巴替非班等八个药物体内分析方法建立及其在药代动力学研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液相色谱-串联质谱(LC-MS/MS)法因其具有选择性好、灵敏度高和测试速度快的优势,近10年来已迅速成为生物样品分析和药物代谢动力学研究的主要方法。Waters公司首次推出的超高效液相色谱(UPLC)具有超高的分离度、超高的灵敏度和超高的速度,他“把分离科学推向一个新领域”。本文利用LC-MS/MS和UPLC技术,建立了7种简单、灵敏、快速的定量方法,分别用于血浆中巴替非班、美普他酚、尼可地尔、伪麻黄碱和西替利嗪、水飞蓟素、艾普拉唑和舒林酸代谢产物的测定。所建立的方法的灵敏度均优于已有方法,并成功用于药物动力学研究。
     一、LC-MS/MS法测定血浆中新药巴替非班的浓度
     目的:建立灵敏、快速的液相色谱-串联质谱法测定人血浆中巴替非班的浓度。方法:血浆经固相萃取后,以水:乙腈:甲酸(40:60:0.1,v/v/v)作为流动相,采用Thermo Hypurity C18色谱柱分离,通过电喷雾离子化串联质谱,以选择反应监测(SRM)方式进行正离子检测。用于定量分析的离子反应分别为m/z820.2→m/z(632.9+159.4)(巴替非班)和m/z834.4→m/z(646.7+159.3)(依替非巴肽)。该方法的线性范围为2.45-5000 ng/mL,LLOQ(定量下限)为2.45 ng/mL。结果:将此方法应用于一类新药巴替非班的Ⅰ期临床药物动力学研究,为设计合理给药方案和临床安全有效用药提供理论依据。1.考察空腹静脉滴注低、中和高三个单剂量后的药物动力学,获得该药在体内的药物动力学特征:符合二室模型、具有线性动力学特征。2.考察多剂量给药后巴替非班在人体内的药物动力学,与同剂量单次滴注给药的动力学参数进行比较,确定药物在体内无蓄积。结论:该方法灵敏度高,实用性强,适用于临床药物动力学研究。
     二、液相色谱-串联质谱法测定血浆中的美普他酚的浓度
     目的:建立快速、灵敏的液相色谱-串联质谱法测定人血浆中的美普他酚,用于受试者口服美普他酚后的药代动力学研究。方法:血浆样品经MTBE(叔丁基甲基醚)萃取后,以乙腈:50mM甲酸胺(70/30,v/v)作为流动相,采用Hypurity C18色谱柱分离,通过电喷雾离子化串联质谱,以选择反应监测(SRM)方式进行正离子检测。用于定量的离子反应分别为m/z 234→m/z 234(美普他酚)和m/z152→m/z110(对乙酰氨基酚)。该方法的线性范围为0.29-292.5ng/mL,LLOQ为0.2925ng/mL。结果:美普他酚在血浆中分析方法的线性范围为0.2925-292.5 ng/mL,定量下限可达0.2925 ng/mL。在美普他酚血浆质控(QC)样品浓度分别为5.85,11.7和117 ng/mL下的分析方法日内精密度(RSD)<8.54%,日间精密度(RSD)<8.61%,准确度(RE)在-4.2%-5.44%之间。结论:该方法灵敏度高,实用性强,适用于临床药物动力学研究。
     三、液相色谱-串联质谱法测定血浆中的尼可地尔的浓度
     目的:建立快速、灵敏的液相色谱-串联质谱法测定人血浆中的尼可地尔,用于受试者口服尼可地尔后的药代动力学研究。方法:血浆样品经MTBE(叔丁基甲基醚)萃取后,以乙腈:0.1%甲酸(50:50,v/v)作为流动相,采用Hypurity C18色谱柱分离,通过电喷雾离子化串联质谱,以选择反应监测(SRM)方式进行正离子检测。用于定量的离子反应分别为m/z 212→m/z(79+136)(尼可地尔)和m/z308→m/z(140+237)(丁洛地尔)。该方法的线性范围为0.51-520 ng/mL,LLOQ为0.51ng/mL。结果:尼可地尔在血浆中分析方法的线性范围为0.51-520 ng/mL,定量下限可达0.51 ng/mL。在尼可地尔血浆质控(QC)样品浓度分别为1.02,16.25和260 ng/mL下的分析方法日内精密度(RSD)<8.54%,日间精密度(RSD)<8.61%,准确度(RE)在-4.2%-5.44%之间。结论:该方法灵敏度高,实用性强,适用于临床药物动力学研究。
     四、液相色谱-串联质谱法同时测定血浆中的西替利嗪和伪麻黄碱的浓度
     目的:建立快速、灵敏的液相色谱-串联质谱法同时测定人血浆中的西替利嗪和伪麻黄碱,用于受试者口服复方西嗪伪麻的药代动力学研究。方法:血浆样品经乙腈直接沉淀后,以乙腈:0.1%甲酸(50:50,v/v)作为流动相,采用Hypurity C18色谱柱分离,通过电喷雾离子化串联质谱,以选择反应监测(SRM)方式进行正离子检测。用于定量的离子反应分别为m/z 166→m/z148(伪麻黄碱)、m/z 389→m/z201(西替利嗪)和m/z264→m/z246(曲马多)。结果:将该方法的线性范围西替利嗪和伪麻黄碱均为5.0-1000 ng/mL,LLOQ均为5.0ng/mL。结论:该方法灵敏度高,实用性强,适用于临床药物动力学研究。
     五、液相色谱-串联质谱法测定血浆中的水飞蓟素的浓度
     目的:建立快速、灵敏的液相色谱-串联质谱法测定人血浆中的水飞蓟素,用于研究体内肝药酶和转运体基因多态性对水飞蓟素体内浓度的影响。方法:包含CYP3A5*3、CYP2C9*3和MDRl C3435T三种基因型22名健康受试者,同时服用1片利加隆(140 mg/片)后,血浆样品经MTBE(叔丁基甲基醚)萃取后,以乙腈:10mM甲酸胺(含0.1%甲酸)(50:50,v/v)作为流动相,采用Hypurity C18色谱柱分离,通过电喷雾离子化串联质谱,以多反应监测(MRM)方式进行负离子监测。用于定量的离子反应分别为m/z 481.3→m/z124.9(水飞蓟素)和m/z355.2→m/z 339.9(VBE-1)。该方法的线性范围为0.64-325ng/mL,LLOQ为0.64 ng/mL。结果:利用建立的LC-MS/MS方法测定0-48 h水飞蓟素的血药浓度。CYP3A5*3和CYP2C9*3多态性对水飞蓟素的血药浓度没有明显影响,MDR1 C3435T多态性对水飞蓟素的药代参数有明显影响。结论:该方法灵敏度高,实用性强,适用于水飞蓟素的临床药物动力学研究。水飞蓟素可能是MDR1的一个底物。
     六、液相色谱-串联质谱法测定血浆中艾普拉唑及其代谢产物及在药代动力学上的应用
     目的:建立快速、灵敏的液相色谱-串联质谱法测定人血浆中的艾普拉唑及其代谢产物,用于受试者口服艾普拉唑后的药代动力学研究。方法:选用Thermo HyPUR/TY C18柱,流动相为10mM甲酸胺水溶液:乙腈(50:50),柱温30度,三重四极杆质谱以多反应监测方式进行检测,检测的离子:艾普拉唑m/z367.2→184.0;艾普拉唑砜:m/z:383.3→184.1;艾普拉唑硫醚:m/z:351.2→168.1;内标奥美拉唑:m/z:346.2→198.0。12名健康受试者分别口服5mg的艾普拉唑肠溶片在0-48h采血,用建立的LC-MS/MS方法检测其体内艾普拉唑及其两个代谢产物的血药浓度。结果:其线性范围艾普拉唑为0.23-2400.00 ng/mL;艾普拉唑砜为0.05-105.00 ng/mL;艾普拉唑硫醚为0.06-45.00 ng/nL。LLOQ分别为0.23、0.05和0.06ng/mL。结论:该方法灵敏度高,实用性强,适用于临床药物动力学研究。
     七、超高效液相色谱法测定血浆中舒林酸及其代谢产物及在药代动力学上的应用
     目的:建立快速、灵敏的超高效液相色谱法测定人血浆中的舒林酸及其代谢产物,用于受试者口服舒林酸后的药代动力学研究。方法:血浆样品经二氯甲烷萃取后,以乙腈:20mM甲酸胺(含1%醋酸)作为流动相梯度洗脱,采用Waters AcQUITY BEH C18(2.1*50mm,1.7um)色谱柱分离,检测波长为325nm,柱温为30℃。该方法的线性范围舒林酸为0.16-20.82μg/mL,舒林酸砜为0.16-20.88μg/mL,舒林酸硫化物为0.18-23.52μg/mL,LLOQ分别为0.16、0.16、0.18μg/mL。结果:将此方法应用于舒林酸及其代谢产物的体内药代动力学研究,并根据FM03中E308G和E158K位点突变,发现E308G和E158K野生型和突变性之间,舒林酸药代参数发生明显改变,而两个代谢产物却没有明显改变。结论:本方法简单、快速和灵敏,能用于舒林酸及其代谢产物的药代动力学研究。
Nowadays liquid chromatography-tandem mass spectrometry (LC-MS/MS), due to its high sensitivity and selectivity, has become a valuable technique in the determination of biological samples and in the pharmacokinetic studies. Ultra Performance Liquid Chromatography (UPLC) which was first made by Waters corporation(USA), this new category of analytical separation science retains the practicality and principles of HPLC while increasing the overall interlaced attributes of speed, sensitivity, and resolution. Eight drugs including batifiban, ilaprazole, mepta, nicorandil, sulindac, silibin, pseudoephedrine and cetirizine in human plasma were developed and validated by LC-MS/MS and UPLC in these thesis. The methods have been successfully applied to pharmacokinetic studies.
     1. Determination of batifiban in plasma by LC-MS/MS
     A sensitive and selective liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for the determination of batifiban in human plasma was developed. After a solid phase extraction, the post-treated samples were analyzed on a Thermo HyPURITY C18 column(150*2.1mm, 5μm) interfaced with a triple quadruple tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of acetonitril: water: formic acid(60:40:0.1, v/v/v). Selected reaction monitoring (SRM) using the precusor→product ion combination of m/z 819→m/z (623+159 ) and m/z 833→m/z(645+159) was used to quantify batifiban and IS (eptifibatide), respectively. The linear calibration curves were abtained in the concentration range of . The method has a lower limit of quantification (LLOQ)of for batifiban.
     The method was applied to a PhaseⅠclinical trial of batifiban.After oral administratin of increasing(low, medium, high) dose and multidose of batifiban, the plasma concentrations of batifiban were monitored by the developed sensitive and fast LC-MS/MS method.
     2. Direct determination of nicorandil in human plasma by LC-MS/MS A sensitive and selective LC-MS/MS method for direct determination of nicordil in human plasma was developed and was used to study the pharmacokinetics of nicorandil. After a single dose intravenous injection aminstration of nicorandil 1mg to 12 healthy Chinese volunteers, the plasma concentration of nicorandil was determined. Nicorandil and internal standard buflomedil were extracted from plasma using liquid-liquid extraction, then separated on a Hypurity C18 column. The mobile phase consisted of acetonitrile-water-formic acid(60:40:0.1,v/v/v), at a flow-rate of 0.25mL/min. A Waters QuattroMicro API tandem mass spectrometer equipped with electrospray ionization source was used as detector and was operated in the positive ion mode. Selected reaction monitoring(SRM) using the precursor to product ion combinations of m/z 212 to (79+136) and m/z 308 to (140+237) was performed to quantify nicorandil and internal standard . The pharmacokinetic parameters of nicorandil were calculated by non-compartment model statistics. The linear calibration curves were obtained in the concentration range of 0.51-520 ng/mL. Each plasma sample was chromatographed within3.0min. The intra- and inter-day relative standard deviation(RSD) across three validation runs over the entire concentration range was less than 15%. Accuracy determined at three concentrations (1.02, 16.25 and 260 ng/mL for nicorandil) ranged from 98.8% and 100.6%. The method was applied to study the pharmacokinetics of 12 healthy volunteers after intravenous injection adminstration 1 mg of nicorandil. The method is sensitive and conventient, and is proved to be suitable for clinical investigation of nicorandil pharmacokinetics.
     3. Determination of metazinol in plasma by LC/MS/MS
     A sensitive and selective liquid chromatography-tandem spectrometry method for the determination of metazinol was developed and validated over the linearity range 0.29-292.5ng/mL with 0.5 mL of plasma using acetaminophen as the internal standard. Liquid-liquid extraction using MTBE was used to extract the drug and the internal standard from plasma. The mass spectrometer was operated under the selected reaction monitoring mode using the electrospray ionization technique. The instrument parameters were optimized to obtain 3.0 min run time. The mobile phase consisted of acetonitril-10mM ammonium formate water solution(70:30, v/v), at a flow rate of 0.25mL/min. In positive mode, metazinol produced a protonated precursor at m/z 234 and a corresponding product ion at m/z 234. And internal standard produced a protonated precursor ion at m/z 152 and a corresponding product ion at m/z 110. The inter- and intra-day precision(%RSD) were less than 15% and accuracy (%error) was between±4.5. The method has a lower limit of quantification of 0.29 ng/mL for metazinol, which offered increased sensitivity and selectivity of analysis, compared with existing methods. The method was successfully applied to a pharmacokintiec study of metazinol after an oral administration of 100 mg metazinol tablet to 12 healthy volunteers.
     4. Simulantance quantification of pseudoephedrine and cetirizine in plasma by LC-MS/MS
     A sensitive and selective liquid chromatography-tandem spectrometry method for the simulantance determination of pseudoephedrine and cetirizine was developed and validated over the linearity range 5.0-1000 ng/mL with 0.2 mL of plasma using tramadol as the internal standard. Direct prodein precipitation using acetronitril was used to extract the drug and the internal standard from plasma. The mass spectrometer was operated under the selected reaction monitoring mode using the electrospray ionization technique. The instrument parameters were optimized to obtain 5.0 min run time. The mobile phase consisted of 65% methanol and 35% water (contained 0.1% formic acid, 10 mM ammonium format, at a flow rate of 0.2 mL/min. In positive mode, pseudoephedrin produced a protonated precursor at m/z 166 and a corresponding product ion at m/z 148. cetirizine produced a protonated precursor at m/z 389 and a corresponding product ion at m/z 201. And internal standard produced a protonated precursor ion at m/z 264 and a corresponding product ion at m/z 246. The inter- and intra-day precision(%RSD) were less than 15%. The method has a lower limit of quantification of 5.0 ng/mL for pseudoephedrine and cetirizine, which offered increased sensitivity and selectivity of analysis, compared with existing methods. The method was successfully applied to a pharmacokintiec study of pseudoephedrine and cetirizine after an oral administration of a cetirizine and pseudoephedrine sustained-release capsules (including 120mg pseudoephedrine and 5 mg cetirizine) to 12 healthy volunteers.
     5. Direct determination of silibin in human plasma by LC-MS/MS
     A sensitive and selective liquid chromatography-tandem spectrometry method for the determination of silibin was developed and validated over the linearity range 0.64-325 ng/mL with 0.5 mL of plasma using VBE-1 as the internal standard. Liquid-liquid extraction using MTBE was used to extract the drug and the internal standard from plasma. The mass spectrometer was operated under the selected reaction monitoring mode using the electrospray ionization technique. The instrument parameters were optimized to obtain 3.0 min run time. The mobile phase consisted of acetonitril-10mM Ammonium Formate water solution (contained 0.1%formic acid) (50:50, v/v), at a flow rate of 0.3 mL/min. In negative mode, silibin produced a protonated precursor at m/z 481 and a corresponding product ion at m/z 125. And internal standard produced a protonated precursor ion at m/z 355 and a corresponding product ion at m/z 339. The inter- and intra-day precision(%RSD) were less than 15%. The method has a lower limit of quantification of 0.64 ng/mL for silibin, which offered increased sensitivity and selectivity of analysis, compared with existing methods. The method was successfully applied to a pharmacokintiec study of silibin after an oral administration of a 140 mg silibin capsules to 22 healthy volunteers.
     6. Determination of ilapraozle and its two metabolites in human plasma by LC-MS/MS
     An analytical method based on liquid chromatography and electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) has been improved and validated for the quantitative measurement of ilaprazole and it's two metablites in human plasma. Separation of analytes and the internal standard (IS) omeprazole was performed on a Thermo HyPURITY C18 column (150×2.1mm, 5μm) with a mobile phase consisting of 10mM ammonium formate water solution- acetonitrile (50:50,v/v) at a flow rate of 0.25 mL/min. The API4000 triple quadrupole mass spectrometer was operated in multiple reaction monitoring mode via positive electrospray ionization interface using the transition m/z 367.2→m/z184.0 for ilaprazole, m/z 383.3→m/z184.1 for ilaprazole sulfone, m/z 351.2→m/z168.1 for ilaprazole thiol ether and m/z 346.2→m/z198.0 for omeprazole. The method was linear over the concentration range of 0.23 -2400.00 ng/mL for ilaprzole, 0.05-105.00 ng/mL for ilaprazole thiol ether and 0.06 - 45.00 ng/mL for ilaprazole sulfone, respectively. The intra- and inter- day prcisions were all less than 15% in terms of relativestandard deviation (R.S.D), and the accuracy was within 15% in terms ofrelative error (R.E) for ilaprazole, ilaprazole sulfone and ilaprazole thiolether. The lower limit of quantification (LLOQ) was identifiable andreproducible at 0.23, 0.05 and 0.06 ng/mL with acceptable precision andaccuracy for ilaprazole, ilaprazole sulfone and ilaprazole thiol ether,respectively. The validated method offered sensitivity and wide linearconcentration range. This method was successfully applied for theevaluation of pharmacokinetics of ilaprazole and it's two metablites aftersingle oral doses of 5 mg ilaprazole to 12 Chinese healthy volunteers.
     7. Using UPLC to detect sulindac and its two metabolites in plasma
     A Waters AcQURITY BEH C18 (50*2.1 mm, 1.7μm) column wasselected. The mobile phase was 20 mM ammonium acetate water solution(including 1%Acetic Acid). The column temperature was 30℃, thedetection wavelength was 325 nm. The subjects received 200 mgSulindac capsules. Sulindac capsules on first day morning after fastingover night. Then blood samples were collected at 0-36 hours after takingthe drug. Sulindac and it's two metabolites pharmacokinetics wasmeasured by UPLC with ultraviolet detection. Sulindac and it's twometabolites was retented within 5min, the peaks was in a good separate,and this method was very stable. In the FMO3 E308G and E158K linkagemutation, sulindac pharmacokintics parameter has significant difference,but not in sulidac sulfone and sulidac sulfide.
引文
[1] Chen H, Qiao J, Li Q, Deng J, Tan Z, Guo T, Li W. (2009), Safety, pharmacokinetic and pharmacodynamic studies of batifiban injection following single- and multiple-dose administration to healthy Chinese subjects, J Huazhong Univ Sci Technolog Med Sci. 29(1): 12-8.
    [2] Madan M, Berkowitz SD, Tcheng JE. Glycoprotein Ⅱb/Ⅲa Integrin Blockade, Circulation, 1998, 98(23): 2629-35.
    [3] Kong DF, Califf RM, Miller DP. Clinical Outcomes of Therapeutic Agents That Block the Platelet Glycoprotein Ⅱb/Ⅲa Integrin in Ischemic Heart Disease, Circulation, 1998,98(25):2829-35.
    [4] Seitz RJ, Siebler M. Platelet GPⅡb/Ⅲa receptor antagonists in human ischemic brain disease, Curr Vasc Pharmacol. 2008, 6(1):29-36.
    [5] Tricoci P, Newby LK, Kandzari DE, Harrington RA. Present and evolving role of eptifibatide in the treatment of acute coronary syndromes, Expert Rev Cardiovasc Ther.2007, 5(3): 401-12.
    [6] Moser M.,bertram U., Peter K.,Bode C., and Ruef J. Abciximab, Eptifibatide, and Tirofiban Exhibit Dose-dependent Potencies to Dissolve Platelet Aggregates, J cardiovas Pharmacol.2003,41(4):586-92.
    [7] Harrington RA, Kleiman NS, Kottke-Marchant K, Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial of the Platelet Integrin Glycoprotein Ⅱb/Ⅲa Blocker Integrelin in Elective Coronary Intervention ,Am J Cardiol. 1995,76(3) 1222-7
    [8] Scarborough RM,naughton MA,Teng W, (1993) J Biol Chem, 268 (2):1066-73.
    [9] Jonathan MG (2004) J. Cell. Sci. 117(16): 3415-25.
    [10] SA Mousa, JM Bozarth, MS Forsythe, SM Jackson, A Leamy, MM Diemer, RP Kapil, RM Knabb, MC Mayo and SK Pierce, (1994)Circulation, 89(1): 3-12.
    [11] V.P. Shah, K.K. Midha, J.W.A. Findlay, H.M. Hill, J.D. Hulse, I.J. McGilveray, G.McKay, K.J. Miller, R.N. Patnaik, M.L. Powell, A. Tonelli, C.T. Viswanathan, A.Yacobi, Bioanalytical method validation-a revisit with a decade of progress, Pharm. Res. 2000,17(12):1551-7.
    [12] Taylor PJ, Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry, Clin. Biochem, 2005,38(4): 328-34.
    [13] H.T. Karnes, C. March, Precision, accuracy, and data acceptance criteria in biopharmaceutical analysis, (1993)Pharm. Res. 10(10):1420-6.
    [14] C. Rudolphi, G. Blaschke, Determination of the stereoselective spects in in-vitro and in-vivo metabolism of the analgesic meptazinol by highperformance liquid chromatography, Journal of Chromatography B, 663 (1995) 315-326
    [15] Frost T, Determination of meptazinol in plasma by high-performance liquid chromatography with fluorescence detection. Analyst. 1981, 106(1266): 999 -1000.
    [16] Storey GC, Schootstra R, Henry JA, Measurement of meptazinol in plasma by high-performance liquid chromatography with electrochemical detection. J Chromatogr. 1985;341(1):223-7
    [17] Flanagan RJ, Ward NM, HPLC measurement of meptazinol in plasma using electrochemical oxidation detection, Biomed Chromatogr. 1986 Aug; 1(4): 180-2.
    [18] Wazushige Sakai, Hideki Nakano, Hiroyuki Nagano, and TYasumi Uchida, Nicorandil, New Drugs Annual: Cardiovascular Drugs, 1983
    [19] Jignesh Bhatt,Arvind Jangid, Bhavin Shah, Raghavendra Shetty, Sandeep Kambli, Gunta Subbaiah and Sadhana Singh, Rapid and sensitive liquid chromatography - tandem mass spectrometry method for the estimation of nicorandil in human plasma, Biomed. Chromatogr. 2006,20: 864-869
    [20] Ken-ichi Mawatari, Yuki Nakamura, Rieko Shimizu, Sigemi Sate, Fumio Iinuma, Mitsuo Watanabe, Fluorimetric determination of nicorandil in human plasma by a high-performance liquid chromatographic-postcolumn ultraviolet detection system equipped with on-line back-pressure tubing, Journal of Chromatography B, 1996,679:155-159
    [21] Samo Andrens(?)ek, Andrej S(?)midovnik, Anica Pec(?)avar, Mirko Pros(?)ek, Routine and sensitive method for determination of nicorandil in human plasma developed for liquid chromatography with ultraviolet and mass spectrometric detection, Journal of Chromatography B, 735 (1999) 103-109
    [22] Sapna N. Makhija, Pradeep R. Vavia. Stability indicating HPTLC method for the simultaneous determination of pseudoephedrine and cetirizine in pharmaceutical formulations J.Pharm. Biomedical Anal. 25 (2001) 663-667.
    [23] L.Y. Lo, G. Land, A. Bye, Sensitive assay for pseudoephedrine and its metabolite,norpseudoephedrine in plasma and urine using gas--liquid chromatography with electron-capture detection. J. Chromatogr. 222 (1981) 297.
    [24] E.T. Lin, D.C. Brater, L.Z. Benet, J. Chromatogr. 140 (1977) 273.
    [25] S. Rudaz, S. Souverain, C. Schelling, M. Deleers, et al. Development and validation of a heart-cutting liquid chromatography-mass spectrometry method for the determination of process-related substances in cetirizine tablets,Analytica Chimica Acta 492 (2003) 271-282.
    [26] M. Nieder, H. Jaeger, Sensitive quantification of pseudoephedrine in human plasma and urine by high-performance liquid chromatography, J. Chromatogr.424(1988)73.
    [27] E. Brendel, I. Meineke, E.-M. Henne, M. Zschunke, C. De Mey, Sensitive high-performance liquid chromatographic determination of pseudoephedrine in plasma and urine J. Chromatogr. 426 (1988) 406.
    [28] P. Guo, Z. Li, T. Li, X. Wang, F. Li, Direct injection of plasma to determine pseudoephedrine by high performance liquid chromatography with column switching, Biomed. Chromatogr. 13 (1999) 61.
    [29] R. Herraez-Hernandez, P. Campins-Falco, Derivatization of tertiary amphetamines with 9-fluorenylmethyl chloroformate for liquid chromatography: determination of N-methylephedrine, Analyst, 124 (1999) 239.
    [30] 钟明康,施孝金,盐酸伪麻黄碱缓释片的相对生物利用度和稳态药物动力学,Chin Hosp Pharm J,2001,21(7):
    [31] M.F. Zaater, Y.R. Tahboub, N.M. Najib, RP-LC method for the determination of cetirizine in serum,J.Pharm. Biomedical Anal, 22 (2000) 739-744.
    [32] Chen Haijian, Anthology of medicine, Feb 2002, Vol.21, No.l.
    [33] A.D. de Jager , H.K.L. Hundt, K.J. Swart, A.F. Hundt, J. Els. Extractionless and sensitive method for high-throughput quantitation of cetirizine in human plasma samples by liquid chromatography-tandem mass spectrometry, J Chromatogr B,773(2002)113-118.
    [34] CARMEN S. L. HOH, DAVID J. BOOCOCK, TIMOTHY H. MARCZYLO, V.A. BROWN, HONG CAI, WILLIAM P. STEWARD, DAVID P. BERRY, AND ANDREAS J. GESCHER, Quantitation of Silibinin, a Putative Cancer Chemopreventive Agent Derived from Milk Thistle (Silybum marianum), in Human Plasma by High-Performance Liquid Chromatography and Identification of Possible Metabolites, J. Agric. Food Chem. 2007,55,2532-2535.
    [35] N. Skottova, Z. Svagera, R. Vecera, K. Urbanek, A. Jegorov, V. Simanek, Pharmacokinetic study of iodine-labeled silibinins in rat, Pharmacol. Res. 44 (2001) 247.
    [36] B. Ridding, B. Hans, R. Kramarczyk, G Krumbiegel, R. Weyhenmeyer, Two high-performance liquid chromatographic assays for the determination of free and total silibinin diastereomers in plasma using column switching with electrochemical detection and reversed-phase chromatography with ultraviolet detection, J. Chromatogr. B 670 (1995) 267
    [37] James I. Lee a, Bih H. Hsub, Di Wua, Jeffrey S. Barrett, Separation and characterization of silybin, isosilybin, silydianin and silychristin in milk thistle extract by liquid chromatography -electrospray tandem mass spectrometry, Journal of Chromatography A, 1116 (2006) 57-68
    [38] Chitra Sridar, Theunis C. Goosen, Ute M. Kent, J. Andrew Williams, and Paul F. Hollenberg, SILYBIN INACTIVATES CYTOCHROMES P450 3A4 AND 2C9 AND INHIBITS MAJOR HEPATIC GLUCURONOSYLTRANSFERASES, DMD 32:587-594,2004
    [39] Petra Jan()ov(?), Eva Anzenbacherov(?), Barbora Papou(?)kov(?), Karel Lemr, Silybin is metabolized by cytochrome P450 2C8 in vitro, dmd. 107.016410
    [40] Johannes Doehmer, Bernhard Tewes, Kai-Uwe Klein, Kristin Gritzko, Holger Muschick, Ulrich Mengs,Assessment of Drug-Drug Interaction for Silymarin, 10.1016/j.tiv. 2007.11.020.
    [41] Wei Li, Jianping Han, Zhiwen Li, Xinxin Li, Shuiping Zhou, Changxiao Liu, Preparative chromatographic purification of diastereomers of silybin and their quantification in human plasma by liquid chromatography-tandem mass spectrometry, Journal of Chromatography B, 862 (2008) 51-57
    [42] Kim EJ, Lee RK, Lee SM and Kim DY, General pharmacology of IY-81149, a new proton pump inhibitor, Arzneimittelforschung. (2001)51(1).
    [43] Periclou AP, Goldwater R,Lee SM, Park DW, Kim DY, Cho KD, Boileau F and Jung WT.. A comparative pharmacodynamic study of IY-81149 versus omeprazole in patients with gastroesophageal reflux disease, Clin Pharmacol Ther. 68(3)(2000)304-11
    [44] Myung SW, Min HK, Jin C, Kim M, Lee SM, Chung GJ, Park SJ, Kim DY and Cho HW. Identification of IY81149 and its metabolites in the rat plasma using the on-line HPLC/ESI mass spectrometry, Arch Pharm Res. 22(2)(1999)189.
    [45] Li Y, Zhang W, Guo D, Zhou G, Zhou H, Xiao Z., Pharmacokinetics of the new proton pump inhibitor ilaprazole in Chinese healthy subjects in relation to CYP3A5 and CYP2C19 genotypes,Clin Chim Acta. 39(1-2) (2008) 60.
    [46] P.J. Taylor, Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandern mass spectrometry, Clin. Biochem. 38(4) (2005) 328.
    [47] H.T. Karnes, C. March, Precision, Accuracy, and Data Acceptance Criteria in Biopharmaceutical Analysis Pharm. Res. 10(10) (1993) 1420.
    [48] Food and Drug Administration, Guidance for Industry on Bioanalytical Method Validation, Federal Register, vol. 66, no. 100,23 May 2001, p.28526
    [49] V.P. Shah, K.K. Midha, J.W.A. Findlay, H.M. Hill, J.D. Hulse, I.J. McGilveray, G. McKay, K.J. Miller, R.N. Patnaik, M.L. Powell, A. Tonelli, C.T. Viswanathan, A. Yacobi, Pharm. Res. 17 (12) (2000) 1551.
    [50] BARTELS MJ, HANSEN SC, THORNTON CM, BRZAK KA, MENDRALA AL, DIETZ FK, KASTL PJ. Pharmacokinetics and metabolism of 14C-1,3-dichloropropene in the Fischer 344 rat and the B6C3F1 mouse. Xenobiotica. 2004; 34(2):193-213.
    [51] DE JONGE MJ, KAYE S, VERWEIJ J, BROCK C, READE S, SCURR M, VAN DOORN L, VERHEIJ C, LOOS W, BRINDLEY C, MISTRY P, COOPER M, JUDSON I. Phase I and pharmacokinetic study of XR11576, an oral topoisomerase Ⅰ and Ⅱ inhibitor, administered on days 1-5 of a 3-weekly cycle in patients with advanced solid tumours. Br J Cancer. 2004, 91(8): 1459-65.
    [52] STOKVIS E, NAN-OFFERINGA LG, OUWEHAND M, TIBBEN MM, ROSING H, SCHNAARS Y, GRIGAT M, ROMEIS P, SCHELLENS JH, BEIJNEN JH. Quantitative analysis of D-24851, a novel anticancer agent, in human plasma and urine by liquid chromatography coupled with tandem mass spectrometry. Rapid Commun Mass Spectrom. 2004;18(13): 1465-71
    [53] STOKVIS E, NAN-OFFERINGA LG, OUWEHAND M, TIBBEN MM, ROSING H, SCHNAARS Y, GRIGAT M, ROMEIS P, SCHELLENS JH, BEIJNEN JH. Quantitative analysis of D-24851, a novel anticancer agent, in human plasma and urine by liquid chromatography coupled with tandem mass spectrometry. Int J Clin Pharmacol Ther. 2004,42(7):367-72.
    [54] Wang Jiping and He Xiaobing, HPLC Determination of Sulindac and its Sulphone and Sulphide M etabolites in Serum , Chinese Journal of Pharmaceutical Analysis 1995,15 (5) :7-9
    [1]. BARTELS MJ, HANSEN SC, THORNTON CM, BRZAK KA, MENDRALA AL, DIETZ FK, KASTL PJ. Pharmacokinetics and metabolism of 14C-1,月3-dichloropropene in the Fischer 344 rat and the B6C3F1 mouse. Xenobiotica.2004;34(2):193-213.
    [2]. DE JONGE MJ, KAYE S, VERWEIJ J, BROCK C, READE S, SCURR M, VAN DOORN L, VERHEIJ C, LOOS W, BRINDLEY C, MISTRY P, COOPER M,JUDSON I. Phase I and pharmacokinetic study of XR11576, an oral topoisomerase Ⅰ and Ⅱ inhibitor, administered on days 1-5 of a 3-weekly cycle in patients with advanced solid rumours. Br J Cancer. 2004 Oct 18;91(8):1459-65.
    [3]. STOKVIS E, NAN-OFFERINGA LG, OUWEHAND M, TIBBEN MM, ROSING H, SCHNAARS Y, GRIGAT M, ROMEIS P, SCHELLENS JH,BEIJNEN JH. Quantitative analysis of D-24851, a novel anticancer agent, in human plasma and urine by liquid chromatography coupled with tandem mass spectrometry. Rapid Commun Mass Spectrom. 2004; 18(13): 1465-71
    [4]. STOKVIS E, NAN-OFFERINGA LG, OUWEHAND M, TIBBEN MM,ROSING H, SCHNAARS Y, GRIGAT M, ROMEIS P, SCHELLENS JH,BEIJNEN JH. Quantitative analysis of D-24851, a novel anticancer agent, in human plasma and urine by liquid chromatography coupled with tandem mass spectrometry. Int J Clin Pharmacol Ther. 2004,42(7):367-72.
    [5]. 卢弘,李敏,刑东明,杜力军,对中药复方药代动力学研究中血药浓度测定方法的评述与思考。World science and technology/modernization of Traditional Chinese Medicine 2000,2(4):22-26
    [6]. 袁成等,羟乙基芦丁在大鼠体内的药物动力学。中国医院药学杂志,1999,19(2):67-69
    [7]. 黄熙等,川芎丹参剂灌胃大鼠后体内川芎嗪的药物动力学研究。中药药理与临床,1993,9(4),37-39
    [8]. 安睿等,大黄苯蒽甙元在家兔体内的多组分药动学研究。中国药学会第五届全国中药和天然产物学术交流会论文汇编。北京:人民卫生出版社1997,44-48
    [9]. BIBER -A, FISHCHER-H. Oral biovalavility of hyperforin from hypericum extracts in rats and human volunteers. Pharmacopsychiatry 1998.31 Supple (1):36-43.
    [10]. 张建丽,徐友宣,邸欣,秦旸,张长久,LC/MS/MS与GC/MS法分析鉴定小鼠尿中沙美特罗的代谢产物.中国新药杂志,2004,13(5):424-8
    [11]. 王喜军,张宁,孙晖,孙文军,六味地黄丸的血清药物化学研究,中国天然药物,2004.7,2(4)219-222
    [12]. 谭志荣,欧阳冬生,韩仰,彭亮,陈尧,韩春婷,曾玲,郭栋,郑蛟,周淦,王连生,李智,刘昭前,胡东莉,刘英姿,王丹,周宏颧,依诺沙星分散片的人体相对生物利用度研究,中国新药杂志,2007,16(5):403-5
    [13]. ALBU F, GEORGITA C, DAVID V, MEDVEDOVICI A. Liquid chromatography-electrospray tandem mass spectrometry method for determination of indapamide in serum for single/multiple dose bioequivalence studies of sustained release formulations. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Feb 25;816(1-2):35-40.
    [14].ALMEIDA S, FILIPE A, VALLEE F, TANGUAY M, LAROUCHE R, LAINESSE A. Comparative bioavailability of two formulations of terbinafine. Data from a cross-over, randomised, open-label bioequivalence study in healthy volunteers. Arzneimittelforschung. 2004;54(11):757-62.
    [15].ZHOU S, FENG X, KESTELL P, BAGULEY BC, PAXTON JW. Determination of the investigational anti-cancer drug 5,6-dimethylxanthenone- 4-acetic acid and its acyl glucuronide in Caco-2 monolayers by liquid chromatography with fluorescence detection: application to transport studies. J Chromatogr B Analyt Technol Biomed Life Sci. 2004 ; 809(1) :87-97.
    [16].YONG-MEI YAO, ZHI-RONG TAN, ZHE-YI HU, XIN GUO, ZE-NENG CHENG,,LIAN-SHENG WANG, HONG-HAO ZHOU, Determination of sinomenine in human plasma by HPLC/ESI/ion trap mass spectrum, Clin Chim Acta. 2005 Jun;356(1-2):212-7
    [17]. 周宏灏,遗传药理学,第一版,北京,科学出版社,2001
    [18].JIE LIU, ZHAO-QIAN LIU, ZHI-RONG TAN, XIAO-PING CHEN,LIAN-SHENG WANG, GAN ZHOU, HONG-HAO ZHOU.Gly389Arg polymorphism of β_1-adrenergic receptor is associated with the cardiovascular response to metoprolol. Clin Pharmacol Ther 2003;74:372-9
    [19].LIU ZHAO-QIAN, SHU YAN, HUANG SONG-LIN, WANG LIAN-SHENG,HE NAN, ZHOU HONG-HAO.Effects of CYP2C19 genotype and CYP2C9 on fluoxetine N-demethylation in human liver microsomes. Acta Pharmacol Sin 2001; 22(1):85-99
    [20].ZHAO-QIAN LIU , ZE-NENG CHENG, SONG-LIN HUANG, XIAO-PING CHEN, DONG-SHENG OU-YANG, CHANG-HONG JIANG, HONG-HAO ZHOU. Effect of the CYP2C19 oxidation polymorphism on fluoxetine metabolism in Chinese healthy subjects. Br J Clin Pharmacol, 2001,52(1): 96-99
    [21].YAN SHU, LIAN-SHENG WANG, ZHEN-HUA XU, NAN HE, WEI-MIN XIAO, WEI WANG, SONG-LIN HUANG, HONG-HAO ZHOU.5-Hydroxylation of Omeprazole by Human Liver Microsomal Fractions from Chinese Populations Related to CYP2C19 Gene Dose and Individual Ethnicity.THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS 2000; 295(2):844-51
    [22].BANG-NING YU, GUO-LIN CHEN, NAN HE, DONG-SHENG OUYANG,XIAO-PING CHEN, ZHAO-QIAN LIU, HONG-HAO ZHOU. Pharmacokinetics of citalopram n relation to genetic polymorphism of CYP2C19.DRUG METABOLISM AND DISPOSTION 2003, 31(10):1255-59.
    [23].XING-MEI HAN, DONG-SHENG OU-YANG, PEI-XIN LU, CHANG-HONG JIANG, YAN SHU, XIAO-PING CHEN, ZHI-RONG TAN, HONG-HAO ZHOU.Plasma caffeine metabolite ratio (17X/137X) in vivo associated with G-2964A and C734A polymorphisms of human CYP1A2. Pharmacogenetics 2001,11:.429-435.
    [24]. 周宏灏主编.药理学(五年制教材).第1版.北京:科学出版社,2003
    [25].ZHOU HH, KOSHAKJI RP, SILBERSTEIN DJ, WILKINSON GR, WOOD AJ.Altered sensitivity to and clearance of propranolol in men of Chinese descent as compared with American whites. N Engl J Med. 1989,320(9):565-70.
    [26].JOHNSON JA, HERRING VL, WOLFE MS, RELLING MV. CYP1A2 and CYP2D6 4-hydroxylate propranolol and both reactions exhibit racial differences. J Pharmacol Exp Ther. 2000 Sep;294(3):1099-105.
    [27]. 徐叔云主编.临床药理学.第2版.北京:人民卫生出版社,1999
    [28].CHENHAO, LIULEI. Study on the effect of fenofibrate to pharmacokinetics of simvastatin in healthy volunteers. Chin J Clin Pharmacol 20(2),2004
    [29].JANNE T. BACKMAN, MD, CARL KYRKLUND, MB. Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clinical Pharmacology &Therapeutics 72(6).2002
    [30]. 李焕德,程泽能主编.临床药学。第1版.北京:人民卫生出版社,2002
    [31]. 尚刚伟,蒋永培.改良萃取-高效液相色谱法监测亲代活体肝移植患者全血中CsA.第四军医大学学报19(2).1998
    [32]. 王静竹,吴侔天,运动员尿中类固醇激素水平的研究.中国运动医学杂志2004,23(2).200-4
    [1]. 金惠铭,病理生理学,人民卫生出版社,2002,第五版
    [2]. 梁扩寰,肝硬化与门脉高压,见:陈敏章主编,中华内科学,人民卫生出版社,1999:2360-2367
    [3]. 杜冠华,实验药理学,中国协和医科大学出版社,2004年5月第一版
    [4]. 周宏灏,遗传药理学,科学出版社,2001年2月第一版
    [5] RODRIGUEZ-ANTONA C, DONATO MT, PAREJA E, GOMEZ-LECHON MJ, CASTELL JV, Cytochrome P450 mRNA Expression in human liver and its relationship with enzyme activity, Archives of biochemistry and biophysics, 2001, 393 (2): 308-315
    [6]. REGINALD F. FRYE, NATHALIE K. ZGHEIB, GARY R.MATZKE, DIEGO CHAVES-GNECCO, MORDECHAI RABINOVITZ, OBAID S. SHAIKH,ROBERT A. BRANCH, Liver disease selevtively modulates cytochrome P450-mediated metabolism, Clin Pharmacol Ther, 2006; 80(3):235-45
    [7] 细胞色素P450与药物代谢的研究现状,中国临床药理学与治疗学,2004,9(10):1081-1086
    [8]. J.-P. VILLENEUVE, AND V. PICHETTE, Cytochrome P450 and liver diseases,Current drug metabolism, 2004, 5, 273-282
    [9]. ORLANDO R, PICCOLI P, DE MARTIN S, PADRINI R, FLOREANI M,PALATINI P, Cytochrome P450 1A2 is a major deterinant of lidocane metabolism in vivo: Effect of liver function, CPT, 2004;75:80-8
    [10]. GEORGE, J, MURRAY, M; BYTH, K. AND FARRELL, G.C. Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver disease,Hepatology, 1995,21(1): 120-8
    [11]. JOERES, R.; KLINKER, H.; HEUSLER, H.; EPPING, J.; ZILLY, W. AND RICHTER, E. Influence of smoking on caffeine elimination in healthy volunteers and in patients with alcoholic liver cirrhosis, Hepatology,1988, 8(3): 575-579.
    [12]. COVERDALE, S.; BYTH, K. FIELD, J.; LIDDLE, C; LIN, R. AND FARRELL, G.C. Antipyrine clearance and response to interferon treatment in patients with chronic active hepatitis C, Hepatology, 1995,22(4), 1065-71
    [13]. SHIBUYA M, ECHIZEN H, KUBO S, TAMURAN, SUZUKI K, USHIAMA H, OHNISHI A. Reduced urinary 6 beta-hydroxycortisol to cortisol ratios in patients with liver cirrhosis, Hepatol Res. 2003,26(1):28-33.
    [14]. Yang,L.Q.; Li,S.J.; Cao, Y.F.; Man, X.B.; Yu, W.F.; Wang, H.Y. and Wu, M.C.Different alterations of cytochrome P450 3A4 isoform and its gene expression in livers of patients with chronic liver diseases. World. J.Gastroenterol. 2003, 9(2):359-63
    [15]. GEORGE, J.; MURRAY, M.; BYTH, K. AND FARRELL, G.C. Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver disease, Hepatology 1995, 21(1), 120-128.
    [16]. GEORGE, J.; LIDDLE, C.; MURRAY, M.; BYTH, K. AND FARRELL, G.C. Pre-translational regulation of cytochrome P450 genes is responsible for disease-specific changes of individual P450 enzymes among patients with cirrhosis, Biochem. Pharmacol. 49(7):873-81
    [17]. ANDREW PARKINSON, DANIEL R.MUDRA, CORY J OHNSON,, ANNE DWYER, KATHLEEN M. CARROLL, The effects of gender, age, ethnidcity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibity in cultured human hepatocytes. Toxicology and Applied Pharmacology, 2004,199: 193-209
    [18]. LOWN, K.; KOLARSJ.; TURGEON, K.; MERION, R.; WRIGHTON, S.A. AND WATKINS, P.B. The erythromycin breath test selectively measures P450IIIA in patients with severe liver disease, Clin. Pharmacol. Ther. 1992, 51(3):229-38
    [19]. GUENGERICH, F.P. AND VILLENEUVE, J.P. Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemical analysis of surgical liver samples J. Pharmacol. Exp. Ther. 1991,256(3):1189-1194
    [20]. HO JC, CHEUNG ST, LEUNG KL, NG IO,FAN ST. Decreased expression of cytochrome P450 2E1 is associated with poor prognosis of hepatocellular carcinoma. Int J Cancer. 2004,111(4):494 - 500.
    [21]. PAUL GLUE1, AND ROBERT P. CLEMENT, Cytochrome P450 Enzymes and Drug Metabolism-Basic Concepts and Methods of Assessment, Cellular and Molecular Neurobiology, 1999,19(3):309-23
    [22]. BRANCH, R.A. Drugs in liver disease, Clin Pharmacol Ther, 1998, 64 (4): 462-5
    [23]. GIANNINI, E.; FASOLI, A.; CHIARBONELLO, B.; MALFATTI, F.; ROMAGNOLI, P.; BOTTA, F.; TESTA, E.; POLEGATO, S.; FUMAGALLI, A. AND TESTA, R. 13C-aminopyrine breath test to evaluate severity of disease in patients with chronic hepatitis C virus infection Aliment. Pharmacol. Ther. 2002,16(4), 717-725.
    [24]. PIQUE, J.M.; FEU, F.; DE PRADA, G; ROHSS, K. AND HASSELGREN, G. Pharmacokinetics of omeprazole given by continuous intravenous infusion to patients with varying degrees of hepatic dysfunction. (2002) Clin. Pharmacokinet. 41(12): 999-1004.
    [25]. ARNS, P.A.; ADEDOYIN, A.; DIBISCEGLIE, A.M.; WAGGONER, J.G.;HOOFNAGLE, J.H.; WILKINSON, G.R. AND BRANCH, R.A.Mephenytoin disposition and serum bile acids as indices of hepatic function in chronic viral hepatitis. Clin. Pharmacol. Ther. 1997,62(5): 527-537.
    [26]. VILLENEUVE, J.P.; INFANTE-RIVARD, C.; AMPELAS, M; POMIER-LAYRARGUES, G.; HUET, P.M. AND MARLEAU, D. Prognostic value of the aminopyrine breath test in cirrhotic patients , Hepatology, 1986, 6(5):928-931.
    [27]. NELSON E. Rate Of Metabolism Of Tolbutamide In Test Subjects With Liver Disease Or With Impaired Renal Function. Am J Med Sci. 1964 Dec; 248:657 - 9.
    [28]. 周宏灏,分子药理学,黑龙江科学技术出版社,1999年5月第一版
    [29]. CHALON SA, DESAGER JP, DESANTE KA, FRYE RF, WITCHER J,LONG AJ, SAUER JM, GOLNEZ JL, SMITH BP, THOMASSON HR,HORSMANS Y. Effect of hepatic impairment on the pharmacokinetics of atomoxetine and its metabolites, Clin Pharmacol Ther. 2003 73(3):178-91.
    [30]. ADEDOYIN, A.; ARNS, P.A.; RICHARDS, W.O.; WILKINSON, G.R. AND BRANCH, R.A. Selective effect of liver disease on the activities of specific metabolizing enzymes: investigation of cytochromes P450 2C19 and 2D6.Clin Pharmacol Ther. 1998 Jul; 64(1):8-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700