CO通过NO信号上调抗氧化防护和维持离子稳态来提高小麦幼苗耐盐性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO在哺乳动物研究中被认为是一种调控一系列生理过程的重要内源气体信号分子,并且这些调控过程往往是通过NO信号来介导,但CO在植物逆境响应方面研究还比较少。
     本研究发现150 mM NaCl胁迫以时间进程方式诱导了小麦幼苗根部CO合成酶-血红素加氧酶(HO EC 1.14.99.3)活性上升并导致内源CO含量增加。继而用外源CO处理来模拟内源CO的变化,我们发现外源50%饱和溶液与150 mM NaCl共处理(S+50%CO)不仅能提高小麦幼苗根部CO含量,还能明显缓解由胁迫导致其生长减缓和相对含水量的下降。一氧化氮供体硝普钠(SNP,S+0.1SNP)和脂多糖乙二胺四乙酸二钠/一氧化氮(DETA/NO,S+DETA/NO)处理能得到与上述CO处理相类似的生物学表型,而SNP降解产物NO_2~-/NO_3~-和SNP类似物KFe_3(CN)_6KFe_4(CN)_6与盐共处理(S+NO_2~-/NO_3~-;S+KFe_3(CN)_6/KFe_4(CN)_6)则更加抑制小麦幼苗的生长。此外,CO与SNP还能上调小麦幼苗根部质膜ATP酶(PM H~+-ATPase)、液泡膜ATP酶(V H~+-ATPase)和液泡膜焦磷酸酶(V H~+-PPase)等与维持离子稳态相关的酶类及抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、超氧化物歧化酶(SOD)、单脱氢抗坏血酸还原酶(MDHAR)和双脱氢抗坏血酸还原酶(DHAR)等抗氧化防护酶的活性并增加相关酶编码基因的转录本,从而提高幼苗根部的K/Na和缓解盐胁迫造成的氧化损伤。进一步的研究发现,CO的这种生物学功能很可能与NO有关,因为结合采用CO/NO清除剂血红蛋白处理(Hb,S+50%CO+Hb)、NO清除剂亚甲基蓝处理(MB,S+50%CO+MB;S+50%CO+0.1SNP+MB)或动物一氧化氮合酶(NOS)抑制剂N~G-硝基-L-精氨酸甲酯处理(L-NAME,S+50%CO+NAME)都不同程度地逆转了CO的各种缓解效应。更重要的是,CO能通过模拟SNP的作用来诱导小麦幼苗根尖大量释放NO,而组合L-NAME(S+50%CO+NAME)和2-(4-羧基苯)-4,4,5,5-四甲基咪唑-1-氧-3-氧化物(cPTIO,S+50%CO+cPTIO)处理则猝灭CO诱导的NO产生。
     上述研究表明,CO通过NO信号上调小麦幼苗根部抗氧化防护和维持离子稳态来提高耐盐性。
In mammalian cells, CO was proven as an endogenous gas molecular in regulating a serial of physiological processes, which were usually mediated by NO. However, little information has been investigated in plant stress responses.
     In present study, we evaluated that salt stress induced an increase in endogenous carbon monoxide (CO) production and the activity of the CO synthetic enzyme heme oxygenase in wheat seedling roots. In addition, a 50% CO aqueous solution, applied daily, not only resulted in the enhancement of CO release, but led to a significant reversal in dry weight and water loss caused by 150 mM NaCl treatment, which was mimicked by the application of two nitric oxide (NO) donors sodium nitroprusside (SNP) and diethylenetriamine nitric oxide adduct (DETA/NO). While, the degradation product of SNP (NO_2~-/NO_3~-) and SNP analogue KFe_3(CN)_6/KFe_4(CN)_6 produced negative effects. Further analyses showed that CO as well as SNP, apparently up-regulated H~+-pump and antioxidant enzymes activities or related transcripts, thus resulting in the increase of K/Na ratio and the alleviation of oxidative damage in the root tissue. The above ameliorating effects of CO were specific and related to NO, because the CO/NO scavenger hemoglobin (Hb), NO scavenger methylene blue (MB), or nitric oxide synthase (NOS) inhibitor N~G-nitro-L-arginine methyl ester hydrochloride (L-NAME) differentially blocked the above effects. Additionally, CO was able to mimic the effect of SNP by strongly increasing NO release in the root tips after daily treatment, whereas the CO-induced NO signal was quenched by the addition of L-NAME or the specific scavenger of NO 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO).
     Taken together, above results suggest that CO might confer an increased tolerance to salinity stress by maintaining ion homeostasis and enhancing antioxidant system parameters in wheat seedling roots, both of which were partially mediated by NO signal.
引文
陈德明.盐渍环境中的植物耐盐性及其影响因素[J].土壤学进展,1994,22(5):22-29.
    杜秀敏,殷文璇.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121-12
    刘婉,胡文玉.NaCl胁迫下离体小麦叶片内抗坏血酸与几种生理生化指标变化的关系[J].植物生理学通讯,1997,33(6):423-426
    刘友良,毛才良,汪良驹.植物耐盐性研究进展[J].植物生理学通讯,1998,23(4):1-7
    刘志生.鲁德1号冬小麦耐盐力分析[J].中国农学通报,1996,12(3):21-22
    任冬涛,张承烈.河西走廊不同生态型芦苇可溶性蛋白质、总氨基酸和游离氨基分析[J].植物学报,1992,32(9):698
    孙诚,刘友良,章文华.多胺浸种改善盐胁迫大麦根系液泡膜功能的机理[J].植物学报,2002,44(10):1167-1172
    孙兰菊,岳国峰.植物耐盐机制的研究进展[J].海洋科学,2001,25(4):28-31
    王宝山,邹琦,赵可夫.NaCl胁迫对高粱不同器官离子含量的影响[J].作物学报,2001,26(6):845-850
    王颖,杜荣骞.高粱在盐胁迫下特定蛋白的表达量与耐盐性关系的研究[J].作物学报,2000,29(1):75-78
    刑少辰.环境胁迫与植物体内脯氨酸的关系[J].生态农业研究,1998,6(2):30-34
    余叔文,汤章城.植物生理与分子生物学(第二版)[M].北京:科学出版社,1998
    赵可夫.盐分胁迫和水分胁迫对盐生和非盐生植物细胞膜脂过氧化作用的效应[J].植物学报,1993,35(7):519-523
    赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1999
    赵可夫,范海,Harris P.J.C.盐胁迫下外源ABA对玉米幼苗耐盐性的影响[J].植物学报,1995,37(4):295-300
    Apse M P, Aharon G S, Snedden W A. Salt tolerance conferred by over expression of a vacuolar NaCMC antiport in Arabidopsis[J]. Science, 1999,285: 56-58
    Anderson C R, Wu W H. Analysis of carbon monoxide in commercially treated Tuna (Thunnus spp.) and Mahi-Mahi (Coryphaena hippurus) by gas chromatography/mass spectrometry[J]. J Agric Food Chem, 2005, 53: 7019-7023
    Balestrasse K B, Noriega G O, Batlle A, et al. Heme oxygenase activity and oxidative stress signaling in soybean leaves[J]. Plant Sci, 2006,170: 339-346
    Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels[J]. Anal Biochem, 1971,44:276-287
    Besson-Bard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants[J]. Annu Rev Plant Biol, 2008, 59:21-39
    Bethke P C, Badger M R, Jones R L. Apoplastic synthesis of nitric oxide by plant tissues[J]. Plant Cell, 2004,16: 332-341
    Bethke P C, Libourel I G L, Reino'hl V, et al. Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner[J]. Planta, 2006,223: 805-812
    Bhandal I S, Malik C P. Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants[J]. Int Rev Cytology, 1988,110:205-254
    Biemelt S, Keetman U, Mock H P, et al. Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia[J]. Plant, Cell & Environ, 2000,23:135-144
    Blumwald E, Poole R J. Salt tolerance in suspension cultures of sugar beet: induction of Na~+/H~+ antiport activity at the tonoplast by growth in salt[J]. Plant Physiol, 1987, 83: 884-887
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72:248-254
    Bright J, Desikan R, Hancock J T, et al. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H_2O_2 synthesis[J]. Plant J, 2006,45:113-22
    Clarke A, Desikan R, Hurst R D, et al. NO way back: nitrie oxide and Programmed cell death in Arabidopsis thaliana suspension culture[J]. Plant J, 2000,24: 667-677
    Clough S J, Fengler KAYuI-C, Lippok B, et al. The Arabidopsis dndl denfense, no death gene encodes a mutated cyclic nucleotide-gated ion channel[J]. Proc Natl Acad Sci USA, 2000,97: 9323-9328
    Correa-Aragunde N, Graziano M, Lamattina L. Nitric oxide plays a central role in determining lateral root development in tomato[J]. Planta, 2004,218: 900-905
    Crawford N M, Galli M, Tischner R, et al. Response to Zemojtel et al.,: plant nitric oxide synthase: back to square one[J]. Trends Plant Sci, 2006,11: 526-527
    De Tullio M C, De Gara L, Paciolla C, et al. Dehydroascorbate-reducing proteins in maize are induced by the ascorbate biosynthesis inhibitor lycorine[J]. Plant Physiol and Biochem, 1998,36:433-440
    Delledonne M. NO news is good news for plants[J]. Curr Opin Plant Biol, 2005, 8: 390-396
    Delledonne M, Xia Y, Dixon R A, et al. Nitric oxide functions as a signal in plant disease resistance[J]. Nature, 1998, 394: 585-588
    Dulak J, Józkowicz A. Carbon monoxide - a "new" gaseous modulator of gene expression[J]. Acta Biochim Pol, 2003, 50: 31-47
    Flowers T J. The mechanism of salt tolerance in halophytes[J]. Annu Rev Plant Physiol, 1977, 28: 89-121
    Ratajczak R, Richter J, Lutge U. Adaptation of the tonoplast V-type H~+-ATPase of mesembryanthemum crystallium to salt stress, C_3-CAM transition and plant age[J]. Plant Cell Environ, 1994 17:1101-1112
    Frankel D, Mehindate K, Schipper H M. Role of heme oxygenase-1 in the regulation of manganese superoxide dismutase gene expression in oxidatively-challenged astroglia[J]. J Cell Physiol, 2000,185: 80-86
    García-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress[J]. Plant Physiol, 2001,126:1196-1204
    Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants[J]. Plant Physiol, 1977,59:309-314
    Gouv(?)a C .M C P, Souza J F, Magalh(?)es A.C N, et al. NO-releasing substances that induce growth elongation in maize root segments[J]. Plant Growth Regul, 1997,21:183-187
    Grant C A, Loake G J. Role of reactive oxygen intermediates and congnate redox signaling in disease resistance[J]. Plant Physiol, 2000,124:21-29
    Greenway H, Munns R. Meehanisms of salt tolerance in nonhalophytes[J]. Annu Rev Plant Physiol, 1980,31:149-190
    Gulick P, Dvo(?)ák J. Gene induction and repression by salt treatment in roots of the salinity-sensitive Chinese Spring wheat and the salinity-tolerant Chinese Spring wheat ?Elytrigia elongate amphiploid[J]. Proc Natl Acad Sci USA, 1987,84:99-103
    Guo F Q, Crawford N M. Arabidopsis nitric oxide synthasel is targeted to mitochondria and protects against oxidative damage and dark-induced senescence[J]. Plant Cell, 2005,17: 3436-3450
    Han Y, Zhang J, Chen X Y, et al. Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa[J]. New Phytol, 2008, 177: 155-166
    Hanson A D, May A M. Betaine synthesis in chenpods: Localization in chlorplasts[J]. Proc Natl Acad Sci USA, 2001, 82: 3678-3682
    Hartsfield C L. Cross talk between carbon monoxide and nitric oxide[J]. Antioxid Redox Signal, 2002, 4: 301-307
    Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity[J]. Annu Rev of Plant Physiol Plant Mol Biol, 2000,51:463-499
    Hernández J A, Jiménez A, Mullineaux P, et al. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences[J]. Plant, Cell & Environ, 2000, 23: 853-862
    Jiang M Y, Zhang J H. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings[J]. Plant Cell & Physiol, 2001,42:1265-1273
    Katsuhara M, Kawasaki T. Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots[J]. Plant Cell & Physiol, 1996,37:169-173
    Kavikishor P B. Salt stress in cultured rice cells: effects of proline and abscisic acid[J]. Plant, Cell & Environ, 1989,12:629-633
    Kondoh K, Koshiba T, Hiraoka A, et al. γ-Irradiation damage to the tonoplast in cultured spinach cells[J]. Environ & Exp Bot, 1998,39: 97-104
    Kumar D, Klessig D F. Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene and jasmonic acid[J]. Mol Plant-Micro Inter, 2000,13: 347-351
    Lamar C A, Mahesh V B, Brann D W. Regulation of gonadotrophin-releasing hormone (GnRH) secretion by heme molecules: a regulatory role for carbon monoxide[J]? Endocrinology, 1996, 137: 790-793
    Lee U, Wie C, Fernandez B O, Feelisch M, et al. Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in arabidopsis[J]. Plant Cell, 2008, doi: 10.1105/tpc.l07.052647
    Liu K, Xu S, Xuan W, et al. Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa[J]. Plant Sci, 2007,172: 544-555
    Longo M, Jain V, Vedernikov Y P, et al. Effect of nitric oxide and carbon monoxide on uterine contractility during human and rat pregnancy[J]. Am J Obstet Gynecol, 1999,181,981-988
    L(?)ttge U, Fischer K. Light-dependent net CO-evolution by C_3 and C_4 plants[J]. Planta, 1980,149: 59-63
    MacRobbie E A C. ABA activates multiple Ca~(2+) fluxes in stomatal gurad cells, triggering vacuolar K~+(Rb~+) release[J]. Proc Natl Acad Sci USA, 2000, 97:12361-12368
    Maier J, Hecker R, Rockel P, et al. Role of nitric oxide synthase in the light-induced development of sporangiophores in Phycomyces blakesleeanus[J]. Plant Physiol, 2001,126:1323-1330
    Maines M D. The heme oxygenase system: a regulator of second messenger gases[J]. Ann Rev Pharmacol and Toxicol, 1997, 37: 517-554
    Martinoia E, Massonneau A, Frangne N. Transport processes of solutes across the vacuolar membrane of higher plants[J]. Plant Cell Physiol, 2000, 41:1175-1186
    Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends Plant Sci, 2002, 7: 405-410
    Morita T, Kourembanas S. Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide[J]. J Clin Invest, 1995, 96:2676-2682.
    Morita T, Perrella M A, Lee M E, et al. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP[J]. Proc Natl Acad Sci USA, 1995, 92:1475-1479
    Munns R, Tester M. Mechasims and salinity tolerance[J]. Ann Rev Plant Biol, 2008,59:651-681
    Muramoto T, Tsurui N, Terry M J, et al. Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required for phytochrome chromophore synthesis [J]. Plant Physiol, 2002,130:1958-1966
    Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell & Physiol, 1981,22:867-880
    Neill S J, Desikan R, Clarke A, et al. Nitric oxide is a novel componenet of abscisic acid signalling in stomatal guard cells[J]. Plant Physiol, 2002,128:13-16
    Noriega G O, Balestrasse K B, Batlle A, et al. Heme oxygenase exerts a protective role against oxidative stress in soybean leaves[J]. Biochem Biophys Res Commun, 2004,323:1003-1008
    Noriega G O, Yannarelli G G, Balestrasse K B, et al. The effect of nitric oxide on heme oxygenase gene expression in soybean leaves[J]. Planta, 2007,226:1155-1163
    Ohnish T, Gall R S, Mayer M L. An improved assay of inorganic phosphate in the presence of extralabile phosphate compounds: application to the ATPase assay in the presence of phosphocreation[J]. Anal Biochem, 1975,69:261-267
    Otterbein L E, Otterbein S L, Ifedigbo E, et al. MKK3 mitogen-activated protein kinase pathway mediates carbon monoxide-induced protection against oxidant-induced lung injury[J]. Am J Pathol, 2003,163:2555-2563
    Pagnussat G C, Lanteri M L, Lamattina L. Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process[J]. Plant Physiol, 2003,132:1241-1248
    Piantadosi C A. Biological chemistry of carbon monoxide[J]. Antioxid Redox Signal, 2002,4:259-270.
    Planchet E, Jagadis G K, Sonoda M, et al. Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport[J]. Plant J, 2005,41:732-743
    Ratajczak R, Richter J, L(?)ttge U. Adaptation of the tonoplast V-type H~+-ATPase of Mesembryanthemum crystallinum to salt stress, C_3-CAM transition and plant age[J]. Plant, Cell & Environ, 1994, 17: 1101-1112
    Rauser W E. Changes in glutathione content of maize seedlings exposed to cadmium[J]. Plant Sci, 1987, 51:171-175
    Ruan H, Shen W, Ye M, et al. Protective effects of nitric oxide on salt stress-induced oxidative damage to wheat (Triticum aestivum) leaves[J]. Chin Sci Bull, 2002,47: 677-681
    Shi Q, Ding F, Wang X, et al. Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress[J]. Plant Physiol Biochem, 2007, 45: 542-550
    Siegel S M, Renwick G, Rosen L A. Formation of carbon monoxide during seed germination and seedling growth[J]. Science, 1962,137: 683-684
    Singh N K, Bracker C A, Hasegawa P M, et al. Characterization of osmotion: a thaumatin-like protein associated with osmotic adaption in plant cells[J]. Plant Physiol, 1987, 90:1096-1099
    Stohr C, Stremlau S. Formation and possible roles of nitric oxide in plant roots[J]. J Exp Bot, 2006, 57: 463-470
    Tanaka Y, Hibino T, Hayashi Y, et al. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts[J]. Plant Sci, 1999,148:131-138
    Tarr M A, Miller W L, Zepp R G Direct carbon monoxide photoproduction from plant matter[J]. J GeophyRes, 1995,100:11403-11413
    Thorn S R, Xu Y A, Ischiropoulos H. Vascular endothelial cells generate peroxynitrite in response to carbon monoxide exposure[J]. Chem Res Toxicol, 1997,10:1023-1031
    Thom S R, Fisher D, Xu Y A, et al. Adaptive responses and apoptosis in endothelial cells exposed to carbon monoxide[J]. Proc Natl Acad Sci USA, 2000,97:1305-1310
    Uchida A, Jagendorf A T, Hibino T, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Sci, 2002,163: 515-523
    Vázquez M D, Poschenrieder C, Corrales I, et al. Change in apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety[J]. Plant Physiol, 1999, 119: 435-444
    Verma A, Hirsch D J, Glatt C E, et al. Carbon monoxide: a putative neural messenger[J]. Science, 1993, 259:381-384
    Vile G F, Tyrrell R M. Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in ferritin[J]. J Biol Chem, 1993,268:14678-14681
    Watts R N, Ponka P, Richardson D R. Effects of nitrogen monoxide and carbon monoxide on molecular and cellular iron metabolism: mirror-image effector molecules that target iron[J]. Biochem J, 2003, 369: 429-440
    Wilks S S. Carbon monoxide in green plants[J]. Science, 1959,129:964-966
    Xu J, Xuan W, Huang B K, et al. Carbon monoxide-induced adventitious rooting of hypocotyls cutting from mung bean seedling[J]. Chin Sci Bull, 2006, 51: 688-674
    Yamasaki H, Cohen M F. NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants[J]? Trends Plant Sci, 2006,11: 522-524
    Yannarelli G G, Noriega G O, Batlle A, et al. Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species[J]. Planta, 2006,224:1154-1162
    Yoshida S, Matsuura C, Etani S. Impairment of tonoplast H~+-ATPase as an initial physiological response of cells to chilling in mung bean (Vigna radiate [L.] Wilczek) [J]. Plant Physiol, 1989, 89: 634-642
    Zemojtel T, Frohlich A, Palmieri M C, et al. Plant nitric oxide synthase: a never-ending story[J]? Trends Plant Sci, 2006,11:524-525
    Zhang R, Zhang L, Zhang Z, et al. A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats[J]. Ann Neurol, 2001,50:602-611
    Zhang Y, Wang L, Liu Y, et al. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na~+/H~+ antiport in the tonoplast[J]. Planta, 2006,224:545-555
    Zhao L, Zhang F, Guo J, et al. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed[J]. Plant Physiol, 2004,134: 849-857
    Zhao M G, Tian Q Y, Zhang W H. Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis[J]. Plant Physiol, 2007,144: 206-217
    Zhou B, Guo Z, Xing J, et al. Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis[J]. J Exp Bot, 2005,56: 3223-3228
    Zhu J K. Plant salt tolerance[J]. Trends Plant Sci, 2001,6:66-71
    Zhu J K. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Biol, 2003,6:441-445
    Zuckerbraun B S, Billiar T R, Otterbein S L, et al. Carbon monoxide protects against liver failure through nitric oxide-induced heme oxygenase 1[J]. J Exp Med, 2003,198:1707-1716

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700