大鼠脊髓胶质细胞参与骨癌痛的机理及鞘内丙戊茶碱的抗痛敏效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分大鼠骨癌痛模型的建立与评价
     目的探讨腹水传代与体外培养Walker-256细胞接种建立SD大鼠骨癌痛模型的可行性,并从多方面验证其稳定性与可靠性。方法体外培养与大鼠腹水传代增殖Walker-256细胞,种植于SD大鼠左胫骨上端。大鼠均分为Hank液对照组(NI组);热杀死肿瘤细胞(K1组);体外培养的肿瘤细胞种植组(V1组);腹水肿瘤细胞种植组(A1组),每组8只。通过疼痛行为学、镇痛药理学、影像学、病理组织学等评估肿瘤及疼痛发生发展情况。结果大鼠接种后肛温无明显变化。A1组与V1组术后第6天开始左侧后肢活动度开始下降,X摄片可见左胫骨上端骨小梁小缺损;第12天X摄片示骨皮质有破坏,SPECT可见接种区反应性骨形成活跃:第15天增重开始减缓:第18天X摄片显示大片骨质缺损,软组织肿块形成,左胫骨病理切片示骨癌细胞生长。大鼠接种后第6天到第18天,机械性压爪缩爪阈值、von Frey值进行性下降(P<0.01),双下肢负重差进行性增高(P<0.01)。术后第15天注射吗啡后模型大鼠机械性压爪缩爪阈值呈剂量依赖性增高,而纳洛酮可拮抗此效应。结论经腹水传代与体外培养Walker 256细胞均可用于SD大鼠骨癌痛模型的建立;经腹水传代建模更为简便:细胞接种后第6-18天产生进行性增高的机械性痛觉过敏与痛觉超敏,而热痛觉过敏相对较轻;该模型适宜于骨癌痛机制及镇痛药理学的研究。
     第二部分骨癌痛大鼠脊髓胶质细胞及其表达的变化
     研究证实神经损伤与组织炎症时疼痛的产生与维持与脊髓胶质细胞激活有关。然而,在骨癌痛时脊髓胶质细胞的改变及其作用尚不清楚。目的了解雌性SD大鼠一侧胫骨注射同系Walker 256癌细胞后脊髓胶质细胞的变化,从而研究骨癌痛产生与维持的机制。方法应用大鼠体内腹水传代Walker 256乳腺癌细胞种植于一侧胫骨建立骨癌痛模型,雌性SD大鼠,体重为150-180g,随机均分为5组,每组5只:对照(N2)组、热杀死肿瘤细胞(K2)组、不同时间骨癌痛3组(A2-d6,A2-d12,A2-d18)。
     结果骨癌痛大鼠L4~L6两侧脊髓星形胶质细胞与小胶质细胞显著增加并激活,表现为胶质纤维酸性蛋白(GFAP)和小胶质细胞标志物OX-42免疫组化染色显著增强,尤其以后角Ⅰ-Ⅱ层最为显著,围绕脊髓中央管附近(X层)也有显著着色,细胞明显增大,与N2组及K2组比较,差异均有统计学意义(P<0.05,P<0.01);其中GFAP染色术后第6-18天呈进行性增高,以A2-d18组最为显著,与A2-d6组比较,P<0.01;OX-42染色术后第6-18天呈进行性降低,以A2-d6组最为显著(P<0.05,P<0.01)。
     结论胫骨注射Walker 256肿瘤细胞后激活脊髓胶质细胞,这可能与自发痛行为、痛觉过敏及痛觉超敏有关。其次,星形胶质细胞与小胶质细胞在两侧脊髓灰质均有激活,可能反映了本模型骨癌痛特征中“镜像痛”的产生机制。脊髓小胶质细胞激活在骨癌痛产生中可能起主要作用,而星形胶质细胞激活在骨癌痛维持中可能起重要作用。
     第三部分鞘内注射丙戊茶碱对大鼠骨癌痛的镇痛与抗痛敏作用及其脊髓机理
     目的探讨鞘内注射丙戊茶碱(PPF)对大鼠骨癌痛的镇痛、抗痛觉过敏与抗痛觉超敏作用,并通过脊髓胶质细胞、磷酸化细胞外信号调节蛋白激酶的变化研究其作用的脊髓部位机理。方法40只SD大鼠以随机数字法均分为4组,每组10只:对照组(N3)、PPF组(P3)、左胫骨癌细胞种植组(A3)、左胫骨癌细胞种植+鞘内PPF治疗组(PA3)。手术后第9-12天每日1次鞘内分别注射生理盐水μl、PPF 10μg或生理盐水10μl。给药前后分别行von Frey值测定,术后第12天鞘内注药4小时后,分别行脊髓免疫组化染色及Western blot分析。结果与A3组比较,PA3组鞘内注射PPF后3h、4h、5h机械性痛阈值明显增高(P<0.01);术后第9-12天PA3组每日鞘内注射PPF后,机械性痛阈值均有显著增高(P<0.01)。与A3组相比,PA3组星形胶质细胞数量减少,胞体减小,染色变浅,突起减少(P<0.05,P<0.01);PA3组小胶质细胞胞体减小,数量减少,染色变浅,突起增多(P<0.05,P<0.01);PA3组p-ERK颗粒明显减少,染色变浅,颗粒变小(P<0.05,P<0.01)。结论鞘内注射PPF10μg对大鼠骨癌痛具有一定的镇痛、抗痛觉过敏与抗痛觉超敏作用;鞘内注射PPF通过抑制星形胶质细胞及小胶质细胞的激活,同时抑制脊髓背角ERK磷酸化而产生镇痛与抗痛敏作用。
Part I Study of A SD Rat Model of Bone Cancer Pain Created by Using Walker 256 Cultured in Vitro or in Vivo
     Objective To investigate the possibility and verify the reliability of a SD rat model of bone cancer pain using Walker 256 cultivate in Vitro or in Vivo. Methods Bone cancer pain model was created by receiving left superior extremity intra-tibial inoculations of Walker 256 syngeneic SD rat carcinoma cells which culture and proliferation in vitro(group V1) or in vivo to produce ascites (group A1) in female SD rats weighing 150-180g,n=8. Rat of group N1 or group K1 were inoculated of Hank's or heat-killed cells. The development of bone tumour and pain were observated by digital radiology, ECT, MRI, histology, pain behavioural signs indicative of pain and analgesic pharmacodynamics. Results Rats of four groups did not show changes in body weight during 18 days. Rats of group A and group V displayed decrease of left hint limb activity and minute defect of bone trabecula in the proximal epiphysis by radiological analysis by day 6; Further deterioration was detected at day 12 post-injection with full thickness unicortical bone loss by radiological analysis and bone formation active in region by SPECT; Rats of group A and group V displayed signs of weight loss by day 15. At the final time point, 18 days after the cells injection, full thickness bicortical bone loss and form soft tissue tumor were observed by X ray. Bones inoculated with live cells showed infiltration of bone marrow spaces by malignant tumor on day 18 after inoculation in histology. Rats of group A and group V displayed the gradual development reduced of PWT, von Frey threshold and weight bearing of left hind limb between day 6 and day 18(P <0.01) .Morphine (2-16 mg/kg, S.C.) produced a dose-dependent reduction and Naloxone antagonist manner in the response frequency of hind paw withdrawal to Mechanical stimulation on 15 day following intra-tibia inoculation. Conclusions These results suggested that SD rat model of bone cancer pain can be established by using Walker 256 Culture in Vitro or in Vivo , and the latter was more convenient; the gradual development of mechanical allodynia and mechanical hyperalgesia and reduced of weight bearing on the affected limb, beginning on day 6 following inoculation, whereas the thermal hyperalgesia was not significant; Behavioral data suggest a reasonable time window for study the mechanism of bone cancer pain and evaluation of antinociceptive agents between day 6 and 18 after walker 256 inoculations.
     Part II Spinal Glia Cell Activation in The SD Rat Model of Bone Cancer Pain Produced by Walker 256 Cancer Cell Inoculation in Tibia
     Investigations demonstrated that glial activation in the spinal cord are involved in the development and persistent of pain induced by nerve injury and tissue inflammation. However, the alteration and role of glial cells in spinal cord of bone cancer pain is not well understood. Objective This study explored the spinal glial alteration in a rat model of bone cancer pain produced by injecting syngeneic Walker 256 rat mammary gland Cancer cells into the unilateral tibia of female SD rats. Thereby desire to study the mechanism of development and persistent of bone cancer pain. Methods Bone cancer pain model was created by receiving left superior extremity intra-tibial inoculations of Walker 256 syngeneic SD rat carcinoma cells which culture and proliferation in vivo to produce ascites (A2) in 25 female SD rats weighing 150-180g. The rats were divided by 5 groups randomly which included group N2(control), group K2 (inoculated of heat-killed cells) and group A2, and group A2 was consisted of A2(d6), A2d(12) and A2d(18) groups depended on the day of post inoculation. Results The results showed that astrocytes and microglia were significantly enhanced and activated in the L4-L6 superficial spinal cord bilateralis in rats of inoculation of Walker cancer cells, characterized by enhanced immunostaining of both glial fibrillary acidic protein (GFAP, astrocyte marker, P <0.05, P <0.01) and OX-42 (microglial marker,P <0.05, P <0.01). Spinal GFAP staining progression increase on day 6 to day 18 post cell inoculation, and it was prominent on day of 18 postoperation (P <0.05, P <0.01). While Spinal OX-42 staining progression decrease on day 6 to day 18 post cell inoculation, and it was distinguished on day 6 post inoculation (P <0.05, P <0.01). Conclusions These results demonstrate that injection of Walker 256 cancer cells into the tibia activates the spinal glial cells, which may contribute to hyperalgesia and allodynia. Furthermore, the astrocytes and microglia activated in ipsi- and Contralateral superficial dorsal horns highlights the possible involvement in the mirror imaging pain phenomenon in neuroethology of this model of bone cancer pain.
     Part III Anti-nociceptive and Anti-hyperalgesic Effect of Intrathecal Propentofylline on A Rat Model of Bone Cancer Pain and Its Mechanism in Spinal Cord
     Objective The present study was undertaken to determine whether intrathecal injection propentofylline, a glial modulating agent, could generate anti-nociceptive, anti-hyperalgesic and anti-allodynic effect on a rat model of bone cancer pain. Moreover, investigate its effective mechanism through the alteration of spinal glial and p-ERK in spinal cord. Methods 40 SD rats were divided by 4 groups(n=10) randomly which included group N3(control), group P3 (intrathecal injection PPF 10μg), group A3(model of bone cancer pain and 0.9%NS intrathecal injection), and group PA3 (model of bone cancer pain and PPF 10μg intrathecal injection). Propentofylline or 0.9% was administered daily intrathecally during 9-12 day postoperation. Determination of von Frey threshold before and after intrathecal administered. Spinal cords (L4-L6 segments) were removed for immunohistochemical stainning and Western blot analysis 4h after intrathecal injection on day 12 post operation. Results The von Frey threshold in group PA3 was increased obviously during 3-5 h post PPF intrathecal injection compare to that in group A3 (P <0.01) , and the pain threshold was increased after PPF i.t. daily during 9-12d post inoculation. GFAP stained astrocyte were atrophied and become less ramified in group PA3 compared to those in group A3. OX-42 stained microglia were atrophied and become more ramified in group PA3 compared to those in group A3. Otherwise, p-ERK stained increased in group PA3 compared to those in group A3. These results indicate spianl microglial, astrocytic and ERK activation was decreased by intrathecal daily administration of propentofylline in existing antihyperalgia and allodynia paradigms (P<0.05 , P<0.01 ) .Conclusions Propentofylline intrathecal injection could generate antinociceptive, antihyperalgia and antiallodynic effect on a rat model of bone cancer pain. Moreover, the antinociceptive, antihyperalgic and antiallodynic effect of PPF intrathecal were generated by restrainting the activation of spinal astrocytes ,microglia and p-ERK.
引文
1. Basbaum AI, Julius D. Toward better pain control. Sci Am. 2006; 294(6):50-57.
    
    2. Mantyh PW, Clohisy DR, Koltzenburg M, et al. Molecular mechanisms of cancer pain. Nat Rev Cancer. 2002; 2(3): 201-209.
    
    3. Watkins LR, Maier SF. Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov. 2003; 2(12): 973-985.
    
    4. Watkins LR, Hutchinson MR, Ledeboer A, et al. Norman Cousins Lecture. Glia as the "bad guys": implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun. 2007; 21(2): 131-146.
    
    5. Luger NM, Mach DB, Sevcik MA, et al. Bone cancer pain: from model to mechanism to therapy. J Pain Symptom Manage. 2005; 29(S5):S32-46.
    
    6. Wang LX, Wang ZJ. Animal and cellular models of chronic pain. Adv Drug Deliv Rev. 2003; 55(8): 949-965.
    
    7. Fine PG The evolving and important role of anesthesiology in palliative care. Anesth Analg. 2005; 100(1):183-188.
    
    8. Pharo GH, Zhou L. Pharmacologic management of cancer pain. J Am Osteopath Assoc. 2005; 105(11 Suppl 5): S21-28.
    
    9. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002; 2(8): 584-593.
    
    10. Meuser T, Pietruck C, Radbruch L, et al. Symptoms during cancer pain treatment following WHO-guidelines: a longitudinal follow-up study of symptom prevalence, severity and etiology. Pain. 2001; 93(3): 247-257.
    
    11. De Leo JA, Tawfik VL, LaCroix-Fralish ML. The tetrapartite synapse: path to CNS sensitization and chronic pain. Pain. 2006; 122(1-2):17-21.
    
    12. Wieseler-Frank J, Maier SF, Watkins LR. Glial activation and pathological pain. Neurochem Int. 2004; 45(2-3): 389-395.
    
    13. Raghavendra V, Tanga F, Rutkowski MD, et al. Anti-hyperalgesic and morphine-sparing actions of propentofylline following peripheral nerve injury in rats: mechanistic implications of spinal glia and proinflammatory cytokines. Pain. 2003; 104(3): 655-664.
    
    14. Sweitzer SM, Schubert P, DeLeo JA. Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J Pharmacol Exp Ther.2001; 297(3): 1210-1217.
    1 Wang LX, Wang ZJ. Animal and cellular models of chronic pain. Adv Drug Deliv Rev. 2003; 55(8): 949-965.
    
    2 Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002; 2(8): 584-593.
    
    3 Meuser T, Pietruck C, Radbruch L,et al. Symptoms during cancer pain treatment following WHO-guidelines: a longitudinal follow-up study of symptom prevalence, severity and etiology. Pain. 2001; 93(3): 247-257.
    
    4 Cleeland CS. et al. The measurement of pain from metastatic bone disease: capturing the patient's experience. Clin Cancer Res. 2006; 12(20 Pt 2): 6236s-6242s.
    
    5 Luger NM, Mach DB, Sevcik MA, et al. Bone cancer pain: from model to mechanism to therapy. J Pain Symptom Manage. 2005; 29(S5):S32-46.
    
    6 Medhursta SJ, Walker K, Bowes M, et al. A rat model of bone cancer pain, 2002, 96:129-140. Pain. 2002; 96:129-40.
    
    7 Zhang RX, Liu B, Wang L, et al. Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain. 2005;118:125-136.
    
    8 Hargreaves K, Dubner R, Brown F, et al. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988; 32(1):77-88.
    
    9 Sevostianova N, Danysz W.Analgesic effects of mGlu1 and mGlu5 receptor antagonists in the rat formalin test. Neuropharmacology. 2006; 51(3): 623-630.
    
    10 Stein C, Millan MJ, Herz A. Unilateral inflammation of the hindpaw in rats as a model of prolonged noxious stimulation: alterations in behavior and nociceptive thresholds. Pharmacol Biochem Behav 1988;31: 445-51.
    
    11 Dixon WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol. 1980;20:441-462.
    
    12 Wacnik PW, Eikmeier LJ, Ruggles TR, et al. Functional interactions between tumor and peripheral nerve:morphology,algogen identification,and behavioral characterization of a new murine model of cancer pain.J Neurosci.2001;21(23):9355-9366.
    13 Ren K.An improved method for assessing mechanical allodynia in the rat.Physiol Behav 1999;67:711-6.
    14 Zhu CZ,Hsieh G,Ei-Kouhen O,et al.Role of central and peripheral mGluR5receptors in post-operative pain in rats.Pain.2005;114(1-2):195-202.
    15 Wacnik PW,Kehl LJ,Trempe TM,et al.Tumor implantation in mouse humerus evokes movement-related hyperalgesia exceeding that evoked by intramuscular carrageenan.Pain.2003;101(1-2):175-186.
    16 Mercadante S.Malignant bone pain:pathophysiology and treatment.Pain.1997;69(1-2):1-18.
    17 Fidler IJ.The pathogenesis of cancer metastasis:the 'seed and soil' hypothesis revisited.Nat Rev Cancer.2003;3(6):453-458.
    18 Kjonniksen I,Winderen M,Brutand O,et at.Validity and usefulness of human tumor models established by intratibial cell inoculation in nude rats.Cancer Res,1994,54(7):1715-1719.
    19 Schwei MJ,Honore P,Rogers SD,et al.Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain.J Neurosci 1999;19:10886-10897.
    20 Walker K,Fox AJ,Urban LA.Animal models for pain research.Mol Med Today 1999;5:319-321.
    21 Mundy GR,Yoneda T.Facilitation and suppression of bone metastasis.Clin Orthop.1995;312:34-44.
    22 苏宁,张晓明,韩月明,等。SHZ-88大鼠乳腺癌细胞系的建立及其生物学特性观察。癌症,1991,10:378-381.
    23 Corbello Pereira SR,Darronqui E,Constantin J,et al.The urea cycle and related pathways in the liver of Walker-256 tumor-bearing rats. Biochim Biophys Acta. 2004; 1688:187-196.
    
    24 Yao YM, Liu QG, Yang W, et al. Effect of spleen on immune function of rats with liver cancer complicated by liver cirrhosis. Hepatobiliary Pancreat Dis Int. 2003; 2:242-246.
    
    25 Chew EC, Wallace AC. Demonstration of fibrin in early stages of experimental metastases. Cancer Res. 1976; 36:1904-1909.
    
    26 Craft RM, Mogil JS, Aloisi AM. Sex differences in pain and analgesia: the role of gonadal hormones. Eur J Pain 2004;8:397-411.
    
    27Honore P, Luger NM, Sabino MC, et al. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemcial reorganization of the spinal cord. Nature Med 2000; 6(5): 521-528.
    
    28 Portenoy RK, Lesage P. Management of cancer pain. Lancet, 1999, 353(9165): 1695-1700.
    
    29 Horger M, Bares R. et al. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease. Semin Nucl Med. 2006; 36(4):286-294.
    
    30 Fine PG The evolving and important role of anesthesiology in palliative care. Anesth Analg.2005; 100:183-188.
    
    31 Luger NM, Sabino MA, Schwei MJ, et al. Efficacy of systemic morphine suggests a fundamental difference in the mechanisms that generate bone cancer vs inflammatory pain. Pain. 2002; 99(3):397-406.
    
    32 Milligan ED, Twining C, Chacur M, et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci. 2003; 23(3): 1026-1040.
    
    33 Twining CM, Sloane EM, Milligan ED, et al. Peri-sciatic proinflammatory cytokines, reactive oxygen species, and complement induce mirror-image neuropathic pain in rats. Pain. 2004; 110(1-2): 299-309.
    34 Wieseler-Frank J, Maier SF, Watkins LR. et al. Glial activation and pathological pain. Neurochem Int. 2004;45(2-3):389-95.
    
    35 Honore P, Rogers SD, Schwei MJ, et al. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience 2000;98:585-598.
    
    36 Menendez L, Lastra A, Fresno MF, et al. Initial thermal heat hypoalgesia and delayed hyperalgesia in a murine model of bone cancer pain. Brain Res. 2003 ; 969(1-2): 102-109.
    
    37 Sabino MA, Luger NM, Mach DB, et al. Different tumors in bone each give rise to a distinct pattern of skeletal destruction, bone cancer-related pain behaviors and neurochemical changes in the central nervous system. Int J Cancer. 2003;104(5):550-558.
    
    38 Andersen ML, Santos EH, Seabra Mde L, et al. Evaluation of acute and chronic treatments with Harpagophytum procumbens on Freund's adjuvant-induced arthritis in rats. J Ethnopharmacol. 2004 ; 91(2-3): 325-330.
    
    39 Hargreaves K, Dubner R, Brown F, et al. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988; 32(1):77-88.]
    
    40 Kim H, Neubert JK, Rowan JS, et al. Comparison of experimental and acute clinical pain responses in humans as pain phenotypes. J Pain. 2004; 5(7): 377-384.
    1. Meuser T, Pietruck C, Radbruch L, et al. Symptoms during cancer pain treatment folowing WHO guidelines: a longitudinal follow-up study of symptom prevalence, severity and etiology. Pain, 2001. 93(3): 247-257.
    
    2. Cleeland CS. The measurement of pain from metastatic bone disease: capturing the patient's experience. Clin Cancer Res. 2006; 12(20 Pt 2):6236s-6242s.
    
    .3. Watkins LR, Hutchinson MR, Ledeboer A, et al. Norman Cousins Lecture. Glia as the "bad guys": implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun. 2007 ; 21(2): 131-146.
    
    4. Raghavendra V, Tanga FY, DeLeo JA. et al. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur J Neurosci. 2004 ;20(2):467-73.
    
    5. Samad TA, Moore KA, Sapirstein A, et al. Interleukin-1 beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 2001;410(6827): 471-475
    
    6. Milligan ED, Twining C, Chacur M, et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci. 2003; 23(3): 1026-1040
    
    7. Sweitzer SM, Schubert P, DeLeo JA. Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J Pharmacol Exp Ther.2001; 297(3): 1210-1217.
    
    8. O'Leary TJ. Standardization in immunohistochemistry. Appl Immunohistochem. Mol Morphol.2001;9(1):3-8.
    
    9. Tseng SH, Chen SM, Lin SM, et al. Increased immunoreactive labeling of the spinal N-methyl-D-aspartate R1 receptors after dorsal root ganglionectomy in the rats. Neurosci Lett. 2000; 286(1): 41-44.
    
    10.Eriksson NP, Persson JK, Svensson M, et al. A quantitative analysis of the microglial cell reaction in central primary sensory projection territories following peripheral nerve injury in the adult rat. Exp Brain Res. 1993; 96(1): 19-27.
    11.Johansson AC,Visse E,Widegren B,et al.Computerized image analysis as a tool to quantify infiltrating leukocytes:a comparison between high- and low-magnification images.J Histochem Cytochem.2001;49(9):1073-1079.
    12.吕翔。病理图像定量分析及其测量误差的控制。中国体视学与图像分析,2002,7(3):58-62.
    13.Kraan MC,Smith MD,Weedon H,et al.Measurement of cytokine and adhesion molecule expression in synovial tissue by digital image analysis.Ann Rheum Dis.2001;60(3):296-298.
    14.Meller ST,Dykstra C,Grzybycki D,et al.The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat.Neuropharmacology.1994;33(11):1471-1478.
    15.Garrison CJ,Dougherty PM,Carlton SM.GFAP expression in lumbar spinal cord of naive and neuropathic rats treated with MK-801.Exp Neurol.1994;129(2):237-243.
    16.Wieseler-Frank J,Maier SF,Watkins LR.Glial activation and pathological pain.Neurochem Int.2004;45(2-3):389-395.
    17.Constandil L,Pelissier T,Soto-Moyano R,et al.Interleukin-lbeta increases spinal cord wind-up activity in normal but not in monoarthritic rats.Neurosci Lett.2003;342(3):139-142.
    18.Raghavendra V,Tanga F,DeLeo JA.Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy.J Pharmacol Exp Ther.2003;306(2):624-630.
    19.Takeda K,Sawamura S,Sekiyama H,et al.Effect of methylprednisolone on neuropathic pain and spinal glial activation in rats.Anesthesiology.2004;100(5):1249-1257.
    20.Watkins LR,Milligan ED,Maier SF.Spinal cord glia:new players in pain.Pain.2001;93(3):201-215.
    21.Lee JC,Mayer-Proschel M,Rao MS.et al.Gliogenesis in the central nervous system.Glia.2000;30(2):105-121.
    22.Haydon PG,Carmignoto G.Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. 2006; 86(3): 1009-1031.
    23.Tsacopoulos M. Metabolic signaling between neurons and glial cells: a short review. J Physiol Paris. 2002; 96(3-4):283-288.
    24.Aldskogius H, Kozlova EN. Central neuron-glial and glial-glial interactions following axon injury. Prog Neurobiol. 1998; 55(1): 1-26.
    25.Lehre KP, Danbolt NC. The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci. 1998; 18(21): 8751-8757.
    26.Honore P, Rogers SD, Schwei MJ, et al. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience. 2000; 98(3): 585-598.
    27.Schwei MJ, Honore P, Rogers SD. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci. 1999; 19(24):10886-10897.
    
    28. Zhang RX, Liu B, Wang L, et al. Pain. Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. 2005;118(1-2): 125-136.
    
    29. Medhurst SJ, Walker K, Bowes M, et al. A rat model of bone cancer pain. Pain. 2002; 96(1-2): 129-140.
    
    30.Sabino MA, Luger NM, Mach DB, et al. Different tumors in bone each give rise to a distinct pattern of skeletal destruction, bone cancer-related pain behaviors and neurochemical changes in the central nervous system. Int J Cancer. 2003; 104(5):550-558.
    
    31.Watkins LR, Maier SF. Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov. 2003; 2(12): 973-985.
    
    32.Raivich G. Like cops on the beat: the active role of resting microglia. Perinatal Brain Trends Neurosci. 2005; 28(11): 571-573.
    
    33.Guillemin GJ, Brew BJ. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol. 2004; 75(3): 388-397.
    34.Popovich PG, Wei P, Stokes BT. Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol. 1997; 377(3):443-464.
    35.Perry VH, Hume DA, Gordon S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience. 1985; 15(2):313-326.
    
    36.Tanga FY, Raghavendra V, DeLeo JA. Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem Int. 2004 ;45(2-3): 397-407.
    37.Winkelstein BA, DeLeo JA. Nerve root injury severity differentially modulates spinal glial activation in a rat lumbar radiculopathy model: considerations for persistent pain. Brain Res. 2002; 956(2): 294-301.
    38.Zhang J, Hoffert C, Vu HK, et al. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur J Neurosci. 2003; 17(12): 2750-2754.
    39.Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996; 19(8): 312-318.
    40.Watkins, L.R., Wieseler-Frank, J., Milligan, E.D., et al. in press. Contribution of glia to pain processing in health and disease. Handbook of Clinical Neurology. F. Cervero. New York.2006
    41.Ledeboer A, Sloane EM, Milligan ED, Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain. 2005; 115(1-2): 71-83.
    42.Tawfik VL, Lacroix-Fralish ML, Bercury KK, et al. Induction of astrocyte differentiation by propentofylline increases glutamate transporter expression in vitro: heterogeneity of the quiescent phenotype. Glia. 2006; 54(3):193-203.
    43.Watkins LR, Martin D, Ulrich P, et al. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain. 1997; 71(3):225-235.
    44.Milligan ED, Mehmert KK, Hinde JL, et al. Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gpl20. Brain Res. 2000; 861(1):105-116.
    45.Milligan ED, O'Connor KA, Nguyen KT, et al. Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J Neurosci. 2001; 21(8): 2808-2819.
    46.Inoue A, Ikoma K, Morioka N, et al. Interleukin-1 beta induces substance P release from primary afferent neurons through the cyclooxygenase-2 system. J Neurochem.1999; 73(5): 2206-2213.
    
    47.Bruce-Keller AJ. Microglial-neuronal interactions in synaptic damage and recovery. J Neurosci Res, 1999, 58(1):191-201.
    48.Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, et al. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia. 2004 ; 45(1): 89-95.
    49.Tsuda M, Shigemoto-Mogami Y, Koizumi S, et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature. 2003; 424(6950): 778-783.
    50.Watkins LR, Maier SF. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev. 2002; 82(4): 981-1011.
    51.Portenoy RK, Lesage P. Management of cancer pain. Lancet. 1999; 353 (9165):1695-1700.
    
    52.Luger NM, Mach DB, Sevcik MA, et al. Bone cancer pain: from model to mechanism to therapy. J Pain Symptom Manage. 2005; 29(5 Suppl): S32-46.
    1 Pharo GH, Zhou L. Pharmacologic management of cancer pain. J Am Osteopath Assoc. 2005; 105(11 Suppl 5):S21-28.
    
    2 Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002; 2(8): 584-593
    
    3 Meuser T, Pietruck C, Radbruch L, et al. Symptoms during cancer pain treatment following WHO-guidelines: a longitudinal follow-up study of symptom prevalence, severity and etiology. Pain. 2001;93(3):247-257.
    
    4 Raghavendra V, Tanga F, Rutkowski MD, et al. Anti-hyperalgesic and morphine-sparing actions of propentofylline following peripheral nerve injury in rats: mechanistic implications of spinal glia and proinflammatory cytokines. Pain. 2003; 104(3):655-664.
    
    5 Sweitzer SM, Schubert P, DeLeo JA. Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J Pharmacol Exp Then 2001;297(3): 1210-1217.
    
    6 Mousa SA, Cheppudira BP, Shaqura M, et al. Nerve growth factor governs the enhanced ability of opioids to suppress inflammatory pain. Brain. 2007; 130(Pt 2): 502-513.
    
    7 Luger NM, Mach DB, Sevcik MA, et al. Bone cancer pain: from model to mechanism to therapy. J Pain Symptom Manage. 2005; 29(5 Suppl): S32-46.
    
    8 Luger NM, Sabino MA, Schwei MJ, et al. Efficacy of systemic morphine suggests a fundamental difference in the mechanisms that generate bone cancer vs inflammatory pain. Pain. 2002; 99(3):397-406.
    
    9 Mercadante S. et al. Malignant bone pain: pathophysiology and treatment. Pain. 1997; 69(1-2): 1-18.
    
    10 Constandil L, Pelissier T, Soto-Moyano R, et al. Interleukin-1 beta increases spinal cord wind-up activity in normal but not in monoarthritic rats. Neurosci Lett. 2003; 342(3): 139-42.
    
    11 Raghavendra V, Tanga FY, DeLeo JA. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur J Neurosci. 2004; 20(2): 467-73.
    
    12 Milligan ED, Twining C, Chacur M.et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci. 2003; 23(3): 1026-40.
    
    13 Raghavendra V, Tanga F, DeLeo JA. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther. 2003 ; 306(2): 624-630.
    
    14 Takeda K, Sawamura S, Sekiyama H, et al. Effect of methylprednisolone on neuropathic pain and spinal glial activation in rats. Anesthesiology. 2004; 100(5): 1249-1257.
    
    15 Kittner B, Rossner M, Rother M. Clinical trials in dementia with propentofylline. Ann N Y Acad Sci. 1997; 826: 307-316.
    
    16 Frampton M, Harvey RJ, Kirchner V. Propentofylline for dementia. Cochrane Database Syst Rev.2003;(2):CD002853.
    
    17 Kuroda N, Hamachi Y, Aoki N, et al. Simple and rapid high-performance liquid chromatography analysis of propentofylline and its main metabolites in serum using a direct injection technique. Biomed Chromatogr. 1999; 13(5): 340-343.
    
    18 Raghavendra V, Tanga FY, DeLeo JA. Attenuation of morphine tolerance, withdrawal-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats. Neuropsychopharmacology. 2004; 29(2): 327-334.
    
    19 DeLeo J, Toth L, Schubert P, et al. Ischemia-induced neuronal cell death, calcium accumulation, and glial response in the hippocampus of the Mongolian gerbil and protection by propentofylline(HWA 285). J Cereb Blood Flow Metab. 1987; 7(6):745-51.
    
    20 Wu YP, McRae A, Rudolphi K, et al. Propentofylline attenuates microglial reaction in the rat spinal cord induced by middle cerebral artery occlusion. Neurosci Lett. 1999;260(1): 17-20.
    
    21 Schubert P, Morino T, Miyazaki H, et al. Cascading glia reactions: a common pathomechanism and its differentiated control by cyclic nucleotide signaling. Ann N Y Acad Sci. 2000; 903: 24-33.
    22 Shumilla JA, Samuels I, Johnson KW, et al. Systemic administration of propentofylline does not attenuate morphine tolerance in non-injured rodents. Neurosci Lett. 2005; 384(3):344-348.
    
    23 De Leo JA, Tawfik VL, LaCroix-Fralish ML. The tetrapartite synapse: path to CNS sensitization and chronic pain. Pain. 2006; 122(1-2): 17-21.
    
    24 Sweitzer SM, Colburn RW, Rutkowski M, et al. Acute peripheral inflammation induces moderate glial activation and spinal IL-1 beta expression that correlates with pain behavior in the rat. Brain Res. 1999; 829(1-2): 209-221.
    
    25 Wieseler-Frank J, Maier SF, Watkins LR. Glial activation and pathological pain. Neurochem Int. 2004; 45(2-3): 389-395.
    
    26Tawfik VL, Nutile-McMenemy N, Lacroix-Fralish ML, et al. Efficacy of propentofylline, a glial modulating agent, on existing mechanical allodynia following peripheral nerve injury. Brain Behav Immun. 2007; 21(2): 238-246.
    
    27 Sweitzer SM, Pahl JL, DeLeo JA. et al. Propentofylline attenuates vincristine-induced peripheral neuropathy in the rat. Neurosci Lett. 2006; 400(3): 258-261.
    
    28 Watkins LR, Maier SF. Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov. 2003; 2(12): 973-985.
    
    29 Tawfik VL, Lacroix-Fralish ML, Bercury KK, et al. Induction of astrocyte differentiation by propentofylline increases glutamate transporter expression in vitro: heterogeneity of the quiescent phenotype. Glia. 2006; 54(3): 193-203.
    
    30 Meskini N, Nemoz G, Okyayuz-Baklouti I, et al. Phosphodiesterase inhibitory profile of some related xanthine derivatives pharmacologically active on the peripheral microcirculation. Biochem Pharmacol. 1994; 47(5): 781-788.
    
    31 Si QS, Nakamura Y, Schubert P, et al. Adenosine and propentofylline inhibit the proliferation of cultured microglial cells. Exp Neurol. 1996; 137(2): 345-349.
    
    32 Ringheim GE. Glial modulating and neurotrophic properties of propentofylline and its application to Alzheimer's disease and vascular dementia. Ann N Y Acad Sci. 2000;903:529-534.
    33 Sawynok J. Adenosine receptor activation and nociception, Eur J Pharmacol. 1998; 347(1): 1-11.
    
    34 Zhang Y, Raud J, Hedqvist P, et al. Propentofylline inhibits polymorphonuclear leukocyte recruitment in vivo by a mechanism involving adenosine A2A receptors. Eur J Pharmacol. 1996; 313(3): 237-242.
    
    35 Ji RR, Befort K, Brenner GJ, et al. ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity. J Neurosci. 2002; 22(2): 478-485.
    
    36 Ji RR, Baba H, Brenner GJ, et al. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci. 1999; 2(12): 1114-1119.
    
    37 Bonvin C, Guillon A, van Bemmelen MX,et al. Role of the amino-terminal domains of MEKKs in the activation of NF kappa B and MAPK pathways and in the regulation of cell proliferation and apoptosis. Cell Signal. 2002; 14(2): 123-131.
    
    38 Ahn M, Moon C, Lee Y, et al. Activation of extracellular signal-regulated kinases in the sciatic nerves of rats with experimental autoimmune neuritis. Neurosci Lett. 2004; 372(1-2): 57-61.
    
    39 Galan A, Cervero F, Laird JM. Extracellular signaling-regulated kinase-1 and -2 (ERK 1/2) mediate referred hyperalgesia in a murine model of visceral pain. Brain Res Mol Brain Res. 2003; 116(1-2):126-134.
    
    40 Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002; 35(4): 605-623.
    
    41 Aley KO, Martin A, McMahon T, et al. Nociceptor sensitization by extracellular signal-regulated kinases.J Neurosci. 2001; 21(17): 6933-6939.
    
    42 Karim F, Wang CC, Gereau RW 4th. Metabotropic glutamate receptor subtypes 1 and 5 are activators of extracellular signal-regulated kinase signaling required for inflammatory pain in mice. J Neurosci. 2001; 21(11): 3771-3779.
    
    43 Cruz CD, Neto FL, Castro-Lopes J. Inhibition of ERK phosphorylation decreases nociceptive behaviour in monoarthritic rats. Pain. 2005; 116(3): 411-419.
    44 Ji RR. Peripheral and central mechanisms of inflammatory pain, with emphasis on MAP kinases. Curr Drug Targets Inflamm Allergy. 2004; 3(3): 299-303.
    
    45 Kawasaki Y, Kohno T, Zhuang ZY,et al.Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization.J Neurosci. 2004; 24(38):8310-8321.
    
    46 Ma W, Quirion R. Partial sciatic nerve ligation induces increase in the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in astrocytes in the lumbar spinal dorsal horn and the gracile nucleus. Pain. 2002; 99(1-2):175-184.
    
    47 Ciruela A, Dixon AK, Bramwell S, et al. Identification of MEK1 as a novel target for the treatment of neuropathic pain. Br J Pharmacol. 2003; 138(5): 751-756.
    
    48 Lieberman AP, Pitha PM, Shin HS, et al. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc Natl Acad Sci U S A. 1989; 86(16): 6348-6352.
    
    49 Bhat NR, Zhang P, Lee JC, et al.Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci. 1998; 18(5):1633-1641.
    
    50 Abe K, Saito H. Possible linkage between glutamate transporter and mitogen-activated protein kinase cascade in cultured rat cortical astrocytes. J Neurochem. 2001; 76(1):217-223.
    
    51 Watkins LR, Hutchinson MR, Ledeboer A, et al. Norman Cousins Lecture. Glia as the "bad guys": implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun. 2007 ; 21(2): 131-146.
    1 Yau V, Chow E, Davis L, et al. J Pain Symptom Manage. 2004; 27(1): 1-3.
    
    2 Luger NM, Mach DB, Sevcik MA, et al. J Pain Symptom Manage. 2005; 29(S5):S32-46.
    
    3 Meuser T, Pietruck C, Radbruch L, et al. Pain, 2001. 93(3): 247-257.
    
    4 Wang LX, Wang ZJ. Adv Drug Deliv Rev. 2003 Aug 28; 55(8): 949-965.
    
    5 Mundy GR. Et al. Nat Rev Cancer. 2002 ; 2(8): 584-593.
    
    6 Coleman RE, Oncologist. 2004; 9(S4): 14-27.
    
    7 Portenoy RK, Lesage P. Lancet, 1999, 353(9165): 1695- 1700.
    
    8 Honore P, Luger NM, Sabino MC, et al. Nature Med 2000; 6(5): 521-528.
    
    9 Sweitzer SM, Pahl JL, DeLeo JA. Neurosci Lett. 2006; 400(3):258-261.
    
    10 Uceyler N, Kobsar I, Biko L, et al. J Neurosci Res. 2006; 84(1):37-46.
    
    11 Wang MS, Davis AA, Culver DG, et al. Brain. 2004; 127(Pt 3):671-679.
    
    12 Verstappen CC, Postma TJ, Geldof AA,et al.Anticancer Res. 2004; 24(4): 2337-2341.
    
    13 Shimoyama M, Tanaka K, Hasue F, et al. Pain. 2002; 99(1-2):167-174.
    
    14 Park HC, Seong J, An JH, et al. Int J Radiat Oncol Biol Phys. 2005; 61(5): 1523-1534.
    
    15 Kjonniksen I, Winderen M , Brutand O, et at. Cancer Res, 1994, 54(7): 1715-1719.
    
    16 Schwei MJ, Honore P, Rogers SD, et al. J Neurosci, 1999,19(24): 10886-10897.
    
    17 Wacnik PW, Eikmeier LJ, Ruggles TR, et al. J Neurosci. 2001; 21(23): 9355-9366.
    
    18 Wacnik PW, Kehl IJ, Trempe TM, et al. Pain.2003; 101 (1 -2): 175- 186.
    
    19 Medhurst SJ, Walker K, Bowes M, et al. Pain. 2002; 96(1-2): 129-140.
    
    20 Mundy GR, Yoneda T. Clin Orthop. 1995; 312: 34-44.
    
    21 Zhang RX, Liu B, Wang L, Ren K,et al. Pain. 2005; 118(1-2): 125-136.
    
    22 Walker K, Medhurst SJ, Kidd BL, et al. Pain. 2002; 100(3): 219-229.
    
    23 Pecherstorfer M, Vesely M. New York: Marcel Dekker, Inc., 2000: 97-129.
    
    24 Preston D, Baxter K, Schiefelbein M, et al. New York: Marcel Dekker, Inc., 2000: 287-304.
    
    25 Hall EJ, Sykes NP. Postgrad Med J. 2004; 80(941): 148-154.
    
    26 Mercadante S, Arcuri E. Cancer Treat Rev. 1998; 24: 425-432.
    
    27 Caraceni A. Acta Anaesthesiol Scand. 2001; 45(9): 1067-1075.
    
    28 Slavik E, Ivanovic S, Grujicic D. et al. Acta Chir Iugosl. 2004; 51(4): 9-14.
    
    29 Vecht CJ. Cancer pain: Curr Opin Neurol. 2000; 13(6): 649-653.
    
    30 Roodman GD. N Engl J Med, 2004; 350(16): 1655-1664.
    
    31 Clohisy DR, Mantyh PW. Bone cancer pain. Cancer. 2003; 97: 866-873.
    
    32 Sabino MC, Ghilardi JR, Jonger JL, et al. Cancer Res. 2002; 62(24): 7343-7349.
    
    33 Olson TH, Riedl M S, Vulchanova I, et al. Neuroreport, 1998, 9(6): 1109-1113.
    
    34 Watkins LR, Martin D, Ulrich P, et al. Pain. 1997; 71(3): 225-235.
    
    35 Cain DM, Wacnik PW, Turner M, et al. J Neurosci, 2001, 21(23): 9367 -9376.
    
    36 Gilchrist LS, Cain DM, Harding-Rose C, et al. Brain Res. 2005; 1044(2): 197-205.
    
    37 Mach DB, Rogers SD, Sabino MC, et al. Neuroscience. 2002; 113(1): 155-166.
    38 Peters CM, Ghilardi JR, Keyser CP, et al. Exp Neurol. 2005; 193(1): 85-100.
    
    39 O'Connell JX, Nanthakumar SS, Nielsen GP, et al. Mod Pathol. 1998; 11(2):175-180.
    
    40 Honore P, Rogers SD, Schwei MJ, et al. Neuroscience. 2000; 98(3): 585-598.
    
    41 Watkins LR, M aier SF. Nat Rev Drug Discov. 2003. 2(12): 973-985.
    
    42 Peters CM, Ghilardi JR, Keyser CP, et al. Exp Neurol. 2005; 193(1): 85-100.
    
    43 Lehre KP, Danbolt NC. J Neurosci. 1998 ;18(21): 8751-8757.
    
    44 Sabino MA, Honore P, Rogers SD, et al. Pain. 2002; 95(1-2): 175-186.
    
    45 Sabino MA, Mantyh PW. J Support Oncol. 2005; 3(1): 15-24.
    
    46 项红兵,杨辉,安珂,等。临床麻醉学杂志。 2005; 21 ( 5): 350-352。
    
    47 Honore P, Rogers SD, Schwei MJ, et al. Neuroscience. 2000; 98(3): 585-598.
    
    48 Luger NM, Sabino MC, Schwei MJ, et al. Pain. 2002; 99(3): 397-406.
    
    49 Colburn RW, DeLeo JA, Rickman AJ, et al. J Neuroimmunol.1997; 79(2): 163-175.
    
    50 Lipton A, Berenson JR, Body JJ, et al. Clin Cancer Res. 2006; 12(20 Pt 2):6209s-6212s.
    
    51 Pharo GH, Zhou L. J Am Osteopath Assoc. 2005; 105(11 Suppl 5): S21-28.
    
    52 Anon. Anesthesiology, 1996, 84(5): 1243-1257.
    
    53 Cleeland CS. et al. Clin Cancer Res. 2006; 12(20 Pt 2):6236s-6242s
    
    54 Mercadante S. Cancer. 1999; 85(8): 1849-1858.
    
    55 Hwang SS, Chang VT, Kasimis B. J Pain Symptom Manage. 2002; 23(3): 190-200.
    
    56 Patrignani P, Tacconelli S, Scuilla MG, et al. Brain Res Brain Res Rev. 2005;48(2):352 -359.
    
    57 Kundu N, Yang Q, Dorsey R, et al. Int J Cancer, 2001.93(5):681-686.
    
    58 Potter MB. Am Fam Physician. 2005; 72(3): 436-437.
    
    59 Leppert W, Luczak J. Support Care Cancer. 2005;13(1):5-17.
    
    60 Clezardin P, Ebetino FH , Fournier PG. Cancer Res. 2005; 65 (12) : 4971
    
    61 Woodward JK, Coleman RE, Holen I. Anticancer Drugs 2005; 16(1): 11-9.
    
    62 Gordon S, Helfrich MH, Sati HIA, et al. Br J Haematol. 2002; 119(2): 475-483.
    
    63 Senaratne SG, Pirianov G, Mansi JL, et al. Br J Cancer. 2000; 82(8): 1459-1468;
    
    64 Corey E, Brown LG, Quinn JE, et al. Clin Cancer Res. 2003; 9(4): 1574-1575.
    
    65 Gordon DH. Clin Breast Cancer. 2005; 6(2): 125 -131.
    
    66 McNicol E, Strassels S, Goudas L, et al. J Clin Oncol.2004; 22(10): 1975-1992.
    
    67 Quigley C. BMJ. 2005; 331(7520):825-829.
    
    68 Shaiova L. et al. Cancer J. 2006; 12(5):330-340.
    
    69 Sabino MA, Mantyh PW.et al. J Support Oncol. 2005; 3(1):15-24.
    
    70 McDonnell FJ, Sloan JW, Hamann SR.et al. Curr Oncol Rep. 2000; 2(4): 351-357.
    
    71 Fine PG. Anesth Analg. 2005; 100(l):183 -188.
    
    72 Portenoy RK, Payne R, Coluzzi P, et al. Pain 1999; 79(2-3): 303-312.
    
    73 Potter MB. Am Fam Physician. 2006;74(ll):1855-1857.
    
    74 Toombs JD, Kral LA. et al. Am Fam Physician. 2005;71(7):1353-1358.
    
    75 Hanks GW, de Conno F, Cherny N,et al. Br J Cancer 2001; 84(5): 587-593.
    76 Quigley C, Wiffen P. J Pain Symptom Manage 2003; 25(2): 169-178.
    
    77 Sorge J , Sittl R. Clin Ther 2004; 26(11): 1808-1820.
    
    78 Cherny N, Ripamonti C, Pereira J, et al. J Clin Oncol 2001 ;19(9): 2542-2554.
    
    79 Ross JR, Riley J, Quigley C, et al. Oncologist. 2006; 11(7): 765-773.
    
    80 Ballantyne JC. Oncologist. 2003; 8(6):567-575.
    
    81 Mao J, Sung B, Ji RR et al. J Neurosci 2002; 22(18): 8312-8323.
    
    82 Berger A, Dukes E, Smith M, et al. J Pain Symptom Manage. 2003; 26(2):723-730.
    
    83 Saito O, Aoe T, Kozikowski A, et al. Can J Anaesth. 2006; 53(9): 891-898.
    
    84 Lussier D, Huskey AG, Portenoy RK. et al. Oncologist. 2004; 9(5):571-591.
    
    85 Knotkova H, Pappagallo M. et al. Med Clin North Am. 2007; 91(1):113-124.
    
    86 Donovan-Rodriguez T, Dickenson AH, Urch CE. et al. Anesthesiology. 2005; 102(l):132-140.
    
    87 Keskinbora K, Pekel AF, Aydinli I.et al. Acta Anaesthesiol Scand. 2004; 48(5): 663-664.
    
    88 Bauman G, Charette M, Reid R, et al. Radiother Oncol. 2005; 75(3):258-270.
    
    89 Pandit-Taskar N, Batraki M, Divgi CR. Et al. J Nucl Med. 2004; 45(8): 1358-1365.
    
    90 Falicov A, Fisher CG, Sparkes J, et al. Spine. 2006.15; 31(24): 2849-2856.
    
    91 Grossman SA, Dunbar EM, Nesbit SA. et al. Oncology (Williston Park). 2006; 20(11): 1333-1339.
    
    92 Winston C V. Cancer pain management: principals and practice. 1996: 39-420.
    
    93 Collins D, Penman I, Mishra G, et al. Endoscopy. 2006 ; 38(9):935-959.
    
    94 Candido K, Stevens RA. Best Pract Res Clin Anaesthesiol. 2003;17(3):407-428.
    
    95 Bacci G, Longhi A, Bertoni F, et al. Acta Orthop. 2006; 77(6): 938-943.
    
    96 Pharo GH, Zhou L. et al. J Am Osteopath Assoc. 2005; 105(11 Suppl 5):S21-28.
    
    97 Beatson G.T. Lancet. 1896; 2:104-107.
    
    98 Levenson AS, Jordan VC. Eur J Cancer. 1999; 35(14): 1628-1639.
    
    99 Sato M, Turner CH, Wang T, et al. J Pharmacol Exp Ther. (1998),287(1): 1-7.
    
    100 Pappas SG, Jordan VC. Cancer Metastasis Rev. 2002; 21(3-4):311-321.
    
    101 Osborn RL, Demoncada AC, Feuerstein M. et al. Int J Psychiatry Med. 2006; 36(1): 13-34.
    
    102 Lazorthes Y, Sallerin B, Verdie JC, et al. Neurochirurgie. 2000; 46(5): 454-465.
    
    103 Nutman A, Postovsky S, Zaidman I, et al. Pediatr Hematol Oncol. 2007; 24(1): 53-61.
    
    104 Honore P, Luger NM, Sabino MA, et al. Nat Med. 2000; 6(5): 521-528.
    
    105 Halvorson KG, Kubota K, Sevcik MA, et al. Cancer Res. 2005; 65(20): 9426-9435.
    
    106 Sevcik MA, Ghilardi JR, Peters CM, et al. Pain. 2005; 115(1-2): 128-141.
    
    107 Goblirsch MJ, Zwolak PP, Clohisy DR. Clin Cancer Res. 2006; 12(20 Pt 2): 6231s-6235s.
    
    108 Petrenko AB, Yamakura T, Baba H, et al. Anesth Analg. 2003;97(4):l 108-1116.
    
    109 Carducci MA, Jimeno A. Clin Cancer Res. 2006; 15; 12(20 Pt 2): 6296s-6300s.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700