不同年龄沙地柏抗旱生理特性的差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过查取有关林木抗旱鉴定的文献,总结了当前林木抗旱性鉴定中常用的方法、指标及林木抗旱性的综合评价方法,并对各种方法与指标的优缺点、应用现状、存在的问题和应用前景进行了阐述。由于指标使用频率的高低不仅能反映人们对各种指标的不同认可度,而且还可以暗示该指标的实用性、简便性及有效性,对林木抗旱鉴定常用的指标做统计,对各指标的使用频率做了计算,同时对指标所体现的树木的抗旱途径及指标的应用范围进行了综合比较。同时,为探讨抗旱鉴定指标在不同年龄树木间的表现差异,鉴定年龄因素是否对抗早鉴定指标及抗旱评价结果带来影响,本文选用同一种源1年生、3年生、5年生三个不同年龄的沙地柏为材料,通过控制水分进行胁迫处理,测定了不同年龄沙地柏抗旱生理特性的差异,主要结果如下:
     通过算得每个指标的使用频率,得到水势的应用频率最高,达到47.22%。按使用频率的大小,所有的指标通过聚类分析可分为五级。
     沙地柏保水力在不同年龄间存在差异,高年龄的大于低年龄的保水力。膜透性在未受水分胁迫条件下随着年龄的增加逐渐减弱,在不同年龄间已经形成显著差异。水分亏缺在沙地柏三个不同年龄段间差异不显著,并且在水分胁迫后,沙地柏三个年龄间的水分亏缺值差异也不显著。这不同于枝叶保水力及膜透性这两个指标,这说明该指标对年龄的稳定性要高于前两个指标。
     在水分胁迫条件下,沙地柏各年龄的净光合速率、RuBP羧化酶活性、表观最大量子产额、胞间浓度在气孔导度与蒸腾速率受到土壤水分胁迫的强烈抑制的同时并没有受到限制性的影响,并且水分利用率有大幅度的提高,说明沙地柏气孔开闭调节对土壤水分条件特别敏感,一定程度下的水分胁迫处理对沙地柏的净光合速率影响较小,沙地柏具有相对稳定的光合产物积累速率。加上沙地柏明显的旱生叶片结构,能够减少蒸腾,表明沙地柏是节水型御旱特性的植物,具有典型的耐旱特性。
     通过测定沙地柏三个不同年龄的气体交换,得出在未受水分胁迫条件下,除RuBP羧化酶活性这一项指标外,沙地柏净光合速率、蒸腾速率、气孔导度、水分利用率、胞间CO_2浓度、RuBP羧化酶活性、表观最大量子产额多项指标在三个不同年龄间差异不显著。在水分胁迫条件下,沙地柏的净光合速率、RuBP羧化酶活性、表观最大量子产额在水分胁迫条件下随年龄的增加而降低,各年龄间出现了显著性的差异,表明干旱胁迫条件下低年龄的沙地柏要比高年龄的沙地柏生长势高,更具有生命力,但是,5年生沙地柏Ci浓度高于1年生与3年生的沙地柏,并且气孔导度、蒸腾速率,随土壤水分含量的降低而下降的幅度最大,表明5年生沙地柏虽然生命活力不如低年龄的1年生与3年生的沙地柏,但是对水分胁迫的敏感的适应能力却强于1年生与3年生的。
     基于以上研究结果建议在进行抗旱性鉴定时,抗旱鉴定指标的选取要考虑所选取的抗旱指标对材料的年龄的敏感性及稳定性,如果供试材料的年龄不易统一,尤其在对大田中自然生长的树种进行取材鉴定时,最好选取对年龄稳定性高的抗旱性鉴定指标。同时,在应用对年龄敏感的指标时,试验材料的年龄就需要一致。
This paper presents a comprehensive review and analyses on identification indexes andmethods of trees drought resistance. The current situation, existent problems and the future ofthe drought-resistance indicators and methods were set forth in the paper. We made astatistical comparison of every drought-resistance indicator and figure out their appliedfrequency because the applied frequency not only can reflect the workers' approbation tothem but can suggest their practicability, facility and validity. At the same time, severalphysiological characteristics of Juniperus Sabina at three ages were measured in this paper inorder to make out whether the ages of the plants can influence the result of theirdrought-resistance ability. Main results obtained are as following:
     Plant water potential is used most frequently at present. Its applied frequency reaches47.22%. All drought-resistance indicators of woody plants in common use are classified intofive levels according to their applied frequency.
     Water-losing rate of Juniperus Sabina is significantly different among seedling ages.Older seedlings have lower water-losing rate than young seedlings. The relative permeabilityof membrane of Juniperus Sabina depresses as the age grows. Significant difference appearsamong these three ages. But there is no significantly difference on RWD whether under thewater stress or not. This shows that RWD is more age-stable than Water-losing rate andrelative permeability of membrane.
     Results indicate that while the soil water gradient has a significant effect on stomataconductance, transpiration rate, it has no significant influence on the net photosynthesis rate,CO_2 concentration inside the cell, apparent light use efficiency, and the enzyme RuBP.activity of Juniperus Sabina. Net photosynthesis rate don't respond sensitively to soil watercontent under water stress. This result evidently indicated that Juniperus Sabina has an extrasensitive stomata regulation. In addition to it's drought-resistance structures in evidence,Juniperus Sabina is a drought tolerance species in nature, and exhibited a saving water-use strategy in a sandy land ecosystem.
     There is no significant difference on net photosynthesis rate, stomata conductance, CO_2concentration inside the cell, apparent light use efficiency, water-use efficiency andtranspiration rate among 1-year old seedlings, 3-year old seedlings and 5-year old seedlingsof Juniperus Sabina accept the activity of enzyme RuBP when there is no water stress. As theage of the seedlings grows, net photosynthesis rate, activity of enzyme RuBP and apparentlight use efficiency become low under water stress. Significant difference appears amongthese three seeding ages. This indicates that the younger Juniperus Sabina seedlings are morevital than older ones. In contrast, the 5-year old seedlings have higher CO_2 concentrationinside the cell than 3-year old seedlings and 1-year old seedlings. At the same time, the 5-yearold seedlings have the largest changing range on stomata conductance and transpiration rateas the soil water content grows down. This may indicates that while the 3-year old seedlingsand 1-year old seedlings are more vital than the 5-year seedlings, the 5-year old seedlings aremore adaptive than the 3-year old seedlings and 1-year old seedlings.
     Therefore, we'd better choose the materials at the same age as the test sample when wedo some drought resistance appraisal. Sensitivity and stability of drought resistance appraisalto seedling age must be considered. If the ages of the test sample are different, we'd betterchoose more age-stable drought-resistant indicators.
引文
[1] 朱竑,杨锡金 等.浅谈干旱地区自然保护区的建设及开发利用.干旱区地理,1998,21(1):57~62
    [2] Tree M.T.土壤—植物—大气系统的物理参数:可以改良木材产量的抗早育种树木生理与遗传发育.见:坎内尔,MGR&拉斯特FT编.林木生理与遗传改变.熊文愈.吴贯明选译.北京.中国林业出版社.1983
    [3] Ceulemans R et al. Water movement in the soil-poplar-atmosphere continuum(2): comparative study of transpiration regulating during water stress situation in fourdifferent poplar clones. oecol.plant, 1978, 13: 139~146
    [4] Keliher F M et al. Stomatal resistance and growth of drought-stressed easterncontonwood from a wet and dry site.silvage genet, 1980, 29, 166~171
    [5] Van Buijtemn JP.火炬松中与抗早性有关的形态生理特征.见坎内尔.MGR&拉斯特FT编.林木生理与遗传改变.熊文愈,吴贯明选译北京.中国林业出版社.1983
    [6] Tan W X. et al. Drought tolerance in faster and slower growing blank spruce (piceamariana)progenies. osmotic adjustment and changes of soluble carbonhydrates andamino acids under osmotic stress Thysiol. plant, 1992.85(4): 645~651
    [7] 王九龄北京西山树木耐旱能力的初步观察北京林业.1981(2):10~21
    [8] 冯显透,宁夏干旱区叶片早生结构的研究.林业科技通迅,1981,(11):13~17
    [9] 李正理.我国甘肃九种早生植物同化枝的解剖观察.植物学报,1981,(11):13-17;181~185
    [10] 王世绩等.杨树栽培生理研究.北京:北京农业大学出版社,1991
    [11] 刘奉觉等.杨树水分生理研究.北京:北京农业大学出版社,1992
    [12] 郭连生等.对几种针阔叶树中耐早生理指标的研究.林业科学,1989,25(5):389~394
    [13] 李吉跃,PV技术在油松侧柏苗木抗旱特性研究中的应用.北京林业大学学报,1989,11(1):3~11
    [14] 李禄军,蒋志荣,李正平,邵玲玲.3树种抗旱性的综合评价及其抗旱指标的选取.水土保持研究,2006,13(6):253~254
    [15] 陈少瑜,郎南军,李吉跃,贾利强,吴丽圆,米方佃.干旱胁迫下3树种苗木叶片相对含水量、质膜相对透性和脯氨酸含量的变化.西部林业科学,2004,9(23):30~41
    [16] 杨敏生,裴保华,朱之悌.白杨双交杂种无性系抗旱性鉴定指标分析.林业科学,2002,11(38):36~42
    [17] 冯玉龙,巨关升,朱春全,杨树无性系幼苗光合作用和PV水分胁迫的影响,林业科学2003,5(39)30~36
    [18] 周海燕.甘肃省金昌市引种植物抗旱性的比较研究.中国沙漠,2000,12(20):464~466
    [19] 孙志虎,王庆成.应用PV技术对北方4种阔叶树抗旱性的研究.林业科学,2003,39(2):34~38
    [20] Quarrie S. A. QTL analysis to test traits regulating responses [J]. In: Integrated study of Drought Tolerance on Higher Plants, 1994, Italy, 22
    [21] 袁力行,傅骏骅.RFLP和SSR标记划分玉米自交系杂种优势群研究.作物学报,2001,27(2):149~156.
    [22] Xu w, Crasta O, Rosenow D, et al. Major QTLs for post-flowering drought resistance in grain sorghum. In: Abstract of Plant Genome Ⅱ. 1995, San Diego, USA.22
    [23] Lebreton C, Lazic J V, Steed A, et al. Identification of QTL for drought responses in maize and their use in testing causal relationship between traits. J Exp. Bot, 1995, 46: 853~865
    [24] 全国干旱、半干旱地区生物学、地学青年学术讨论会对干旱、半干旱地区自然资源和生态环境合理利用与保护的建议.干旱区研究,1998(1)
    [25] Larcher W.著,李博等译.植物生理生态学.北京:科学出版社,1982
    [26] Kramer, P. T. Water relations of plants. New York and London: Academic Press, 1983
    [27] Levitt, J. Response of Plant to Environmental Stresses. Academic Press, New York and London, 1980, Vol.2
    [28] Turner NC. Adaptation to water deficit: A changing perspective.Australian J.Plant Physiology 1983, 13: 175~190
    [29] Kramer, P. T. & Kozlowski T. T.著,汪振儒等译.木本植物生理学.北京:中国林业出版社,1985
    [30] 武维华.2003.植物生理学.北京:科学出版社
    [31] 张建国,李吉跃.京西山区人工林水分参数的研究(Ⅲ).北京林业大学学报,1994,16(4):46~54
    [31] Levitt, J. Response of Plant to Environmental Stresses. Academic Press, New York, 1972
    [33] Bassman J, Zwier J C. Gas exchange characteristics of Populu stri2 chocarpa xP. diltoids clone. Tree Physiol, 1991, 8: 145~159
    [34] Rhizopoulou Set al. Influence of soil drying on root development, water relations and leaf growth of Ceratonia siliqua L. Oecolgia. 1991, 88(1): 41~47
    [35] 杨敏生,裴保华,赵敏英.优良白杨新品种BLI93对水分胁迫的反应,河北林学院学报,1995,10(3):194~198
    [36] Wang D. et al. Growth and water relations of seedings of two subspecies Eucalyptus globules[J]. Tree Physiol., 1988, 4: 129~138
    [37] 李禄军,蒋志荣,李正平,邵玲玲.3树种抗旱性的综合评价及其抗旱指标的选取.水士保持研 究,2006,13(6):253~254
    [38] Turner N C, O, Toole J C, Cruz R T, et al.Response of seven diverse rice cultivars to water deficits: I.Sreess development canopytemperature, leafrolling and growth Field Crops Res, 1986, 13: 257~271
    [39] 何海燕,许国辉,马国强,安锋.青海东部主要造林树种的水分生理研究.西北林学院学报2003,18(2):9~12
    [40] Hsiao TC, O'Toole JC, Yambao FB. and Tumer NC. 1984. influence of osmotic adjustment on leaf rolling and tissue death in rice. Plant Physiol, 75(2): 338~341
    [41] Boyer JS. Bowen BL. 1970. Inhibition of oxygen evolution in chloroplast isolated from leaves with low water potentials. Plant Physiol, 45: 612~615
    [42] Acevedo D, Hsiao TC, Henderson DW. 1971. Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol, 48: 631~636
    [43] 刘建伟,水分胁迫下不同杨树无性系苗期的光合作用.林业科学研究,1993,6(1):65~69
    [44] Hsiao T C. Plant responses to water stress. Ann. Rev. Plantphysiol. 1973, 24: 519~570
    [45] Lotter J de V, Beukes D. J, Weber H.W. Growth and quality of apples as affected by different irrigation treatments.Hort.Sci. 1985, 60: 181~192
    [46] 李绍华.果树生长发育、产量和果实品质水分胁迫反应的敏感期及节水灌溉.植物生理学通讯.1993,29(1):10~16
    [46] E.S.马丁等著,张崇浩译,气孔.北京:科学出版社,1987
    [48] Schulze E D et al. Stomatal responses to changes in humidity in plants growing in the desert. Plant(berl.), 1972; 108: 259~270
    [49] Jones, H.G, Physiological mechanisms involved in the control of leaf water status: lmplic-ations for the estimation of tree water status.Acta.Horr. 1985.171: 291~296
    [50] Sanchez-Blanco M J et al. Water relations of two almond cultivars under anomalous rainfall in nonirrigated culture. J. Hort. Sci, 1991: 66(4): 403~408
    [51] Flower, DJ., Usha Rani, A. and Peacock, J.M., Influence of osmotic adjustment on the growth, stomata conductance and light interception of contrasting sorghun lines in a harsh environment. Aust. J. Plant Physiol., 1990, 17(1): 91~97
    [52] 滕元文,周湘红.果树气孔反应及其对叶水势的调控.干旱地区农业研究.1993.11(4):60
    [53] 苏佩.作物对低水环境的适应及抗旱性.中国科学院1995届攻读博士学位研究生毕业论文
    [54] Upadhyaya SK. Role of stomata oscillations on transpiration, assimilation and water use efficiency of plants. Ecological Modeling, 1988, 41(1): 27~40
    [55] 王根轩,赵松岭.在大气干旱条件下胀果甘草气孔振荡的RLC电路模拟.应用生态学报,1993,4(2):131~135
    [56] Karmanov VG, Savin NN. On the auto-oscillatory nature of water metabolism in bean plants. Doc Bot Sci, 1964, 154~169
    [57] Cowan I R. Oscillations in stomatal conductance and plant functioning associated with stomatal conductance: observances and a model. Planta, 1972, 106: 185~219
    [58] Cowan IR. Stomatal behavior and environment. Adv Bot Res, 1977, 4: 117~228
    [59] Upadhyaya SK, Rand RH, Cooke JR. A mathematical model of the effects of CO_2 on stomatal dynamics. J. TheorBiol, 1983, 101: 415~440
    [60] 王根轩.作物干早生理生态方法与进展.兰州:兰州大学出版社,1997.182~203
    [61] 王根轩,廖建雄,吴冬秀.荒漠条件下甘草气孔振荡的水被动证据.植物学报,2001,43(1):41~45
    [61] Jarvis A, Young P, Taylor C, Davies W An analysis of the dynamic response of stomatal conductance to a reduction in humidity over leaves of Cedrella odorata.Plant Cell and environment. 1999, 22, 913~924
    [63] Kaiser H, Kappen L. In situ observation of stomatal movements and gas exchange of Aegopodium podagraria L.in the understorey.Journal of Experimental Botany.2000, 51, 1741~1749
    [64] Kaiser H, Kappen L. In situ observations of stomatal movements in different light-dark regimes: the influence of endogenous rhythmicity and long-term adjustments. Journal of Experimental Botany. 1997, 48, 1583~1589
    [65] Kaiser H, Kappen L. Stomatal oscillations at small apertures: indications for a fundamental insufficiency of stomatal feedback-comtrol inherent in the stomatal turgou mechanism. Experimental botany, 2001, 52(359): 1303~1313
    [66] 李吉跃.植物耐旱性及其机理.北京林业大学学报,1991,13(3):92~100
    [67] 刘建伟,水分胁迫下不同杨树无性系苗期的光合作用.林业科学研究,1993,6(1):65~69
    [68] 刘建伟,刘雅荣,王世绩.不同杨树无性系光合作用与其抗早能力的初步研究.林业科学,1994,30(1):83~87
    [69] Neumann P M, 1995. Crop Science, 35: 1258~1266
    [70] 陈志辉等.水分胁迫对果树光合特性的影响.干旱地区农业研究.1999,17(1)89~95
    [71] 王茅雁等.水分胁迫对玉米保护酶系活力及膜系统结构的影响,华北农学报,1995,15(3):207~211
    [72] 卢从明等.水分胁迫抑制水稻光合作用的机理.作物学报,1994,20(5):601~606
    [73] 许大全,沈允钢.光合作用的限制因素.余叔文主编:植物生理与分子生物学.北京:科学出版社,1998年1月第2版
    [74] Boyer JS. Bowen BL.. Inhibition of oxygen evolution in chloroplast isolated from leaves with low water potentials. Plant PhysioI, 1970 (45): 612~615
    [75] Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol., 1982, 33: 317~345
    [76] Kaiser H, Kappen L. Stomatal oscillations at small apertures: indications for a fundamental insufficiency of stomatal feedback-comtrol inherent in the stomatal turgou mechanism.Experimental botany, 2001, 52(359): 1303~1313
    [77] 李德全,李岩,束怀瑞.果树对水分逆境的反应和适应性.作物栽培生理研究,1998,77~81
    [78] 邹琦,许长成,高辉远.作物光合作用午休过程中的气孔与非气孔限制.植物生理学通讯,2000
    [79] Comic G. 1994. Drought stress and high light effects on leaf photosynthesis. In photoinh-ibitior of photosynthesis. (Baker NR. and Bowyer JR. Eds). Bios Scientific Publishers Ltd: Oxford, 297~313
    [80] Van Der Veen R. Induction phenomena in photosynthesis Ⅱ. Physiol Plant, 1992, 2: 287~296
    [81] Aro EM et al. Photo inhibition of photo system Ⅱ, Inactivation, protein damage and turnover. Biochem Biophys Acta, 113~134
    [82] Canaani C et al. Hydroxylamine, hydrazine and methylamine donate electrons to the photooxidising side of PS Ⅱ in leaves inhibited in oxygen evolution due to water stress. Biochimica et Biophysica Acta, 851: 151~155
    [83] 卢从明等.干早、高温和光抑制对光系统Ⅱ光化学的影响.全国植物光合作用、光生物学及其相关的分子生物学学术研讨会论文汇编(广西桂林),2001,11
    [84] 黄辉等.发菜在干湿交替过程中荧光动力学及低温荧光参数的变化及其意义,全国植物光合作用、光生物学及其相关的分子生物学学术研讨会论文汇编(广西桂林),2001,11
    [85] 温晓刚等.毛白杨耐旱性的荧光检测的研究.全国植物光合作用、光生物学及其相关的分子生物学学术研讨会论文汇编(广西桂林),2001.11
    [86] 武宝玕等.临界含水百分数(CWP):一个用叶绿素荧光方法测到的作物光合器耐干性指标.全国植物光合作用、光生物学及其相关的分子生物学学术研讨会论文汇编(广西桂林),2001,11
    [87] Farquhar GD, Sharkey TD. Stomatal conductance and Photosynthesis. Ann. Rev. Plant Physiol. 1982, 33: 317-345
    [88] Wise RR, Sparrow DH, Ortiz-Lopez. A, OR. 1991. Biochemical regulation during the mid—day decline of photosynthesis in field-grown sunflower. Plant Science, 74: 45~52
    [89] Tezara W, Lawlor DW. 1995. Effects of water stress on the biochemistry and physiology of photosynthesis in sunflowes. In: Mathis P, eds. Photosynthesis: From light to biosphere. Vol.Ⅳ The hague: Kluwe Academic Publishers, p: 625~628
    [90] Pankovic. D, Sakac Z, Kevresan S and Plesnicar M. 1999. Acclimation to long-term water deficit in the leaves of two sunflower hybrids: photosynthesis, electron transport and carbon metabolism. J. Exp. Bot. 50: 687~693
    [91] 孟庆伟等.银杏叶片的光抑制和光保护机制.温度、CO_2和O_2的影响.植物学报,1999,41:399~404
    [92] 邹琦,许长成,高辉远.作物光合作用午休过程中的气孔与非气孔限制.植物生理学通讯,2000
    [93] 陈志辉,张良诚.温州蜜柑(Citrus unshiu Marc.)叶片光合效率的日变化.植物生理学报,1994.20:263~271
    [94] Groan T and Boyer, JS. Very high CO_2 partially restores photosynthesis in sunflower at low water potential. Rlanta, 1990, 181: 378~384
    [95] 郭连旺,许大全,沈允钢.棉花叶片光合作用的光抑制与光呼吸的关系.科学通报,1995,40:1885
    [96] Dickman D. I. et al. Photosynthesis, water relation and growth of two hybrid Populus genotypes during a severe drought [J]. Can J For Res., 1992, 22(8): 1094~110
    [97] Smit J et al. Root growth and water use efficiency of Douglar-fir and Lodge pole seedlings. Tree Physiol, 1992, 11(4): 401~410
    [98] 杨敏生,裴保华,赵敏英.优良白杨新品种BL193对水分胁迫的反应,河北林学院学报,1995,10(3):194~198
    [99] 张建国,李吉跃,沈国舫.树木耐旱特性及其机理研究.中国林业出版社,2000,55~65
    [100] 蒋明义等.水分亏缺诱导的氧化胁迫和植物的抗氧化作用植物生理学通讯,1996,32(1);51~57
    [101] 邹琦.作物在水分逆境下的光合作用.作物杂志,1994,(5):1~4
    [102] 姚允聪等.土壤干旱与果树叶片膜质及脂质过氧化的关系.林业科学,1993;29(6):485~491
    [103] 聂华堂等.水分胁迫下柑橘的生理生化变化与抗旱性的关系.中国农业科学,1991;24(4):14~18
    [104] 刘崇怀.水分胁迫对葡萄几个生化指标的影响.葡萄栽培与酿酒,1991;(3):12~17
    [105] 石岩等.土壤水分胁迫对小麦衰老过程中脱落酸和细胞分裂素含量的影响.植物生理学通讯,1998.34(1):32~34
    [106] 曲泽洲主编.果树栽培学总论.北京:农业出版社,1985:120~142
    [107] Ranney T G, Bassuk N L. Whitlow T H. Osmotic adjustment and solute const-iuents in leaves and roots of water-stressed cherry trees.J.Aver.Soc.Hort.Sci., 1991; 116: 684~688
    [108] Wang Z C, Stutte G W. The role of carbohydrates in active osmotic adjustment in apple under water stress.J.Aver.Soc.Hort.Sci., 1992; 117: 816~823
    [109] Jackson MB. Are plant hormones involved in the toot to shoot communication? Adv Bot Res, 1993, 19: 103~187
    [110] Kramer PJ. Changing concepts regarding plangt water relations. Plant Cell Environ, 1988, 11: 565~569
    [111] 李德全,邹琦,程炳离.土坡水分胁迫对小麦叶片的渗透调节与延伸生长的影响.植物学报,1992,34(2):121~125
    [112] Zimmermann. U. and Steudle E. Physioal aspects of water relations of plant cell. Adv Boil Res, 1978.76: 45~117
    [113] 裴保华等.二种灌木耐早性的研究,林业科学研究,1993,6(6):597~602
    [114] 汤章城.植物对水分胁迫的反应和适应性(2).植物生理学通讯,1983,(4):1~7
    [115] Kelliher F M et al. Stomatal resistance, transpiration and growth of drought-stressed eastern cottonwood. Kan. For. Res., 1980, 10: 447~451
    [116] 李吉跃.太行山区主要造林树种耐旱特性的研究(Ⅲ-Ⅳ),北京林业大学学报,1991,13(增2):230~279
    [117] 王洪春.作物抗逆性机理与抗逆性鉴定技术.北京:北京农业大学出版社,1989,1~20
    [118] Ranney T G et al. Response of five temperate deciduous tree species to water stress. Tree Physiol., 1990, 6(4): 439~448
    [119] Momen B et al. Tissue water relations of Quercus wislizeni seedlings; Drought resistance in a California evergreen. Acta Oecologica., 1992, 13(1): 127~136
    [120] Tan W ct al. Drought tolereance in faster and slower growing black spruced (Picea mariana) progenies. Ⅱ. Osmotic adjustment and changes of solube carbonhydrates and amino acids under osmotic stress. Physiol. Plant, 1992.85(4): 645~651
    [121] Tschaplinski T J et al. Water stress tolerance and late-senson organic solute accumulation in hybrid poplar. Can. J. Bot. 1989, 67: 1981~1988
    [122] Kelliber F M et al. Stomatal resistance and growth of drought stressed eastern cottonwood from a wet and dry site. Silvage genet. 1980, 29: 166~171
    [123] Jones MM, Osmond CB and Turner NC. Accumulation of solutes in leaves of sorghum and sunflower in response to water deficits. Aust. J. Plant Physiol.. 1980.7: 193~205
    [124] Ranney T G, Bassuk N L. Whitlow TH. Osmotic adjustment and solute constituents in leaves and roots. Amer. Soc.Hort.Sci., 1991, (116): 648~688
    [125] 陈立松,刘星辉.水分胁迫对荔枝叶片糖代谢的影响及其与抗旱性的关系.热带作物学报,1999,20(2):31~35
    [126] 李春香,王维,李德全等.长期水分胁迫对小麦生育中后期根叶渗透调节能力、渗透调节物质的影响.西北植物学报,2001,21(5):924~930
    [127] Fry SC. Loosening the ties: A new enzyme, which cuts and then reforms glycosidic bounds in the cell wall, may hold the key to plant cell growth. Crar Biol, 1993, 3: 355
    [128] 聂华堂等.水分胁迫下柑橘的生理生化变化抗旱性的关系.中国农业科学,1991;24(4):14~18
    [129] 王怡.三种抗旱植物叶片解剖结构的对比观察.四川林业科技,2003,24(1):64~67
    [130] 杨敏生,费保华,朱之悌.白杨双交杂种无性系抗旱性鉴定指标分析.林业科学,2002,38(6):36~40
    [131] Fisher R A, Maurer R. Drought resistance in spring wheat cultivars.I. Grain yield response. Aust j Agric Res, 1978; 27: 897~912
    [132] 兰巨生.作物抗旱指数的概念和统计方法.华北农学报,1990;5(2):20~25
    [133] Bouslama M et al. Stress. Tolerance in soybeans.I. Evaluation of three screening techniques for heat and drought stress. Field Cnops Res, 1984; 24: 933~937
    [134] Sankarapandian R., Krishnadoss D., Muppidathi N., Chidambaram S.Variability studies in grain sorghum for certain physiological characters under water stress condition. Crop Improvement, 1993, 20(1): 45~50
    [135] 李吉跃,太行山区主要造林树种耐旱特性的研究(Ⅱ)—一般水分生理生态特征.北京林业大学学报,1991;13增刊:11~19
    [136] 李吉跃 太行山区主要造林树种耐旱特性的研究(Ⅲ)—水分参数.北京林业大学学报,1991;13增刊:230~239
    [137] 李吉跃 太行山区主要造林树种耐旱特性的研究(Ⅴ)—耐旱生产力.北京林业大学学报,1991;13增刊:252~260
    [138] 张建国,李吉跃,沈国舫.树木耐旱特性及其机理研究.中国林业出版社,2000,55~65
    [139] 李吉跃.油松侧柏苗木抗旱特性初探.北京林业大学学报,1988,6,10(2):23~30
    [140] Al Hakimi A., Monneceux P., Galiba G. Soluble sugars, proline, and relative water content (RWC) as traits for improving drought tolerance and divergent selection for RWC from T.polonicum to T. Durum. J. of Genetics& Breeding, 1995, 49(3): 237~243
    [141] 徐新宇 等.作物的抗旱能力和体内游离氨基酸含量的关系.国外农业科技.1983,9:19~23
    [142] Furuya A., Itch R., Ishii R. Mechanisms of different responses of leaf photosynthesis in African rice(Oryza glaberrima steuo)and rice (Oryza satlva L)to low leaf water potential., Japanese J. of Crop Science, 1994, 63(4): 625~631
    [143] 胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望.林业科学,1998(2):77~89
    [144] Yang Minsheng. Studies on the Growth of Double Cress Clone of P.tomentosa under the conditions of water stress. 20th session of the international poplar commission, 1996
    [145] Levit, J.Response of Plants to Evirotmtental Stress. Vol11. Academic Press, 1980: 1~211
    [146] Kaloyerreas S A. Plant Physiol, 1958; 33: 232~237
    [147] 夏新莉.林木抗旱性定量评价及抗旱和抗盐性生量基础研究.北京林业大学,博士学位论文.1999
    [148] Tubaileh A S, Sammis T W, Lugg D G. Utilization of thermal infrared thermometry for detection of water stress in spring barley. Agric Water Manage, 1986, 12: 75~85
    [149] Turner N C, O, Toole J C, Cruz R T, et al.Response of seven diverse rice cultivars to water deficits: I.Sreess development canopytemperature, leafrolling and growth. Field Crops Res, 1986, 13: 257~271
    [150] Chauhan J S, Moya T B, Singh R K, Singh C V. Influence of soilmoisture stress during reproductive stage on physiological parameters and grain yield in upland rice. Ozyza, 1999, 36(2): 130~135
    [151] Ribart J M, Jiang C, Gonzalez-de-Leon D, et al. 1997. Identification of quantitative trait loci under drought conditions in tropical maize.2.Yield components and marker-assisted selections trategies.Theor.Appl.Genet. 1991, 94: 887~896.
    [152] Teulat B, Monneveux P.Wery J, et al.Relations hips between relative water content and growth parameters under water stress in barley: a QTL sterdy[J].New Phytol. 1997, 137: 99~107.
    [153] Mian M A R, Bailey M A, Ashley D A, et al. Molecular markers associated with water use efficiency and leaf ash in soybean. Crop Sci. 1996, 36: 1252~1257.
    [154] Mian M A R, Ashley D A, Boerma H R.An additional QTL for water use efficiency in soybean. Crop Sci. 1998, 38: 390~393.
    [155] Cregg.B.M., Olivas-Garcia, J.M. and Hennessey, T.C.2000.Provenance variation in carbon isotope discrimination of mature ponderosa pine trees at two locations in the Great plains.Can.J.For.Res.30: 428~439
    [156] Cregg, B.M.and Zhang, J.W.2001.Physiology and morphology of Pinus sylvestris seed sources from diverse sources under cyclic drought stress.For.Ecol.and Mgmt. 154: 131~139
    [157] Glynn C.Percival, Colin N.Sheriffs.Identification of drought-tolerant woody perennials using chlorophyll fluorescence.Journal of Arboriculture 28(5), 2002.9: 215~221
    [158] P.Pita, F.Soria, I.Canas, G.Toval, J.A.Pardos.Carbon isotope discrimination and its relationship to drought resistance under field conditions in genotypes of Eucalyptus globules Labill.Forest Ecology and Management 141(2001)211~221
    [159] 苏培玺,陈怀顺,李启森.河西走廊中部沙漠植物C~(13)的特点及其对水分利用率的指示.冰川冻土,2003,10:597~602
    [160] 喻方圆,徐锡增等.水分和热胁迫处理对4种针叶树苗气体交换和水分利用率的影响.林业科学,2004,3:38~44
    [161] 赵良菊,刘晓宏,肖洪良等.土壤养分对作物茎叶稳定碳同位素组成和生物产量的影响.地球学报,2003,12(24):519~524
    [162] Grzesiak S, Grzesiak M T, Filek W, et al. Evaluation of physiological screening tests for breeding drought resistant triticale (x Triticosecale Wittmack). Acta Physiologiae Plantarum. 2003, 25(1): 29~37
    [163] Kim Y J, Shanmugasundaram S, Yun S J, et al. A simple method of seedling screening for drought tolerance in soybean. Korean Journal of Crop Science, 2001, 46(4): 284~288
    [164] Tyree M T, Engelbrecht B M J, Vargas G, et al. Desiccation tolerance of five tropical seedlings in Panama. Relationship to a field assessment of drought performance. Plant Physiology, 2003. 132: 1439~144
    [165] 孙志虎,王庆成.应用PV技术对北方4种阔叶树抗旱性的研究.林业科学,2003,39(2):34~38
    [166] 李崇巍,贾志宽,林岭,徐春明,刘玉华.几个苜蓿新品种抗旱性的初步研究.干旱地区农业研究,2002,20,(4):21~25
    [167] 赖声渭,曹兵.浅谈林木抗旱性评价方法.防护林科技,2002,3:48~49
    [168] 董学军.九种沙生灌木水分关系参数的试验测定及生态意义.植物学报,1998,40(7):657~664
    [169] 杨敏生,裴保华,朱之梯.水分胁迫下白杨无性系生理和生长的数量遗传分析.北京林业大学学报,1997,19(2):50~56
    [170] 王庆石.统计指标间信息重叠的消减办法.统计研究,1994,1:57~61
    [171] 李吉跃.太行山区主要造林树种耐旱特性的研究(Ⅴ)—耐旱生产力.北京林业大学学报,1991,13(增刊2):251~265
    [172] Levitt J.Response of plants to environmental stress(2ed.).Acadmic Press.New York. 1980
    [173] Turner NC.Adaptation to water deficit: A changing perspective.Australian J.Plant Physiology 1983, 13: 175~190
    [174] 刘奉觉,郑世锴.树木蒸腾耗水测算技术的比较研究[].林业科学,1997,33(2):115~125.
    [175] 西北农业大学。基础生物化学试验指导。西安:山西科学技术出版社,1986
    [174] 贾利强,李吉跃,郎南军,陈少瑜,吴丽媛.水分胁迫对黄连木、清香木幼苗的影响.北京林业大学学报,2003,5(25):55~59
    [177] Zhang S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance, Chinese Bulletin of Botany, 1999, 16: 444~448
    [178] 李吉跃.太行山区主要造林树种耐旱特性的研究(Ⅵ)——定量化研究模式及耐旱性综合评价.1991,13(增刊2):266~280
    [179] 张建国,李吉跃,姜金璞.京西山区人工林水分参数的研究(Ⅲ).北京林业大学学报,1994,10(16):46~54
    [180] 蒋高明.当前植物生理生态学研究的几个热点问题.植物生态学报,2001,25(5):514~519
    [181] 周峰力,宋西德等.臭柏抗旱生理特性研究.西北林学院学报,2005(25):1~4
    [182] 李春艳,王林和,慈忠玲,臭柏愈伤组织的诱导.内蒙古农业大学学报,2000,6(21):58~62
    [183] 马润宝.叉子圆柏扦插育苗.林业适用技术,2003,7:28
    [184] 郭连生,田有亮.运用PV技术对华北常见造林树种耐旱性评价的研究.内蒙古林学院学报,1998,20(3):1~8
    [185] 张建国,李吉跃.京西山区人工林水分参数的研究.北京林业大学学报,1994,16(1):1~12
    [186] Glynn C.Percival, Colin N.Sheriffs.Identification of drought-tolerant woody perennials using chlorophyll fluorescence. Journal ofArboriculture 28(5), 2002.9: 215~221
    [187] Chauhan J S, Moya T B, Singh R K, Singh C V.Influence of soilmoisture stress during reproductive stage on physiological parameters and grain yield in upland rice.Ozyza, 1999, 36(2): 130~135
    [188] Glynn C.Percival, Colin N.Sheriffs.Identification of drought-tolerant woody perennials using chlorophyll fluorescence. Journal of Arboriculture 28(5), 2002.9: 215~221
    [189] B.M. Cregg. Improving Drought Tolerance of Trees: Theoretical and Practical Considerations. Acta Horticulturae.2004(630): 147~158
    [190] 杨敏生,费保华,朱之悌。白杨双交杂种无性系抗旱性鉴定指标分析。林业科学,2002,38(6):36~42
    [191] Lin, K.H., T.L.Zhu, C.G.Tauer and B.C.Martin.1998. Identification of quantitative trait local associated with water-use efficiency in tomato. Plant and Animal Gennome Conference Ⅵ. Janusry 18-22.San Diego, CA
    [192] 刘先勇等.SPSS10.0统计分析软件与应用.北京:国防工业出版社2002,1
    [193] 张继澍.植物生理学.西安:世界图书出版公司.1999.1
    [194] 张建国,李吉跃.北方主要造林树种耐早机理及其分类模型的研究——叶保水力及维持膨压.河北林学院学报,1995,10(3):187~192
    [195] 李吉跃.油松侧柏苗木抗旱特性初探.北京林业大学学报,1988,10(2):23~30
    [196] 何维明,马风云,水分梯度对沙地柏幼苗荧光特性和气体交换的影响.植物生态学报,2000(24):630~634
    [197] 傅瑞树.苏铁抗寒生理特性研究,中国生态农业学报,2003,11(1):120~122
    [198] 王世绩等,十种杨树苗木水分关系得研究,林业科学,1982,18(1):6~13。
    [199] 李吉跃.油松侧柏苗木抗旱特性初探.北京林业大学学报,1988,6,10(2):23~30
    [200] 张小全,徐德应.杉木中龄林不同部位和叶龄针叶光合特性的日变化和季节变化.林业科学,2000,36(3):19~26
    [201] 赵广东,王兵,李少宁等.亚热带常绿阔叶林优势种丝栗栲和苦槠栲不同叶龄叶片光合特性研究.江西农业大学学报,2005,27(2):161~165
    [202] 孟平,张劲松,高峻.山茱萸幼树光合及水分生理生态特性.林业科学研究,2005,18(1):47~51
    [203] 张建国,李吉跃,沈国舫.树木耐旱特性及其机理研究.中国林业出版社,2000
    [204] 张志涌等编著.精通MATLAB5.3.北京航空航天大学出版社,2000,8
    [205] 张恒敢,杨四军,顾克军,李德民.应用数字图像处理测定作物叶面积的简便方法.江苏农业科学,2002(3):20~25
    [206] 朱教君,康宏樟等.水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响.生态学报,2005(10):2527~2533
    [207] Guan Y X, Dai J Y, Lin Y. The photosynthetic stomatal and nonstomatal limitation of plant leaves under water stress. Plant Physiolog .Communications,1995, 31: 293~297
    [208] 温国胜,张明如,张国盛等.干旱胁迫下臭柏的生理生态对策.生态学报,2006(26),12:4059~4065
    [209] Li C Y and Wang K Y. Differences in drought responses of three contrasting Eucalyptus microtheca E Muell. Populations. Forest EcologyandManagement, 2003, 179: 377~385
    [210] Cregg B Mand Zhang J W. Physiology and morphology of Pinus sylvestris from diverse sources under cyclic drought stress. Forest Ecology and Management, 2001, 154: 131~139
    [211] 朱教君,康宏樟等.水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响.生态学报,2005(10):2527~2533
    [212] 牛岛忠宏,古川昭雄等.植物的生产过程测定方法.生物学研究法讲座7.共立出版株式会社,1981
    [213] 何开跃,谢寅峰,李鹏飞等.矮牵牛花期一些生理指际的变化.植物资源与环境学报,2002,(4):29-321
    [214] 李淑英,周研第,兰彦平,几种常绿阔叶树在北方地区抗旱适应性评价.北京农学院学报,2005(20),4:12~16
    [215] 赵春云.锦鸡儿等旱生树种抗旱生理研究.干旱区研究,1996,13(1):59~63
    [216] 张建国,李吉跃,姜金璞京西山区人工林水分参数的研究(Ⅰ).北京林业大学学报,1994,1(16):1-12
    [217] 张建国,吉跃,金璞.西山区人工林水分参数的研究(Ⅱ).京林业大学学报,994.(16):1-9
    [218] 何开跃,李晓储,黄利斌,张永兵,胡晓健.干旱胁迫对木兰科5树种生理生化指标的影响.植物资源与环境学报,2004,3(4):20-23
    [219] 郭连生,田有亮.4种针叶幼树光合速率、蒸腾速率与土壤含水量的关系及其抗旱性研究.应用生态学报,1994,1(5):32-36
    [220] 张文辉,段宝利,周建云,刘国彬.不同种源栓皮栎幼苗水分适应及耐旱特性比较研究.西北植物学报,2003,23(5):728—734
    [221] 王孟本,李洪建,柴宝峰.晋西北3个树种抗旱性指数的研究.植物研究,1996,4(2)第16卷:195-200
    [222] 杨敏生,裴保华,于冬梅.水分胁迫对毛白杨杂种无性系苗木维持膨压和渗透调节能力的影响.生态学报,1997,7(17):364-370
    [223] 李彦慧,厨怀军,杨敏生等廊坊杨苗期的抗旱性研究.西北林学院学报,2004,19(1):27-31
    [224] 崔秀萍,刘果厚,瑞麟.善达克沙地不同生境下黄柳叶片解剖结构的比较.态学报,2006,26(6):1842-1847
    [225] 杨吉安,福元,玉华,会玲.北旱塬主栽杏树品种耐旱性研究.北林业院学报,995,0(增):125~130
    [226] 何纪星,守谦,小丽.斯特森林树种的PV曲线研究.贵州农学院学报,1995,(14):23~30
    [227] 谢寅峰,沈惠娟,罗爱珍.水分胁迫下南方四种针叶树幼苗水分参数的测定.南京林业大学 报,1999,1(23):41-44
    [228] 柴宝峰,王孟本,李洪建.三树种P—V曲线水分参数的比较研究.水土保持通报,1996,8(16)35-40
    [229] 王孟本,李洪建,柴宝峰,武冬梅.黄土区树种抗旱性指数的研究.植物研究,1999,7(19):341-346
    [230] 王淼,陶大立.长白山主要树种耐早性的研究.应用生态报,1998,9(1):7-10
    [231] 谢寅峰,沈惠娟,罗爱珍,祝晓东.南方7个造林树种幼苗抗旱生理指标的比较.南京林业大学学报.1999,7(23):13-16
    [232] 朱万泽,建辉,金锡,湾桤木种源对水分胁迫的光合响应及其抗旱性.土保持学报,2004,8(4):170-173
    [233] 艾尼莫明.几种植物细胞的差别透性及其与抗旱性的关系.干旱区研究,1994,3(11):57-60
    [234] 雷泽勇,张学丽,周凤艳.沙地樟子松抗旱性的研究.林业科技通讯,1996,1:6-8
    [235] 张振师,智得,宏安,慧昌.安地区3种灌木叶早生结构的解剖研究.北林学院学报,004,9(1):32-35
    [236] 安守芹,于卓.四种固沙灌木苗期抗热抗旱性的研究.干旱区自然与环境,1995,3(9):72-77
    [237] 刘晓燕,李吉跃,翟洪波,朱国彬.从水力结构特征探讨植物耐旱性.北京林业大学学报,2003,5(25):48-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700