to build the simulation model. The experiment dates have been employed to exam the cumulative model.
     Thirdly, the performance of the unit muti-function heat pump system has been analysis. The experiment data has been used to exam the simulation model of the compound condensation process in the air-cooling heat pump unit. Then, the test method has been given out based on the cases about the air-cooling heat pump.
     Finally, the applying trend of the alternative refrigerant in the compound condensation process has been discussed. The decentralized simulation model of the alternative refrigerant in the air-cooling heat pump system has been build. It is based on the SIMULINK. The system operation characteristics with the R407C and R410A have been tested separately. And they were compared with the R22system. Following that, the AC/HP system model with nature refrigerant CO2is established according to the paper published. Then, the simulation model of the refrigerate cycle is built with SIMULINK. After the testify of the refrigerate cycle with CO2, the compound condensation process with CO2is established and tested, and theoretical basis is provided for the applying of the alternative refrigerate in the compound condensation process.
引文
[1]王荣光,沈天行.可再生能源利用与建筑节能.第二版.北京:机械工业出版社,2004:9-20
    [2]Andrew Kusiak, Mingyang Li, Fan Tang. Modeling and optimization of HVAC energy consumption. Applied Energy,2010, (87):3092-3102
    [3]Tiago Mateus, Armando C. Energy and economic analysis of an integrated solar absorption cooling and heating system in different building types and climates. Applied Energy,2009,86:949-957
    [4]R. S. Mason, H.S.Bierenbaum. Energy conservation through heat recovery water heating. ASHRAE Journal,1975,19(8):36-40
    [5]W. M. Ying. Performance of room air conditioner used for cooling and hot heaters. ASHRAE Transaction,1989,95(2):441-444
    [6]Zhenjun Ma, Shengwei Wang, Fu Xiao. Online performance evaluation of alternative control strategies for building cooling water systems prior to in situ implementation. Applied Energy,2009(86):712-721
    [7]S. Li, J.Y. Wu. Theoretical research of a silica gel-water adsorption chiller in a micro combined cooling, heating and power (CCHP) system. Applied Energy 2009, (86):958-967
    [8]Seok Ho Yoon, W. Vance Payne. Residential heat pump heating performance with single faults imposed. Applied Thermal Engineering,2011, (31):765-771
    [9]曾巍.复合冷凝技术在建筑冷热源中的基础及应用研究[湖南大学硕士论文].长沙:湖南大学,2006
    [10]龚光彩,常世钧.冷热源及建筑节能的研究现状和进展.建筑热能通风空调,2003,22(5):18-23
    [11]Youming Chen Fault detection, diagnosis and data recovery for a real building heating/cooling billing system. Energy Conversion and Management,2010 (51): 1015-1024
    [12]Katarzyna Kujawa-Roeleveldl, Grietje Zeeman. Anaerobic treatment in decentralised and source-separation-based sanitation concepts. Environmental Science and Bio/Technology,2006 (5):115-139
    [13]丁国良,张春路.制冷空调装置仿真与优化.北京:科学出版社.2001
    [14]Jie Ji, Gang Pei, Tin-tai Chow. Performance of muti-functional domestic heat-pump system. Applied energy,2005, (80):307-326
    [15]季杰,裴刚.空调—热水器—体机制冷兼制热水模式的性能模拟和实验分析.暖通空调,2003,33(2):19-23
    [16]王瑞,龚光彩.建筑能量循环模式的热力学分析.暖通空调,2009,39(5):71-75
    [17]J. Sarkar, Souvik Bhattacharyya.Transcritical CO2 heat pump systems:exergy analysis including heat transfer and fluid flow effects. Energy Conversion and Management,2005 (46):2053-2067
    [18]Jorn Stene. Residential CO2 heat pump system for combined space heating and hot water heating. International Journal of Refrigeration,2005,28: 1259-1265
    [19]Hua Chen, W.L. Lee. Combined space cooling and water heating system for Hong Kong residences. Energy and Buildings,2010,42:243-250
    [20]S.C. Kaushik, M. Singh. Feasibility and design studies for heat recovery from a refrigeration system with a canopus heat exchanger. Heat Recovery Systems and CHP.1995,15 (7):665-673
    [21]Doreen E. Kalz, Jan Wienold, Martin Fischer, Davide Cali. Novel heating and cooling concept employing rainwater cisterns and thermo-active building systems for a residential building. Applied Energy,2010,87:650-660
    [22]Dongsoo Jung. A study on the performance of multi-stage condensation heat pumps. International Journal of Refrigeration,2000,23(7):528-539
    [23]Aydin Dikici, Abdullah Akbulut. Performance characteristics and energy-exergy analysis of solar-assisted heat pump system Building and Environment,2008,43:1961-1972
    [24]Guang-cai Gong, Shi-jun Chang. Discussion about the Exergy Efficiency of Electric-driven Water-cooled Chilling Unit. In:ENERGY & ENVIRONMENT-A WORLD OF CHALLENGES AND OPPDRTUNITIES PROCEEDINGS OF THE ENEREN'2003 CONFERENCE. New York:Science Press,2003:7-12
    [25]龚光彩,曾巍,胡湘峰.一种热水热泵空调装置.中国专利.ZL200420068102.9,2004,7
    [26]Seok Ho Yoon, W. Vance Payne. Applied Thermal Engineering,2011,31, (5): 765-771
    [27]周建勇.复合冷凝/蒸发四功能热泵热水空调机组性能研究:[湖南大学硕士论文].长沙:湖南大学,2011
    [28]王立平.复合冷凝过程热力学仿真:[湖南大学硕士论文].长沙:湖南大学,2008
    [29]Chan Woo Parka, Junemo Koob, Yong Tae Kangb. Performance analysis of ammonia absorption GAX cycle for combined cooling and hot water supply modes. international journal of refrigeration,2008,31:727-733
    [30]高洪亮,董晓雷.新制冷剂用于制冷循环的热力计算.冷藏技术,1998,(1):33-36
    [31]Vince C Mei, Ronald E. Experimental study of an R407C heat pump water heater. ASHRAE Trans,2001, A
    [32]P.G. Rousseau, G.P. Greyvenstein. Enhancing the impact of heat pump water heaters in the South African commercial sector. Energy,2000,25 (1):51-70
    [33]刘洪胜,杨涛,陈江平.跨临界二氧化碳制冷系统动态性能仿真研究工程.热物理学报.2006,27(2):69-72
    [34]王晋,刘顺良.跨临界循环及其在汽车空调系统方面的研究状况制冷空调,2006,27(6):18-21
    [35]J. Sarkar, Souvik Bhattacharyya. Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. International Journal of Refrigeration,2004,27(8):830-838
    [36]宁静红.在近临界区的冷凝特性研究.制冷2006,25(4):15-17
    [37]曾宪阳,王洪利,马一太.跨临界循环和氟利昂制冷剂循环性能分析FLUID MACHINERY,2011,39(6):80-85
    [38]杨东华编著.火用分析和能级分析(第一版).北京:科学出版社,1986:1-273.
    [39]朱明善.能量系统的(?)分析(第一版).北京:清华大学出版社,1988:1-154
    [40]廉乐明,李立能,吴家正等.工程热力学(第四版).北京:中国建筑工业出版社,1999:1-273
    [41]徐邦裕,陆亚俊,马最良.热泵(第二版).北京:中国建筑工业出版社,1988:72
    [42]第四机械工业部第十设计研究院.空气调节设计手册.北京:中国建筑工业出版社,1983:183
    [43]Gong GuangCai, Chang Shijun. Reformation of the electric-driven water-cooled chilling unit based on exergy method. In:Proceedings of the 4th International Conference on Compressor and Refrigeration. XI'AN:XI'AN JIAOTONG UNIVERSITY PRESS,2003:348-356
    [44]G.Gong, J.Liu, M.Nie, etc. A kind of central hot water system using the surplus heat from the condenser refrigerating unit. In:Proceedings of the 4th International Conference on Indoor Air Quality, ventilation & Energy Conservation in Buildings. Changsha:City University of Hong Kong,2001: 1577-1583
    [45]Stephen B. Austin. Chilled water system optimization. ASHRAE Journal,1993, 99(7):0-56
    [46]W. M. Ying. Performance of room air conditioner used for cooling and hot heaters. ASHRAE Transaction,1989,95(2):441-444
    [47]Long Fu, Guoliang Ding, Chunlu Zhang. Dynamic simulation of air-to-water dual-mode heat pump with screw compressor. Applied thermal engineering, 2003,(23):1629-1645
    [48]Johu. E. Ahern. The exergy method of energy system analysis. N.Y:Wiley,1980: 1-296
    [49]Shun-Fu Lee, S. A. Sherif. Thermoeconomic analysis of absorption heat transformers. ASHRAE Transaction,1996,102(1):652-663
    [50]J.Sarkar, Souvik Bhattacharyya, M.Ram Gopal. Transcritical CO2heat pump systems:exergy analysis including heat transfer and fluid flow effects. Energy conversion and management,2005, (46):2053-2067
    [51]Recep Yumrutas, Mehmet Kunduz, Mehmet Kanoglu. Exergy ananysis of vapor compression refrigeration systems. Exergy,2002,(2):266-272
    [52]Fang X, Bullard CW, Hrnjak PS. Heat transfer and pressure drop of gas cooler. ASHRAE Trans,2001, (2):55-66
    [53]P.I.Frank,P.D W.David. Fundamentals of Heat and mass transfer. Wiley, New York,1990:241-245
    [54]E.Bilgen, H. Takahashi. Exergy analysis and experimental study of heat pump systems. Exergy,2002, (2):259-265
    [55]Jie Ji,Tin-tai Chow, Gang Pei. Domestic air-conditioner and integrated water heater for subtropical climate. Applied thermal engineering,2003, (23): 581-592
    [56]罗清海.热电制冷系统热力学优化分析及节能应用和开发:[湖南大学博士论文].长沙:湖南大学,005:93-94
    [57]罗清海,汤广发,龚光彩等.建筑热水节能分析.煤气与热力,2004,24(6):353-357
    [58]罗清海,汤广发,龚光彩等.建筑热水节能中的热泵技术.給水排水,2004,5:63-66
    [59]T.Y.Bong, K.C.Ng, H.Bao. Thermal performance of a flat-plate heat-pipe collector array. Solar Energy,1993,50(6):491-498
    [60]涂逢祥.建筑节能.北京:中国建筑工业出版社,2002,36:32-46
    [61]J.G. Cervantes, E. Torres. Experiment on a solar-assisted heat pump and an exergy analysis of the system. Applied thermal engineering,2002, 22:1289-1297
    [62]A. Hepbasli, O.Akdemir. Energy and exergy analysis of a ground source heat pump system. Energy conversion & management,2004,45:737-753
    [63]沈志元.制冷制冷剂热物理性质表和图.北京:机械工业出版社,1983:83-85
    [64]龚光彩,何君,曾巍,等.冷凝热回收与热泵对建筑冷热源的影响.煤气与热力,2006,26(2):65-68
    [65]常世钧.基于(?)分析的冷热源优化匹配方法及冷凝热回收技术研究:[湖南大学硕士论文].长沙:湖南大学,2004:38-39
    [66]龚光彩,曾巍,胡湘峰.一种定流量循环复合冷凝热水热泵空调装置.中国专利ZL 200420068103.3,2004,7
    [67]龚光彩,曾巍,胡湘峰.一种联动屏蔽复合冷凝热水热泵空调装置.中国专利ZL 200420068101.4,2004,7
    [68]H.M.S.Hussein. Transient investigation of a two phase closed thermosyphon flat plate solar water heater. Energy Conversion & Management,2002, (43): 2479-2492
    [69]D.E.Prapas, S.Psimmeros, B.A.Sotiropoulos. Beneficial interconnection of two thermosiphon DHW solar systems. Applied Energy,1994,49(1):47-60
    [70]Nesreen Ghaddar, Yvonne Nasr. Experimental study of a refrigerant charged solar collector. Int. J. of Energy Research,1998,22(4):625-638
    [71]W.A.Beckman, J.Thornton. Control problems in solar domestic hot water systems. Solar Energy,1994,53(3):233-236
    [72]Adnan M.Shariah, A.Ecevit. Effect of hot water load temperature on the performance of a thermosyphon solar water heater with auxiliary electric heater. Energy Conversation & Management,1995,36(5):289-296
    [73]E.hahne, Y.chen. Numerical study of flow and heat transfer characteristics in hot water stores. Solar Energy,1998,64(3):9-18
    [74]D.E.Prapas, S.G.Tsiamouris. Storage tanks interconnection and operation modes in large DHW solar systems. Solar Energy,1993,51(2):83-91
    [75]T.Y.Bong, K.C.Ng, H.Bao. Thermal performance of a flat-plate heat-pipe collector array. Solar Energy,1993,50(6):491-498
    [76]J.Nagaraju, S.S.Garud. 1MWth industrial solar hot water system and its performance. Solar Energy,1999,66(6):491-497
    [77]P.G.Rousseau, G.P.Greyvenstein. Enhancing the impact of heat pump water heater in the South African commercial sector. Energy,2000,25(1):51-70
    [78]陈剑波,阂矿伟.R410A水源热泵空调机组变进水温度运行特性分析,FLUID MACHINERY,2011,39(3):52-57
    [79]Res-at Selbas. Thermoeconomic optimization of subcooled and superheated vapor compression refrigeration cycle. Energy,2006,31:2108-2128
    [80]B.J.Huang, J.P.Chyng. Integral-type solar-assisted heat pump water heater. Renewable Energy,1999,16(5); 731-734
    [81]马一太,王景刚.CO2跨临界循环水源热泵变工况特性.太阳能学报,2003,24(2):157-161
    [82]Lorentzen G. Revival of carbon dioxide as a refrigerant. Int. J. of Refrigeration, 1994,17(4):290-310
    [83]杨俊兰,等.CO2蒸发器的性能模拟与优化计算.河北工业大学学报,2011,40(3):35-39
    [84]Y.Berbash, M.Chandrashekar. Technology for sustainable development:a case study of solar domestic hot water heating in Ontario. Energy,1995,20(6): 495-510
    [85]M.N.A.Hawlader, S.K.Chou. The performance of solar assisted heat pump water heating system. Applied thermal Engineering.2001,21(8):1049-1065.
    [86]G.Morgan. Solar assisted heat pump. Solar Energy,1982,28(2):129-135
    [87]Petter Neksa, Havard Rekstad. CO2-heat pump water heater:characteristics, system design and experimental results. Int. J. of Refrigeration,1998,21(3): 172-179
    [88]Hiroml Hasegawa, Michiyuki Saikawa. Development of two-stage compression and cascade heating heat pump system for hot water supply. ASHRAE Transactions,1996,102(1):248-256
    [89]K. Chaturvedi, J.Y. Shen. Thermal performance of a direct expansion solar assisted heat pump. Solar Energy,1984,33(2):155-162
    [90]GMorgan. Solar assisted heat pump. Solar Energy,1982,28(2):129-135
    [91]M.N.A.Hawlader, S.K.Chou. The performance of solar assisted heat pump water heating system. Applied thermal Engineering,2001,21(8):1049-1065
    [92]G.L.Morrison. Simulation of packaged solar heat-pump water heaters. Solar Energy,1994,53(3):249-257
    [93]B.J.Huang, J.P.Chyng. Integral-type solar-assisted heat pump water heater. Renewable Energy,1999,16(5):731-734
    [94]Y.Berbash, M.Chandrashekar. Technology for sustainable development:a case study of solar domestic hot water heating in Ontario. Energy,1995, 20(6):495-510
    [95]J. Sarkar, Souvik Bhattacharyya. Transcritical CO2 heat pump systems: exergy analysis including heat transfer and fluid flow effects. Energy Conversion and Management,2005,46:2053-2067
    [96]Giovanni Di Nicolaa, Giuliano Giuliani. Blends of carbon dioxide and HFCs as working fluids for the low-temperature circuit in cascade refrigerating systems. International Journal of Refrigeration,2005,28:130-140
    [97]Pradeep Bansal. Status of CO2 as a low temperature refrigerant:Fundamentals and R&D opportunities. Applied Thermal Engineering,2012,41:18-29
    [98]Jorn Stene. Residential CO2 heat pump system for combined space heating and hot water heating. International Journal of Refrigeration,2005.28: 1259-1265
    [99]Mar a Jesus, Gonza lez. Assessment of the decrease of CO2 emissions in the construction field through the selection of materials:Practical case study of three houses of low environmental impact. Building and Environment.2006.41: 902-909

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700