阿片受体在吗啡耐受机制中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吗啡作为阿片类药物的代表,至今仍在缓解中、重度疼痛中占有重要地位,但由于长期应用可导致耐受和成瘾,影响了其在临床中的应用。近年来,针对吗啡耐受机制进行了多方面的研究,建立了在体和体外吗啡耐受模型,并在细胞信号转导方面对吗啡耐受机制的研究取得了一些进展,但由于吗啡耐受机制极其复杂,体外模型获得的结论还难以解释在体模型的一些现象,很多研究尚未得到确切结论,有些结果仍互相矛盾,因此有必要对在体吗啡耐受模型有关受体和基因表达及其调控机制进行深入研究。本研究拟立足于吗啡发挥作用的首要环节—阿片受体来研究吗啡耐受的机制,采用经典吗啡耐受模型、免疫组织化学分析以及荧光定量PCR方法测定μ、δ、κ三种阿片受体在大鼠神经系统的表达,以探讨吗啡耐受情况下三种阿片受体发生变化的主要部位和相互关系,力图为进一步揭示吗啡耐受机制提供实验依据。
     第一部分吗啡耐受模型的建立
     选取基础痛阈相近的健康成年雄性Wistar大鼠32只,采用随机数字表将大鼠随机平均分为两组:生理盐水组(NS组,n=16)和硫酸吗啡组(MS组,n=16)。两组大鼠混笼饲养,采用盲法进行给药和痛行为测定。以大鼠热水浴甩尾潜伏期(Tail FlickLateny,TFL)作为痛阈标准。每天两次皮下注射药物(8:00和16:00)并于上午注射前、后30min测定TFL。NS组皮下注射生理盐水1mL/kg,MS组皮下注射吗啡10mg/kg,连续注射7天,第8天早晨各组分别取8只处死,剩余大鼠(分别记为NSN组和MSN组)第8天早晚两次皮下注射纳洛酮0.4mg/kg,第9天亦处死。为了防止烫伤大鼠尾部皮肤,当TFL达到12s时,终止测试并将甩尾潜伏期数值记为12s。观察各组大鼠痛阈变化,以TFL恢复至基础水平作为出现耐受性的标准。
     结果显示:两组大鼠在观察期体重逐日增加,组间比较体重的增加量无显著性差异。每日注射前测定的痛阈在组间和组内比较无显著性差异,随着吗啡使用次数的增加,MS组用药前痛阈并未发生显著性变化(P>0.05);MS组在第一天皮下注射吗啡后,痛阈较NS组和基础值明显升高(P<0.05);随着吗啡用药次数增加,该组大鼠用药后的痛阈逐渐下降,直至第7天用药后痛阈降至基础水平,第9天应用纳络酮后的痛阈与NS组和基础值相比,没有显著性变化。
     第二部分吗啡耐受大鼠神经系统阿片受体的蛋白表达
     选取基础痛阈相近的健康成年雄性Wistar大鼠16只,随机平均分为两组:生理盐水组(NS组,n=8)和硫酸吗啡组(MS组,n=8)。给药方法、痛阈测定方法及吗啡耐受判断标准同第一部分,连续注射7天,第8天早晨各组分别取4只处死,剩余大鼠(分别记为NSN组和MSN组)第8天早晚两次皮下注射纳洛酮0.4mg/kg,第9天亦处死。所有大鼠于深麻醉下经灌流固定处死后,取出脑和脊髓组织制作石蜡切片,进行免疫组织化学染色,分析丘脑、下丘脑、蓝斑、海马、中脑导水管周围灰质(PAG)和腰骶段脊髓Ⅰ—Ⅴ板层μ、δ、κ阿片受体的蛋白表达情况。
     结果显示:吗啡耐受大鼠PAG区域的μ受体和δ受体的蛋白表达明显低于对照组,δ受体在蓝斑区域的表达亦显著低于对照组;κ受体在蓝斑和脊髓背角的表达却显著升高。
     第三部分吗啡耐受大鼠中枢神经系统阿片受体的mRNA表达
     选取基础痛阈相近的健康成年雄性Wistar大鼠16只,随机平均分为两组:生理盐水组(NS组,n=8)和硫酸吗啡组(MS组,n=8)。给药方法、痛阈测定方法及吗啡耐受判断标准同第一部分,连续注射7天,第8天早晨各组分别取4只处死,剩余大鼠(分别记为NSN组和MSN组)第8天早晚两次皮下注射纳洛酮0.4mg/kg,第9天亦处死。所有大鼠于深麻醉下断头处死,迅速取出丘脑、下丘脑、蓝斑、海马、PAG、腰骶段脊髓以及背根神经节(DRG),分别提取组织总RNA,并采用荧光定量PCR(real timePCR)方法测定各部位μ、δ、κ阿片受体的mRNA表达情况。
     结果显示:吗啡耐受大鼠PAG区域的μ受体和δ受体的mRNA表达明显低于对照组,δ受体在蓝斑区域的mRNA表达亦显著低于对照组;κ受体在蓝斑和脊髓背角的mRNA表达均显著升高,但在背根神经节的表达却显著降低。
     通过本研究,我们得出以下结论:
     1.吗啡耐受可能是多个阿片受体共同作用的结果;
     2.吗啡耐受大鼠PAG区域的μ受体呈下调表现;
     3.吗啡耐受大鼠蓝斑和PAG区域的δ受体呈下调表现;
     4.吗啡耐受大鼠蓝斑和脊髓背角κ受体呈上调表现,但脊髓背根神经节κ受体明显下调;
     5.与吗啡耐受相关的部位涉及PAG、蓝斑、脊髓背角以及脊髓背根神经节。
Morphine, nowadays, as the most effective opioids, remains a overwhelming drug in the management of moderate or severe pain. But its clinical utility is severely hindered by the development of drug tolerance and physical dependence when administered chronically. Recently, with every effort in the study of opioid tolerance, it has made a great progress in the mechanisms of morphine tolerance. Many kinds of morphine tolerant models were established in vivo or in vitro, and the possible cellular signal trasduction pathways in morphine tolerance were postulated. However, because of the complexity mechanism in morphine tolerance, results from vitro experiments still cannot explain some phenomena in vivo, conclusions from many studies seem inconsistence and need further verification.μ,δ,κare the most common opioid receptors in nervous system which mediate various effects of morphine and were cloned successively. But the role of these three opioid receptors in morphine tolerance and whether the interactions of them are important to morphine tolerance has not been elucidated. This experiment was designed based on the initial component, opioid receptors, to evaluate the changes of three opioid receptors in various regions in nervous system of a classical morphine tolerant rat model by the method of immunohistochemistry and real time PCR, and to provide an experimental evidence to further explore the mechanisms of morphine tolerance.
     PartⅠEstablishment of Morphine Tolerant Rat Model
     32 healthy and similar pain threshold adult male Wistar rats were randomly allocated equally to 2 groups. Group NS (n=16), the control group, received a subcutaneous (s.c.) injection of 1ml/kg normal saline (NS) in the nape; group MS (n=16) received a s.c. injection of morphine 10mg/kg. All rats were housed in a same enviroment and received s.c. injection twice a day (8:00 and 16:00) for 7 days. In the morning of the 8th day, 8 control rats and 8 morphine rats were killed. The remaining rats, which named as NSN subgroup and MSN subgroup respectively, received no further morphine injections, bur received 2 injections of naloxone (0.4mg/kg) on the 8th day twice (8:00 and 16:00), and were killed on the 9th day. The tail-flick latency (TFL) as an index of pain threshold was obtained with the rat tail immersed in hot water (52±0.5℃) and was measured in each rat 30 min before and after every morning injection, with the average TFL before the first injection as the baseline value. The cutoff time was 12s to avoid burn of the tail skin. Morphine tolerance was developed, as TFL returned to the baseline level.
     The rats' weight which were measured every morning in the observation period increased gradually, and there was no significant changes between two groups. The pain behaviors indicated that TFLs before injection every morning were not significantly different within or between groups. The TFL of Group MS increased significantly than baseline value and Group NS after first morphine injection. But as injection increasing, the average TFL after injection of Group MS shortened gradually and returned to baseline value after the 7th day injection. There were no significant difference in TFL after naloxone injection between groups and baseline value.
     Part II Protein expression of three opioid receptors in central nervous system of morphine tolerant rats
     16 healthy and similar pain threshold adult male Wistar rats were randomly allocated equally to 2 groups, named Group NS (n=8) and Group MS (n=8). The drug administration, pain threshold measurement and standard of morphine tolerance are same as Part I . The subcutaneous injection conducted consecutively for 7 days and 4 rats in each group were killed on the 8th morning. The remaining rats, which recorded as NSN subgroup and MSN subgroup, s.c. naloxone 0.4mg/kg twice in the 8th day, and were killed on the 9th morning. All rats were killed with 4℃4% polyformaldehyde perfusion and fixation under deep anesthesia. The brain and spinal cord were anatomised and prepared of paraffin sections for immunohistochemistry (IHC). Analyse protein expression of three opioid receptors in thalamus, hypothalamus, hippocampus, locus ceruleus, periaqueductal gray (PAG) and layer I -V of lumber-sacral spinal cord.
     The analysis of IHC stain suggested thatμopioid receptor decreased significantly in PAG of morphine tolerant rats.δopioid receptor also had a lower expression in PAG and LC than control group. Butκopioid receptor increased highly in LC and layer I - V of lumber-sacral spinal cord.
     Part III mRNA expression of three opioid receptors in nervous system of morphine tolerant rats
     16 healthy and similar pain threshold adult male Wistar rats were randomly allocated equally to 2 groups, named Group NS (n=8) and Group MS (n=8). The drug administration, pain threshold measurement and standard of morphine tolerance are same as Part I . The subcutaneous injection conducted consecutively for 7 days and 4 rats in each group were killed on the 8th morning. The remaining rats, which recorded as NSN subgroup and MSN subgroup, s.c. naloxone 0.4mg/kg twice in the 8th day, and were killed on the 9th morning. All rats were killed decapitation under deep anesthesia. The brain, spinal cord and dorsal root ganglion were anatomised and refrigerated in liquid nitrogen. Extract total RNA of thalamus, hypothalamus, hippocampus, LC, PAG, lumber-sacral spinal cord and dorsal root ganglion. Analyse mRNA expression of three opioid receptors in these regions using real time PCR method.
     The result of real time PCR indicated that mRNA expression ofμopioid receptor decreased significantly in PAG of morphine tolerant rats.δopioid receptor also had a lower expression in PAG and LC than control group. Thoughκopioid receptor mRNA expression increased highly in LC and lumber-sacral spinal cord, it had a down-regulation in dorsal root ganglion.
     Based on the results of this study, we may draw the following conclusions:
     1 .Morphine tolerance may be a result of several opioid receptors coregulation;
     2.μopioid receptor decreased significantly in PAG of morphine tolerant rats;
     3.δopioid receptor decreased in PAG and LC of morphine tolerant rats;
     4.κopioid receptor increased statisticly in LC and lumber-sacral spinal cord, but it had a down-regulation in dorsal root ganglion;
     5.The involved regions of morphine tolerance should be PAG, LC, spinal cord and dorsal root ganglion.
引文
1.Hamilton GR,Baskett TF.In the arms of Morpheus:the development of morphine for postoperative pain relief.Can J Anesth,2000;47(4):367-374.
    2.World Health Organization.Cancer pain relief.Geneva:WHO,1986.
    3.Martin WR,Eades CG,Thompson JA,et al.The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog.J Pharmacol Exp Ther,1976;197(3):517-32.
    4.Tempel A,Zukin RS.Neuroanatomical patterns of the mu,delta,and kappa opioid receptors of rat brain as determined by quantitative in vitro autoradiography.Proc Natl Acad Sci USA,1987;84(12):4308-12.
    5.Sora I,Takahashi N.,Funada M,et al.Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia.Proc Natl Acad Sci USA,1997;94(4):1544-9.
    6.Loh HH,Tao PL,Smith AP.Role of receptor regulation in opioid tolerance mechanisms.Synapse,1988;2(4):457-62.
    7.Raehal KM,Bohn LM.Mu opioid receptor regulation and opiate responsiveness.AAPS J,2005;7(3):E587-91.
    8.Homer KA,Zadina JE.Internalization and down-regulation of mu opioid receptors by endomorphins and morphine in SH-SY5Y human neuroblastoma cells.Brain Res,2004;1028(2):121-32.
    9.Tejwani GA,Sheu MJ,Sribanditmongkol P,et al.Inhibition of morphine tolerance and dependence by diazepam and its relation to mu-opioid receptors in the rat brain and spinal cord.Brain Res,1998;797(2):305-12.
    10.Stafford K,Gomes BA,Shen J,Yobum BC.mu-Opioid receptor downregulation contributes to opioid tolerance in vivo.Pharmacol Biochem Behav,2001;69(1-2):233-7.
    11.Yobum BC,Gomes BA,Rajashekara V,et al.Role of G(i)alpha2-protein in opioid tolerance and mu-opioid receptor downregulation in vivo.Synapse,2003;47(2):109-16.
    12.Gomes BA,Shen J,Stafford K,et al.Mu-opioid receptor down-regulation and tolerance are not equally dependent upon G-protein signaling.Pharmacol Biochem Behav,2002;72(1-2):273-8.
    13.Martini L,Whistler JL.The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence.Curr Opin Neurobiol,2007;17(5):556-64.
    14.Yamada H,Shimoyama N,Sora,et al.Morphine can produce analgesia via spinal kappa opioid receptors in the absence of mu opioid receptors.Brain Res,2006;1083(1):61-9.
    15.Brainin-Mattos J,Smith N,Malkmus S,et al.Cancer-related bone pain is attenuated by a systemically available delta-opioid receptor agonist.Pain,2006;122(1-2):174-81.
    16.Suzuki T,Kishimoto Y,Ozaki S,et al.Mechanism of opioid dependence and interaction between opioid receptors.Eur J Pain,2001;5(Suppl A):63-5.
    17.Stoller DC,Sim-Selley LJ,Smith FL.Role of kappa and delta opioid receptors in mediating morphine-induced antinociception in morphine-tolerant infant rats.Brain Res,2007;1142(4):28-36.
    18.Kest B,Lee CE,McLemore GL,et al.An antisense oligodeoxynucleotide to the delta opioid receptor(DOR-1)inhibits morphine tolerance and acute dependence in mice.Brain Res Bull,1996;39(3):185-8.
    19.Pradhan AA,Siau C,Constantin A,et al.Chronic morphine administration results in tolerance to delta opioid receptor-mediated antinociception.Neuroscience,2006;141(2):947-54.
    20.Spanagel R,Shippenberg TS.Modulation of morphine-induced sensitization by endogenous kappa opioid systems in the rat.Neurosci Lett,1993;153(2):232-6.
    21.Nitsche JF,Schuller AG,King MA,et al.Genetic dissociation of opiate tolerance and physical dependence in delta-opioid receptor-1 and preproenkephalin knock-out mice.J Neurosci,2002;22(24):10906-13.
    22.Zhang X,Bao L,Guan JS.Role of delivery and trafficking of delta-opioid peptide receptors in opioid analgesia and tolerance.Trends Pharmacol Sci,2006;27(6):324-9.
    23.Bernstein MA,Welch SP.mu-Opioid receptor down-regulation and cAMP-dependent protein kinase phosphorylation in a mouse model of chronic morphine tolerance.Brain Res Mol Brain Res,1998;55(2):237-42.
    24.Livak KJ,Schtnittgen TD.Analysis of relative gene expression data using real-time quantitative PCR and the 2~(-δδCT) method.Methods,2001;25:402-8.
    25.Fine P,Portenoy R.K.Opioid analgesia.New York:McGraw Hill.2004.
    26.Joranson DE,Cleeland CS,Weissman DE,et al.Opioids for chronic cancer and non-cancer pain:A survey of state medical board members.The Journal of Medical Liciensure and Discipline,1992;79(4):15-49.
    27.黄晓蕾,马双莲,张金芳等,27省市护士对癌痛治疗相关知识了解程度的调查与分析.中国疼痛医学杂志,2001.7(1):22-25.
    28.Adams WJ,Yeh SY,Woods LA,et al.Drug-test interaction as a factor in the development of tolerance to the analgesic effect of morphine.J Pharmacol Exp Ther,1969;168:251-7.
    29.Kayan S,Woods LA,Mitchell CL.Experience as a factor in the development of tolerance to the analgesic effect of morphine. Eur J Pharmacol, 1969; 6: 333-9.
    30.Way EL, Loh HH, Shen FH. Simultaneous quantitative assessment of morphine tolerance and physical dependence. J Pharmacol Exp Ther, 1969; 167(1): 1-8.
    
    31.Baker TB, Tiffany ST. Morphine tolerance as habituation. Psychol Rev, 1985; 92(1): 78-108.
    32.Ayesta FJ, Florez J. Tolerance to the respiratory actions of sufentanil: functional tolerance and route-dependent differential tolerance. J Pharmacol Exp Ther, 1989; 250(1): 371-8.
    33.Emmett-Oglesby MW, Shippenberg TS, Herz A. Fentanyl and morphine discrimination in rats continuously infused with fentanyl. Behav Pharmacol., 1989; 1(1): 3-11.
    34.Kissin I, Kerr CR, Smith LR. Assessment of anaesthetic action of morphine and fentanyl in rats. Can Anaesth Soc J, 1983; 30(6): 623-8.
    35.Ronnekleiv OK, Bosch MA, Cunningham MJ, et al. Downregulation of μ-opioid receptor mRNA in the mediobasal hypothalamus of the female guinea pig following morphine treatment. Neurosci Lett, 1996; 216(2): 129-32.
    36.Meuser T, Giesecke T, Gabriel A, et al. Mu-opioid receptor mRNA regulation during morphine tolerance in the rat peripheral nervous system. Anesth Analg, 2003; 97(5): 1458-63.
    37.Zuo Z. The role of opioid receptor internalization and beta-arrestins in the development of opioid tolerance. Anesth Analg, 2005; 101(3): 728-34.
    38.Borgland SL. Acute opioid receptor desensitization and tolerance: is there a link? Clin Exp Pharmacol Physiol, 2001; 28(3): 147-54.
    39.Eisinger DA, Ammer H, Schulz R. Chronic morphine treatment inhibits opioid receptor desensitization and internalization. J Neurosci, 2002; 22(23): 10192-200.
    40.Narita M, Suzuki M, Narita M, et al. mu-Opioid receptor internalization-dependent and -independent mechanisms of the development of tolerance to mu-opioid receptor agonists: Comparison between etorphine and morphine. Neuroscience, 2006; 138(2): 609-19.
    41.Tracey I, Ploghaus A, Gati JS, et al. Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci, 2002; 22(7): 2748-52.
    42.Ennis M, Behbehani M, Shipley MT, et al. Projections from the periaqueductal gray to the rostromedial pericoerulear region and nucleus locus coeruleus: anatomic and physiologic studies. J Comp Neurol, 1991; 306(3): 480-94.
    43.Meyer PJ, Fossum EN, Ingram SL, et al. Analgesic tolerance to microinjection of the micro-opioid agonist DAMGO into the ventrolateral periaqueductal gray. Neuropharmacology, 2007; 52(8): 1580-5.
    44.Lane DA, Tortorici V, Morgan MM. Behavioral and electrophysiological evidence for tolerance to continuous morphine administration into the ventrolateral periaqueductal gray. Neuroscience, 2004. 125(1): 63-9.
    45.Lane DA, Patel PA, Morgan MM. Evidence for an intrinsic mechanism of antinociceptive tolerance within the ventrolateral periaqueductal gray of rats. Neuroscience, 2005; 135(1): 227-34.
    46.Meyer PJ, Fossum EN, Ingram SL. Analgesic tolerance to microinjection of the mu-opioid agonist DAMGO into the ventrolateral periaqueductal gray. Neuropharmacology, 2007; 52(8): 1580-5.
    47.Pavlovic ZW, Cooper ML, Bodnar RJ. Opioid antagonists in the periaqueductal gray inhibit morphine and beta-endorphin analgesia elicited from the amygdala of rats. Brain Res, 1996; 741(1-2): 13-26.
    48.Hack SP, Bagley EE, Chieng BC, et al. Induction of delta-opioid receptor function in the midbrain after chronic morphine treatment. J Neurosci, 2005; 25(12): 3192-8.
    49.Pradhan AA, Siau C, Constantin A, et al. Chronic morphine administration results in tolerance to delta opioid receptor-mediated antinociception. Neuroscience, 2006; 141(2): 947-54.
    50.Gray AC, Coupar IM, White PJ. Comparison of opioid receptor distributions in the rat central nervous system. Life Sci, 2006; 79(7): 674-85.
    51.Matthes HW, Smadja C, Valverde O, et al. Activity of the delta-opioid receptor is partially reduced, whereas activity of the kappa-receptor is maintained in mice lacking the mu-receptor. J Neurosci, 1998; 18(18): 7285-95.
    52.Filliol D, Ghozland S, Chluba J, et al. Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet, 2000; 25(2): 195-200.
    53.Pineda J, Tottecilla M, Martin-Ruiz R, et al. Attenuation of withdrawal-induced hyperactivity of locus coeruleus neurones by inhibitiors of nitric oxide synthase in morphine-dependent rats. Neuropharmacology, 1998; 37(6): 759-67.
    54.Pan YZ, Li DP, Chen SR, et al. Activation of δ-opioid receptors excites spinally projecting locus coeruleus neurons through inhibition of GABAergic inputs. J Neurophysiol, 2002; 88(5): 2675-83.
    55.Han MH, Bolanos CA, Green TA, et al. Role of cAMP response element-binding protein in the rat locus ceruleus: regulation of neuronal activity and opiate withdrawal behaviors. J Neurosci, 2006; 26(17): 4624-9.
    56.Nakai T, Hayashi M, Ichihara K, et al. Noradrenaline release in rat locus coeruleus is regulated by both opioid and alpha(2) -adrenoceptors. Pharmacol Res, 2002; 45(5): 407-12.
    57.Bhargava HN, Gulati A, Ramarao P. Effect of chronic administration of U-50488H on tolerance to its pharmacological actions and on multiple opioid receptors in rat brain regions and spinal cord. J Pharmacol ExpTher, 1989; 251(1): 21-6.
    58.Schmidt BL, Tambeli CH, Levine JD, et al. mu/delta cooperativity and opposing kappa-opioid effects in nucleus accumbens-mediated antinociception in the rat. Eur J Neurosci, 2002; 15(5): 861-8.
    59.Wikstrom B, Gellert R, Ladefoged SD. Kappa-opioid system in uremic pruritus: multicenter, randomized, double-blind, placebo-controlled clinical studies. J Am Soc Nephrol, 2005; 16(12): 3742-7.
    60.Ko MC, Lee H, Song MS, et al. Activation of kappa-opioid receptors inhibits pruritus evoked by subcutaneous or intrathecal administration of morphine in monkeys. J Pharmacol Exp Ther, 2003; 305(1): 173-9.
    
    61. Wall PM, Messier C. Concurrent modulation of anxiety and memory. Behav Brain Res, 2000; 109(2): 229-41.
    
    62. Walker JM, Thompson LA, Frascella J, et al. Opposite effects of mu and kappa opiates on the firing-rate of dopamine cells in the substantia nigra of the rat. Eur J Pharmacol, 1987; 134(1): 53-9.
    
    63.Khotib J, Narita M, Suzuki M, et al. Functional interaction among opioid receptor types: up-regulation of mu-and delta- opioid receptor functions after repeated stimulation of kappa- opioid receptors. Neuropharmacology, 2004; 46(4): 531-40.
    
    64.James AB and Steven JG. Locus coeruleus neurons from morphine-treated rats do not show opiate-withdrawal hyperactivity in vitro. Brain Research, 1998; 788: 237-244.
    
    65. Marina B, Kathryn E, Alexandra H. CNS levels of mu opioid receptor (MOR-1) mRNA during chronic treatment with morphine or naltrexone. Brain Research Bulletin, 1995; 38(2): 135-141.
    
    66. Chris PB, Mark C. Opioids: cellular mechanisms of tolerance and physical dependence. Cur Opin Pharmacol, 2005; 5:60-68.
    
    67. Sanjay NT, Veeranna, Poluru LR. Biochemical and behavioral studies on the interaction between μ-and κ-opiate agonists in mice. Brain Research, 1993; 615(2):191-198.
    
    68. Watkins LR, Wiertelak EP, Maier SF. Kappa opiate receptors mediate tail-shock induced antinociception at spinal levels. Brain Research, 1992; 582(1):1-9.
    69. Paul JM, Erin NF, Susan LI. Analgesic tolerance to microinjection of the mu-opioid agonist DAMGO into the ventrolateral periaqueductal gray. Neuropharmacology, 2007;52:1580-5.
    70. Morgan MM, Fossum EN, Stalding BM, et al. Morphine antinociceptive potency on chemical, mechanical, and thermal nociceptive tests in the rat. J. Pain, 2006b; 7:358-366.
    71. Tortorici V, Robbins CS, Morgan MM. Tolerance to the antinociceptive effect of morphine microinjections into the ventral but not lateral-dorsal periaqueductal gray of the rat. Behav. Neurosci, 1999; 113:833-839.
    72. Pastor R, Aragon CM. The role of opioid receptor subtypes in the development of behavioral sensitization to ethanol. Neuropsychopharmacology, 2006; 31(7): 1489-99.
    73. Perrine SA, Hoshaw BA, Unterwald EM. Delta opioid receptor ligands modulate anxiety-like behaviors in the rat. Br J Pharmacol, 2006; 147(8):864-72.
    74.Bodnar R, Paul D, Pasternak GW. Synergistic analgesic interactions between the periaqueductal gray and the locus coeruleus. Brain Res, 1991; 558(2): 224-30.
    75.Kostowski W, Jerlicz M, Bidzinski A. Reduced analgesic effects of morphine after bilateral lesions of the locus coeruleus in rats. Pol J Pharmacol Pharm, 1978; 30(1):49-53.
    76.Rodrigo A, Cam PV, George KA. Morphine tolerance and dependence in the locus coeruleus: Single cell studies in brain slices. Eur J Pharmacol, 1983; 91(2-3):161-169.
    77.Marek P, Ben ES,Gold M, et al. Excitatory amino acid antagonists ( kynurenic acid and MK-801) attenuate the development of morphine tolerance in the rat. Brain Res, 1991; 547:77-81.
    78.Ma J, Pan ZZ. Contribution of brainstem GABA(A) synaptic transmission to morphine analgesic tolerance. Pain, 2006; 122(1-2):163-73.
    79.James AB, Steven JG. Locus coeruleus neurons from morphine-treated rats do not show opiate-withdrawal hyperactivity in vitro. Brain Research, 1998; 788(1-2):237-244.
    80.Luis AH, Jose C, Rogelio GS, et al. Evidence of involvement of the nNOS and the kappa-opioid receptor in the same intracellular network of the rat periaqueductal gray that controls morphine tolerance and dependence. Molecular Brain Res, 2005; 137:166-173.
    81.Umeuchi H, Togashi Y, Honda T. Involvement of central mu-opioid system in the scratching behavior in mice, and the suppression of it by the activation of kappa-opioid system. Eur J Pharmacol, 2003; 477(1):29-35.
    82.Gregory OH, Howard LF. Kappa opioid receptor activation in the nucleus accumbens inhibits glutamate and GABA release through different mechanisms. J Neurophysiol, 2003; 89:2389-2395.
    83.Dominika L, Shaaban AM, Michael S, et al. Relative contribution of peripheral versus central opioid receptors to antinociception. Brain Res, 2007;1160:30-38.
    84.Carrie TD, Sue AA, Fritzline LM, et al. Redistribution of mu- opioid receptors in C1 adrenergic neurons following chronic administration of morphine. Exp Neurol, 2005;196:365-372.
    85.Macho F, Rodriguez RE. Developmental expression and distribution of opioid receptors in zebrafish. Neurosci, 2008; 151:129-137.
    86.Maria X, Miguel G. Cellular and subcellular distributions of delta opioid receptor activation sites in the ventral oral pontine tegmentum of the cat. Brain Res, 2006; 1123:101-111.
    87.Juni A, Klein G, Pintar J, et al. Nociception increases during opioid infusion in opioid receptor triple knock-out mice. Neurosci, 2007; 147:439-444.
    88.Law PY, Loh HH, Wei LN. Insights into the receptor transcription and signaling: implications in opioid tolerance and dependence. Neuropharmacol, 2004; 47:300-311.
    89.Masami S, Minoru N, Michiko N, et al. Chronic morphine treatment increases the expression of the neural cell adhesion molecule in the dorsal horn of the mouse spinal cord. Neurosci. Lett, 2006; 399:202-205.
    90.Wang W, Kimberly ED. Quantitative analysis of mRNA expression of neuron-specific growth-associated genes in rat primary neurons by competitive RT-PCR. Brain Res Prot, 1998; 2:199-208.
    91.Emma E J,Billy C, Ian N, et al. Decreased u-opioid receptor signalling and a reduction in calcium current density in sensory neurons from chronically morphine-treated mice. Br J Pharmacol, 2006; 148(7): 947-955.
    92.Belanger S, Ma W, Chabot JG, et al. Expression of calcitonin gene-related peptide, substance P and protein kinase C in cultured dorsal root ganglion neurons following chronic exposure to mu, delta and kappa opiates. Neurosci, 2002; 115:441-453.
    93.Ichiro S, Greg E, Masahiko F, et al. μ Opiate Receptor Gene Dose Effects on Different Morphine Actions: Evidence for Differential in vivo μ Receptor Reserve. Neuropsychopharmacology, 2001; 25: 41-54.
    1.Martin WR.Opioid antagonists.Pharmacol Rev.1967,19(4):463-521.
    2.Martin WR,Eades CG,Thompson JA,et al.The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog.J Pharmacol Exp Ther.1976,197(3):517-532.
    3.Kieffer BL,Befort K,Gaveriaux-Ruff C,et al.The delta-opioid receptor:isolation of a cDNA by expression cloning and pharmacological characterization.Proc Natl Acad Sei U S A.1992,89(24):12048-12052.
    4.Chen Y,Mestek A,Liu J,et al.Molecular cloning and functional expression of a mu-opioid receptor from rat brain.Mol Pharmacol.1993,44(1):8-12.
    5.Minami M,Toya T,Katao Y,et al.Cloning and expression of a cDNA for the rat kappa-opioid receptor.FEBS Lett.1993,329(3):291-295.
    6.Mollereau C,Parmentier M,Mailleux P,et al.ORL1,a novel member of the opioid receptor family:Cloning,functional expression and localization.FEB S Lett.1994,341(1):33-38.
    7.Loh HH,Liu H,Cavalli A,et al.μ-opioid receptor knockout in mice:effects on ligand-induced analgesia and morphine lethality.Mol Brain Res.1998,54:321-326.
    8.孟爱民,刘景生.阿片受体功能研究进展.中国神经免疫学和神经病学杂志.2002,9(3):180-182.
    9.Brown GP,Yang K,Ouerfelli O,et al.3H-morphine-6beta-glucuronide binding in brain membranes and an MOR-1-transfected cell line.J Pharmacol Exp Ther.1997,282(3):1291-1297.
    10.Schuller AG,King MA,Zhang J,et al.Retention of heroin and morphing-6beta-glucuronide analgesia in a new line of mice lacking exonl of MOR-1.Nat Neurosci.1999,2(2):151-156.
    11.Minami M,Pnogi T,Nakagawa T,et al.DAMGO a μ-opioid receptor selective ligand distinguishes between μ-and κ-opioid receptors at the different region from that for the distinction between μ-and κ-opioid receptors.FEBS Lett.1995,364:23-27.
    12.Xue JC,Chen C,Zhu J,et al.The third extracellular loop of the mu opioid receptor is important for agonist selectivity.J Biol Chem.1995,270:12977-12979.
    13.郭庆民,孟爱民,刘景生.μ阿片受体功能调节.中国药理学通报.2000,16(6):601-605.
    14.孙雪峰,王新华,傅强,等.吗啡成瘾大鼠四个脑区μ阿片受体的变化.第二军医大学学报.2002,23(2):150-152.
    15.Xu H,Partilla JS,de Costa BR,et al.Differential binding of opioid peptides and other drugs to two subtypes of opioid delta ncx binding sites in mouse brain:further evidence for delta receptor heterogeneity.Peptides.1993,14(5):893-907.
    16.谢燕,余争平.δ阿片肽受体分子药理学.生命的化学.2001,21(1):24-27.
    17.Varga EV,Li XP,Stropova D,et al.The third extracellular loop of the human δ-opioid receptor determines the selectivity of δ-opioid agonists.Mol Pharmacol.1996,50(6):1619-1624.
    18.Schultz JE,Hsu AK,Gross GJ.Ischemic preconditioning in the intact rat heart is mediated by deltal-but not mu-or kappa-opioid receptors.Circulation(United States).1998,97(13):1282-1289.
    19.Bao L,Jin SX,Zhang C,et al.Activation of delta opioid receptors induces receptor insertion and neuropeptide secretion.Neuron.2003,37(1):121-133.
    20.Horan PJ,de Costa BR,Rice K,et al.Differential antagonism of bremazocine-and U69,593-induced antinociception by quadazocine:further functional evidence of opioid kappa receptor multiplicity in the mouse.J Pharmacol Exp Ther.1993,266(2):926-933.
    21.Yu XC,Li HY,Wang HX,et al.U50,488H inhibits effects of norepinephrine in rat cardiomyocytes cross talk between κ-opioid and β-adrenergic receptors.Mol Cell Cardiol.1998,30(2):405-408.
    22.裴建明,毕辉,王跃民,等.慢性缺氧时心脏κ-阿片受体对β-受体信号的调节作用.解放军医学杂志.2003,28(4):321-323.
    23.胡文辉,刘娜,李芳,等.强啡肽致脊髓损伤后κ阿片受体机制的新证据.中国创伤杂志.2000,16(5):286-288.
    24.Saito Y,Maruyama K,Saido TC,et al.Overexpression of a neuropeptide nociceptin/orphanin FQ precursor gene,N23k/N27K,indures neurite outgrowth in mouse NS20Y cells.J Neurosci Res.1997,48(5):397-406.
    25.孟美金、吴新民.鞘内注射孤啡肽对不同小鼠所致痛觉超敏的比较.中华麻醉学杂志,2003,23(9):671-674.
    26.Nicol B,Lambert DG,Rowbotham DJ,et al.Nociceptin induced inhibition of K+ evoked glutamate release from rat cerebrocortical slices.Br J Pharmacol.1996,119:1081-1083.
    1.International Association for the Study of Pain.Definition of Chronic Pain.2004.
    2.孔利丽.国内麻醉药品用药现状与展望.中国药事,2005;4(19):250-252.
    3.Himmelsbach CK.Studies of certain addiction characteristics.J Pharmacol Exp Ther 1939;67:239-49.
    4.Savage SR.Long-term opioid therapy:assessment of consequences and risks.J Pain Symptom Manage 1996;11:274-86.
    5.Mao J,Chen L.Opioid tolerance and dependence.In:Smith HS,editor.Drugs for pain.Philadelphia:Hanley & Belfus Inc.;2003.153-6.
    6.Jaffe J,Martin W.Opiod analgesic and antagonists.In:Gilman A,editor.The pharmacologic basis of therapeutics.New York:Mac-Millan;1980.491-531.
    7.Joranson DE,Cleeland CS,Weissman DE,et al.Opioids for chronic cancer and non-cancer pain:A survey of state medical board members.Federation Bulletin:The Journal of Medical Licensure and Discipline.1992;79(4):15-49.
    8.黄晓蕾,马双莲,张金芳等.27省市护士对癌痛治疗相关知识了解程度的调查与分析.中国疼痛医学杂志,2001;7(1):22-25.
    9.World Health Organisation.ICD-10;2003.
    10.American Society of Addiction Medicine.Public policy statement on definitions related to the use of opioids in pain treatment;2001.
    11.Savage SR,Joranson DE,Covington EC,et al.Definitions related to the medical use of opioids:evolution towards universal agreement.J Pain Symptom Manage 2003;26:655-67.
    12.American Psychiatric Association.Diagnostic and statistical manual for mental disorders.Washington (DC);1994.
    13.Aley K,Levine J.Dissociation of Tolerance and Dependence for Opioid Peripheral Antinociception in Rats.J Neurosci.1997;17(10):3907-3912.
    14.Lashner A.What does it mean that addiction is a brain disease? Monitor Psychol.2001;32:19.
    15.Nedeljkovic SSM.Assessment of efficacy of long-term opioid therapy in pain patients with substance abuse potential.Clin J Pain.2002;18:S39-51.
    16.Gardner EL.Brain-reward mechanisms.In:Lowinson JH,Ruiz P,Milman RB,Langrod JG,editors.Substance abuse.A comprehensive textbook.Philadelphia:Lippincott Williams & Wilkins;2005:48-97.
    17.Guitart X,Thompson MA,Mirante CK,et al.Regulation of cAMP response element binding protein phosphorylation by acute and chronic morphine in the rat locus coeruleus.JNeurochem,1992;58(3):1168-71.
    18.Shaw-Lutchman TZ,Tamara Z,Barrot Michel,et al.Regional and cellular mapping of cAMP response dement-mediated transcription during naltrexone precipitated morphine withdrawal.J Neurosci,2002;22(9):3663-72.
    19.Blendy JA,Maldanador.Genetic analysis of drug addiction:the role of cAMP response element binding protein.J Mol Med,1998;76(2):104.
    20.Hope B,Kosofsky B,Hyman SE,et al.Regulation of immediate early gene expression and AP-1binding in the rat nucleus accumbens by chronic cocaine.Proc Natl Acad Sci USA,1992;8(13):5764-8.
    21.Hope BT,Heather EN,Max BK,et al.Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments.Neuron,1994;13(5):1235-44.
    22.Sklair-TavronL,Shi WX,Lane SB,et al.Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons.Proc Nail Acad Sci USA,1996;93(20):11202-7.
    23.Robinson TE,Kolb B.Morphine alters the structure of neurons in the nucleus accumbens and neocortex of rats.Synapse,1999;33(2):160-2.
    24.Norrholm SD,Bibb JA,Nestler EJ,et al.Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5.Neuroscience,2003;116(1):19-22.
    25.Dunbar SA,Katz NP.Chronic opioid therapy for nonmalignant pain in patients with a history of substance abuse:report of 20 cases.J Pain Symptom Manage.1996;11:163-71.
    26.Schieffer BM,Pham Q,Labus J,et al.Pain medication beliefs and medication misuse in chronic pain.The Journal of Pain 2005;6(9):620-9.
    27.Li T,Zhu ZH,Liu X,et al.Association analysis of polymorphisms in the DRD4 gene and heroin abuse in Chinese subjects.Am J Med Genet,2000;96(5):616-621.
    28.赵敏,杨德森,郝伟,等.5-HT2A受体基因1438 A/G多态性与海洛因依赖的关系.中国药物依赖性杂志,2000;9(4):283-284.
    29.赵敏,杨德森,郝伟,等.5-HT2A受体基因102 T/C多态性与海洛因依赖易感性的关系.中国神经精神疾病杂志,2001;27(3):224.
    30.李素民,郑继旺.基因敲除技术在药物成瘾机制研究中的应用.中国药物滥用防治杂志,2001;(6): 2-6.
    31.Portenoy RK,Payne R.Acute and chronic pain.In:Lowinson JH,Ruiz P,Milman RB,editors.Substance abuse:a comprehensive textbook.Baltimore:Williams & Wilkins;1992.70-99.
    32.Schug SA,Zech D,Grond S,Jung H,Meuser T,Stobbe B.A longterm survey of morphine in cancer pain patients.J Pain Symptom Manage 1992;7:259-66.
    33.Miotto K,Compton P,Ling W,Matthew C.Diagnosing addictive disease in chronic pain patients.Psychosomatics 1996;37:223-35.
    34.Sees KL,Clark HW.Opioid use in the treatment of chronic pain:assessment of addiction.J Pain Symptom Manage 1993;8:257-64.
    35.Savage SR.Addiction in the treatment of pain:significance,recognition,and management.J Pain Symptom Manage 1993;8:265-78.
    36.Kirsh KLP.Abuse and addiction issues in medically ill patients with pain:attempts at clarification of terms and empirical study.Clin J Pain 2002;18:S52-60.
    37.Regier D,Farmer M,Rae D,et al.Comorbidity of mental disorders with alcohol and other drug abuse.JAMA,1990;19:2511-8.
    38.Meyer C,Rumpf H,Hapke U,et al.Lifetime prevalence of mental disorders in general adult populations.Results of TACOS study.Nervenarzt,2000;71:535-42.
    39.黄明生,陆林.阿片类药物依赖戒断后渴求行为和焦虑情绪.华西医学,1999;14(1):11-13.
    40.Porter J,Jick H.Addiction is rare in patients treated with narcotics.New Eng J Med 1980;302:123.
    41.郭忠祥,田丽君.去痛片致成瘾2例.中国医院药学杂志,1995;15(6):279.
    42.王南琴.注射平痛新致成瘾2例.浙江医学,1995;17(4):223.
    43.Hojsted J,Sjogren P.Addiction to opioids in chronic pain patients:A literature review.Eur J Pain.2007;11(5):490-518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700