大麦生长发育及品质形成的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生长发育与环境因素关系研究的基础上,系统地构建了大麦顶端发育阶段和物候期的预测模型、节间生长和穗部伸长动态模型、光合生产、干物质积累与分配及产量形成的模型、大麦氮素吸收与转移的模型、啤酒大麦品质形成模拟模型。并在不同品种、播期、氮肥处理和种植地域间进行了检验。对大麦生育热效应Beta模型的特殊形式的模型特征和参数意义进行了系统分析,认为该模型满足关于温度效应函数符合温度对作物发育影响的三基点规律、较好反映发育速率对温度变化的响应特征、温度三基点在模型中应比较明确的三个规范性要求,具有较强的变化特征表达能力,可以近似表达二次函数、高斯函数、正弦函数等函数的变化。当k≤1、P<1或当k > 1时, P<1/k时,函数为凸变化,分析了Beta模型与积温法计算结果的关系,指出参数P取值范围。利用生理发育时间恒定的原理,建立了系统预测大麦顶端发育阶段和物候期的预测模型。引入温度敏感性、生理春化时间、光周期敏感性、基本早熟性和灌浆因子5个遗传参数,用生理发育时间来确定大麦一生的各个发育阶段,从而建立了衡量大麦发育阶段的统一标准,模型考虑了氮素效应的影响。检验结果表明,扬州地区2004~2006年各生育阶段的绝对预测误差一般小于6 d,RMSE为0.9~2.9 d。连云港地区2004~2006年各物候期的绝对预测误差均小于5 d,RMSE为1.0~2.8 d。模型表现出较好的机理性、解释性和预测性。
     通过对不同株型大麦的生长过程的连续观测和定量分析,在探明生理发育时间(PDT)与大麦穗和茎秆生长关系的基础上,运用Richards方程,以生理发育日为时间步长,构建了大麦穗增长、节间伸长和节间增粗的动态模型。模型以生理发育日衡量穗和茎秆的生长进程与生长次序,考虑了氮素、温度和光照等环境因素对大麦生长发育的影响,将机理性和经验性有机地结合起来。检验结果表明,不同品种、播期和氮肥处理大麦穗长模拟值与观测值的绝对预测误差为0.05~1.66 cm, RMSE为0.28~0.75 cm。节间长度模拟值与观测值的绝对预测误差为0.03~6.08cm, RMSE为0.23~4.43 cm。节间粗度观测值与模拟值的绝对预测误差为0.002~0.112 cm,RMSE为0.016~0.048 cm。
     在连续观测和定量分析的基础上,采用单株叶面积最大值作为品种遗传参数,用两段非线性方程构建了大麦叶面积指数随PDT变化的动态模型。模型将经验性和机理性有机结合,考虑了温度和氮素营养对叶片生长的影响,较好的解决了两段非线性方程的衔接问题;在借鉴小麦光合生产模型的基础上,构建了大麦光合生产模拟模型;以PDT为尺度,构建了大麦绿叶、茎鞘、穗和籽粒等器官的分配指数模型,在籽粒分配指数模型中,引入了籽粒分配指数最大值作为遗传参数,从而体现了不同品种籽粒的不同灌浆特性。不同品种、氮肥处理、播期以及不同种植地域间检验结果表明,叶面积指数模拟值与观测值的绝对预测误差为0.007~1.486,RMSE为0.109~0.718。植株地上部干物质积累模拟值与观测值的绝对预测误差为0.002~0.264 kg·m~(-2),RMSE为0.019~0.206 kg·m~(-2)。叶重模拟值与观测值的绝对预测误差为0.001~0.199 kg·m~(-2),RMSE为0.013~0.060 kg·m~(-2)。茎鞘重模拟值与观测值的绝对预测误差为0.001~0.689 kg·m~(-2),RMSE为0.006~0.227 kg·m~(-2)。穗重模拟值与观测值的绝对预测误差为0.001~0.056 kg·m~(-2),RMSE为0.004~0.018 kg·m~(-2)。籽粒重模拟值与观测值的绝对预测误差为0.000~0.178 kg·m~(-2),RMSE为0.007~0.090 kg·m~(-2)。
     对大麦氮积累过程做了如下假设。(1)抽穗开花前,大麦从土壤吸收的氮素按一定比例分配到各器官(叶、茎鞘和穗)中去。(2)抽穗后,大麦从土壤中吸收的氮素都被用来供籽粒蛋白质的形成。(3)从抽穗起,储存于叶、茎鞘、穗的氮素开始向籽粒转移。基于上述假设,在干物质积累与氮素积累关系研究的基础上,建立了大麦花前氮素积累的动态模型。模型简化了氮素开花前在大麦体内运转的复杂过程,从而避免了复杂的计算。引用了土壤氮素供应因子来反映氮素供应的满足程度,确立以土壤硝态氮和铵态氮浓度为氮素供应状态基础,在养分吸收的计算中,避免对与根系有关的计算。在所测试验数据的基础上,构建了氮素养分分配指数随生理发育时间的动态变化模型,模拟了开花前氮素在大麦各器官的分配状态。不同品种、播期、氮素处理和种植地域间检验结果表明,植株体氮素积累模拟值与观测值的绝对预测误差为0.030~3.300 g·m~(-2),RMSE为0.330~1.586 g·m-2。叶片氮素积累模拟值与观测值的绝对预测误差为0.015~1.839 g·m~(-2),RMSE为0.190~0.871 g·m~(-2)。茎鞘氮素积累模拟值与观测值的绝对预测误差为0.004~1.732g·m~(-2),RMSE为0.197~0.676 g·m~(-2)。穗氮素积累模拟值与观测值的绝对预测误差为0.007~0.782 g·m~(-2),RMSE为0.053~0.191 g·m~(-2)。表明模型具有较好的预测性和实用性。
     本研究假定在大麦籽粒灌浆过程中,籽粒氮素积累有趋于最大化的倾向,所需氮素由营养器官贮藏的氮和土壤供给,其中营养器官转移的氮包括绿叶、茎鞘和穗转移的氮。从土壤中吸收的氮,全部用来供应籽粒蛋白质的形成。氮素供应不足时,则从营养器官中获取较多的氮。在此基础上建立了大麦花后氮素吸收转移模型,其中,叶片氮的转移与叶面积指数呈指数关系。茎鞘和穗部的氮转移与其氮浓度的降低呈非线性函数关系,籽粒从土壤中吸收的氮量则随干物重呈指数增加。模型将经验性与机理性有机结合,综合反映了籽粒氮素积累、营养器官氮素输出以及与温度效应之间的关系。以生理发育时间为尺度,构建了大麦千粒重的预测模型。模型除了考虑温度、氮素对千粒重的影响外,还引入了光照因子。不同品种、氮肥水平、播期和种植地域检验结果表明,大麦籽粒氮积累模拟值与观测值的绝对预测误差为0.004~2.529 g·m~(-2),RMSE为0.664~1.343 g·m~(-2)。籽粒增重模拟值与观测值的绝对预测误差为0.01~6.00 g,RMSE为0.266~3.800 g。成熟期籽粒蛋白质含量模拟值与观测值的绝对预测误差为0.06%~3.23%,RMSE为0.51%~1.57%。千粒重模拟值与观测值的绝对预测误差为0.04~6.00 g,RMSE为3.08 ~3.80 g。
Based on the relationship between growth and environmental factors in barley, the models were constructed systematically to predict the apical and phenological development stages, the internode and spike growth, the photosynthetic production, the dry matter accumulation and partitioning, the yield components, the nitrogen absorption and translocation and grain quality. The validations were made in the different genotypes, sowing dates, N rates and regions.
     The characters of Beta function were analyzed. It is widely used to describe the nonlinear effects of temperature on crop phenological development. The Beta function has many advantages. It can reflect the general requirements of the effectiveness functions of temperature on crop phenological development and well describe the expressions of other types of functions such quadratic function, Gause function and sine function. If k<1 , P<1 or k > 1, P<1/k, the Beta function is certainly convex. The study also demonstrated the relationship between P values and the temperature sums and reasoned the range of parameter P. The models of apical and phenological development stages in barley were constructed by the scale of physiological development time, which was based on the ecophysiological development process. In the models, the Beta function was used to describe the response of barley development to temperature. The genetic parameters of the temperature sensitivity, physiological vernalization time, photoperiod sensitivity, intrinsic earliness, filling fraction were introduced. The validation showed that the absolute prediction errors for development stages were generally less than 6 d, and the root mean square errors (RMSEs) were 0.9 ~ 2.9 d in Yangzhou in 2004~2006 years. The absolute prediction errors for phenological development stages were less than 5 d, and the RMSEs were 1.0~2.8 d in Lianyungang in 2004~2006 years. The models reflected an enhancement in mechanism, explanation and prediction.
     Based on physiological development time, the spike and internode growth dynamics were simulated by Richards equation in order to construct systematically architectural models in barley. In the models, growth process and order of spike and internode were judged by physiological development time, with special consideration of the effects of nitrogen, temperature and light. The validating results showed that the absolute prediction error ranges of spike length were 0.05~1.66 cm and the RMSEs were 0.28~0.75 cm. The absolute prediction error ranges of internode length were 0.03~6.08 cm, and the RMSEs were 0.23~4.43 cm. The absolute prediction error ranges of internode thickness were 0.002~0.122 cm, and the RMSEs were 0.016~0.048 cm.
     Based on the experimental observation and quantitative analysis, the model of leaf area index (LAI) in barley was constructed by two nonlinear equations, with the maximal value of per plant leaf area as genetic parameter. The model represented the influence of nitrogen and temperature on leaf growth, and solved how two nonlinear equations joined. With reference to the relative models in wheat, the photosynthetic production models in barley were constructed. Taken the physiological development time as the developmental scale, the models of the partitioning indexes of dry matter for the green leaf, stem, spike and grain were constructed. In the model of dry matter partitioning index for grain, the maximal value of partitioning index was uses as the genetic parameter to reflect the grain-filling characteristics of different genotypes of barley. The validating results showed that the absolute prediction error ranges for LAI were 0.007~1.468, and the RMSEs were 0.109~0.718. The absolute prediction error ranges for dry matter weight were 0.002~0.264 kg·m~(-2), and the RMSEs were 0.019~0.206 kg·m~(-2).The absolute prediction error ranges of leaf weight were 0.001~0.199 kg·m~(-2), and the RMSEs were 0.013~0.060 kg·m~(-2). The absolute prediction error ranges for stem weight were 0.001~0.689 kg·m~(-2), and RMSEs were 0.006~0.227 kg·m~(-2). The absolute prediction error ranges for spike weight were 0.001~0.056 kg·m~(-2),and RMSEs were 0.004~0.018 kg·m~(-2). The absolute prediction error ranges for grain weight were 0.000~0.178 kg·m~(-2), and the RMSEs were 0.007~0.090 kg·m~(-2)。
     Some assumptions were made during the nitrogen accumulation process in barley as following. ( 1) Before anthesis, the nitrogen absorbed from soil was distributed to various organs according to certain proportions. (2) After anthesis, the absorbed nitrogen from the soils all was used for the grain protein formation. (3) After anthesis, the nitrogen stored in leaf, stem and spike starts to remobilize to the grain. Based on these assumptions, the dynamic models of nitrogen accumulation were constructed by relationship between dry matter accumulation and the nitrogen accumulation. In the model, the complex process of nitrogen remobilization after anthesis was simplified. The soil nitrogen factor was used to reflect the nitrogen supply levels in the soil and the contents of NO3--N and NH4+-N were regarded as the criterion of nitrogen supply conditions. In the computation about nutrient absorption, the computation related to the root system was avoided. Based on the experimental data, the dynamics of nitrogen partitioning indexes with the physiological development time was modeled. The validating results showed that the absolute prediction error ranges for nitrogen accumulation in barley were 0.030~3.300 g·m~(-2)and the RMSEs were 0.330~1.568 g·m~(-2).The absolute prediction error ranges for leaf nitrogen accumulation were 0.015~1.839 g·m~(-2) and the RMSEs were 0.190~0.871 g·m~(-2). The absolute prediction error ranges for stem nitrogen accumulation were 0.004~1.732 g·m~(-2), and the RMSEs were 0.197~0.676 g·m~(-2). The absolute prediction error ranges of spike nitrogen accumulation were 0.007~0.782 g·m~(-2) and the RMSEs were 0.053~0.191 g·m~(-2).
     This research assumpted that during the barley grain filling, the grain nitrogen accumulation had the maximized tendency and the nitrogen demand of grain was supplied from the vegetative organs and the soil. Nitrogen absorbed from the soil was used completely for the grain. When nitrogen supply was insufficient, the grain would gain more nitrogen from the vegetative organ. Based on these hypothesis, the nitrogen absorption and remobilization model after anthesis were constructed. In the model, the relationship between leaf nitrogen remobilization and the leaf area index were described with exponential functions. The nitrogen translocation from stem and spike showed nonlinear relations with the respective nitrogen contents in these two organs. The nitrogen accumulation in grain was closely related to grain dry matter weight and was expressed with exponential functions. Based on physiological development time,the model to predict 1000- grain weight was constructed and in the model the effects of the nitrogen supply,temperature and light were included. The test results showed that the absolute prediction error ranges of nitrogen accumulation in grain were 0.004~2.539 g·m~(-2),and the RMSEs were 0.664~1.343 g·m~(-2). The absolute prediction error ranges for grain weight were 0.01~6.00 g, and RMSEs were 0.27~3.80 g. The absolute prediction error ranges for grain protein contents were 0.06%~3.23%, and RMSEs were 0.51%~1.57%. The absolute prediction error ranges for 1000-grain weight were 0.04~6.00 g, and the RMSEs were 3.08~3.80 g.
引文
1. 曹卫星, 罗卫红. 作物系统模拟及智能管理. 北京: 华文出版社, 2000. 1~6
    2. 高亮之. 农业模型学基础. 香港: 天马图书有限公司, 2004
    3. France J, Thornley J H M 著, 金之庆,高亮之译. 农业中的数学模型. 北京: 农业出版社, 1991
    4. 石春林, 金之庆, 葛道阔. 植物可视化研究进展. 江苏农业科学, 2004, 6: 11~14
    5. 张卫星, 朱德峰, 赵致, 等. 虚拟现实技术与虚拟农业. 贵州农业科学, 2006, 34(2): 115~118
    6. 王亚莉, 贺立源. 作物生长模拟模型研究和应用综述. 华中农业大学学报, 2005, 24 (5):529~535
    7. 殷红. 作物生产系统模拟模型研究进展. 杂粮作物, 2000, 20(3): 30~30
    8. de Wit C T. Photosynthesis of leaf canopies. Wageningen: Agric Res Report, 1965
    9. Duncan W G, Loomis R S , William W A, et al. A model for simulating photosynthesis in plant communities. Hilgardia, 1965, 38: 181~205
    10. 杨京平, 王兆骞. 作物生长模拟模型及应用. 应用生态学报, 1999, 10(4): 501~505
    11. Mutsaers H J W , Wang Z . Are simulation models ready for agricultural research in developing countries? Agron J , 1999, 91: 1~4
    12. Sinclair T R and Seligman N G. Crop modeling: from infancy to maturity. Agro J, 1996, 88: 698~704
    13. De wit C T. Dynamic concepts in biology. In: Prediction management of photo synthetic productivity. Proceedings international biological program-plant production technical meeting. Wageningen, Netherlands: PUDOC, 1970. 17~23
    14. Thornley J H M. Respiration, growth and maintenance in plants. Nature, 1970, 227: 304~305
    15. Curry R B, Chen L H. dynamic simulation of plant growth ⅠⅡDevelopment of a model. ASAE Trans, 1971, 14(5): 846~859
    16. Curry R B, Chen L H. dynamic simulation of plant growth ⅡIncorporation of actual daily weather and partitioning of net photosynthate. ASAE Trans, 1971, 14: 1170~1175
    17. Stapleton H N, R P Meyers. Modelling subsystem for cotton the plant simulation. Transactions of the ASAE, 1971, 14(5): 950~953
    18. Ritchie J T. Models for predicting evaporation from a row crop with incomplete cover. Water Resources Res , 1972, 8: 1204~1212
    19. Arking F V, Vanderlip R L, Ritchie J T.Adynamic grain sorghum growth.Transactions of the American society of agricultural engineers, 1976, 19: 622~626, 630
    20. Goudriaan J. Crop micrometeorology: a simulation study. Pudoc Wageningen, 1976
    21. D A Charles-Edwards, Rose D A. Mathematics and plant physiology. Academic press, 1977
    22. de Wit C T, et al. Simulation of assimilation, respiration and transpiration of crops. Pudoc , Waggeningen : Simulation Monographs, 1978
    23. Childs S W,Gilley J R, Splinter W E. A Simplified model of corn growth under moisture stress.ASAE Trans, 1997, (20): 858~865
    24. 王向东, 张建平, 马海莲, 等. 作物模拟的研究概况及展望. 河北农业大学学报, 2003, 26(增刊): 20~23
    25. 严力蛟, 沈秀芬, 周煦朝, 等. 作物模拟模型研究概况与展望. 农业系统科学与综合研究, 1998, 14(2): 126~132,137
    26. Brouwer R, Witct. A simulation model of plant growth with special attention to root growth and its consequences. WHITTING TONNWJ(Eds) Root Growth. Proceedings of the 15th easter school in Agri Science. London: University of Nottingham,Butter words.1969,12:24~244.
    27. Richie J T. A user oriented model of the soil water balance in wheat. In: Fry E and T K Atkins. Wheat growth and modeling. Plenum publishing corporation. NATO-AST Series, 1985, 293~305
    28. Richie J T and S Otter. Description and performance of CERES-Wheat:A user-oriented wheat yield model. In: ARS wheat project. ARS-38. Natl Tech Info Serv Spring field VA, 1985, 159~175
    29. Singh U, Richie J T and Godwin D C. User’s guide for rice crop growth simulation model. University of Hawaii, Honolulu, 1993
    30. Godwin D C. P L G Vlek. Simulation of nitrogen dynamics in wheat cropping system. In: Wheat growth and modeling.New York: Ser A.Plenum press, 1985
    31. Jones C A, J R Kiniry. CERES-Maize.A simulation model of maize growth and development. Texas A&M University press, 1986
    32. Richie J T, E C Alocilija, U Singh. IBSNAT and the CERES-Wheat model. In: Wheat and rice, IRRI, Los BANOS, Philippines, 1987, 271~281
    33. Van Kenlen H.Cropproduction under semi-arid conditions, as determined by nitrogen and moisture availability.Simulation Monographs,Wageningen:Pudoc, 1982. 234~251
    34. Baker D N, et al. GSSYM: a simulator of cotton crop growth and yield. South Carolinna Agric Sta Tech Bull (1089), 1983
    35. Lemmon H, Comax. Anexpert system for cotton cropmanagement. Science, 1986, 222: 28~33
    36. Mckinion J M. Application of GOSSYM/COMAX system to cotton crop management. Agricultural System, 1989, 31: 55~65
    37. Wilkerson G G, Jones J M, Boote K J,et al. Modeling soybean growth for crop managemant. Trans ASAE, 1983, 26: 63~67
    38. 戚昌翰, 殷新佑. 作物生长模拟的研究进展. 作物杂志, 1994, (4): 1~2
    39. Rappoldt C. crop growth simulation model documental version 3.0. Centre for world food studies. Wagebingen, 1986. 204
    40. Keulen H. Bioeconomic capability of west-african dryland, CABO-DLO research report, 1991. 102
    41. Hijmans R J,Guiking-lens I M,Van Diepen C A.WOFOST user guide for the WOFOST6.0 crop growth simulation model. Wageningen:Tenchnical document,D L O Win and Staring Centre, 1994. 145
    42. Place R E, Brown C M. Modeling corn yield from siol moisture estimates:description, sensitivity analysis and validation. Agricultural and forest meteorology, 1987, 41: 31~56
    43. F W T Penning de vires. Simulation of ecophysiological processes of growth in several annual crops. Pudoc, 1989
    44. Steward D W, Dwyer I M. Model of spring wheat for large area yield estimations on the Canadian Prairies. Can J Plant Sci, 1990, 70: 19~32
    45. 廖桂平, 关春云, 黄璜. 作物生长模型研究概述. 作物研究, 1998, (3): 45~48
    46. Drenth H, ten Berge H F M , Riethoven J J M (Editor). ORYZA simulation models for potential and nitrogen limited rice. SARP Research Proceedings, 1994
    47. Aggarwal P K, Kalra N. Analyzing the limitations set by climate factors, genotype, water and nitrogen availability on productivity of wheat Ⅰ. The model description , parameterization and validation. Field Crops Res, 1994, 38: 73~91
    48. Aggarwal P K, Kalra N, Singh A K, et al. Analyzing limitations set by climate factors, genotype, water and nitrogen availability on productivity of wheat ⅡClimatically potential yields and management strategies. Field Crops Res , 1994, 38: 73~91
    49. Selvarajan S, Aggarwal P K, Pandey S, et al. Systems approach for analyzing tradeoffs of income, risk and water use in rice-wheat production in northern India. Field Crops Res, 1997, 51: 147~161
    50. Kiniry J R, D P Kinevel. Response of maize seed number to solar radiation intercepted soon after anthesis. Agron J, 1995, 87: 228~234
    51. Kiniry J R, Bockhoit A J, Maize and sorghum simulation in diverse Texas environments, Agron J, 1998, 90: 682~687
    52. 高亮之, Hannaway. 苜蓿生产的农业气象计算机模拟模式-ALFAMOD. 江苏农业学报1985, 1(2): 25~28
    53. 黄策, 王天铎. 水稻群体物质生产过程的计算机模型. 作物学报,1986, 12: 1~8
    54. 史定珊, 关文雅, 毛留喜, 等. 冬小麦产量动态模拟研究. 科学通报, 1986. 64~68
    55. 张 宇, 陶炳炎. 冬小麦生长发育的模拟研究. 南京气象学院学报, 1991, 14(1): 113~121
    56. 吴国伟, 翟连荣, 李典谟, 等. 棉花生长发育模拟模型的研究. 生态学报, 1988, 8(3): 201~210
    57. 刘文, 王恩利, 韩湘玲. 棉花生长发育模拟模型研究进展. 中国农业气象, 1992, 13(2): 52~54, 59
    58. 戚昌瀚. 水稻生长日历模拟模型综合报告. 江西农业大学学报, 1991, 13(专辑): 1~6
    59. 戚昌瀚, 殷新佑, 刘桃菊, 等. 水稻生长日历模型(RICAM)的调控决策系统(RICOS)研究: 水稻调控决策系统(RICOS)的系统设计. 江西农业大学学报, 1994, 16(4): 323~327
    60. 李秉柏.棉花生育期模拟模型的研究. 棉花学报, 1991, 3(2): 59~62
    61. 刘文. 棉花生长发育的计算机模拟模型研究初探. 中国农业气象,1992, 3(6): 10~16
    62. 潘学标, 龙腾芳. 棉花生长发育与产量形成模拟模型(CGSM)研究. 棉花学报, 1992, 增刊: 11~20
    63. 冯利平. 小麦生长发育模拟模型(WHEATSM)的研究[博士学位论文]. 南京: 南京农业大学, 1995
    64. 曹宏鑫. 小麦群体与水分及氮素动态的模拟优化决策研究[博士学位论文]. 南京: 南京农业大学, 1997
    65. 郑志明, 严力蛟. 灌溉水稻生长发育和潜力长廊的模拟模型. 生物数学学报, 1996, 11(4): 139~145
    66. 严力蛟. 水稻生育期的动态模拟模型研究. 浙江农业大学学报, 1998, 24(3): 233~237
    67. 高亮之, 金之庆, 黄 耀, 等. 水稻计算机模拟模型及其应用之一: 水稻钟模型-水稻发育的计算机模型. 中国农业气象, 1989, 10(2): 3~10
    68. 高亮之, 金之庆, 黄耀, 等. 水稻栽培计算机模拟优化决策系统(RCSODS. 北京: 中国农业科技出版社, 1992
    69. 高亮之, 金之庆. RCSODS-水稻栽培计算机模拟优化决策系统. 计算机农业应用, 1993, (3): 14~20
    70. 金之庆, 石春林, 葛道阔, 等. 基于 RCSODS 的直播水稻精确施氮模拟模型. 作物学报,2003, 29(3): 353~359
    71. 高亮之, 金之庆, 郑国清, 等. 小麦栽培模拟优化决策系统(WCSODS). 江苏农业学报 2000, 16(2): 65~72
    72. 冯利平, 高亮之, 金之庆, 等. 小麦发育期动态模拟模型的研究. 作物学报, 1997, 23(4): 418~422
    73. 曹宏蠢, 刘世军, 张立民, 等. 小麦群体叶面积的动态模型. 沈阳农业大学学报, 2000, 31(3): 246~248
    74. 郑国清, 高亮之. 玉米发育期动态模拟模型. 江苏农业学报, 2000, 16(1): 15~21
    75. 郑国清, 段韶芬, 张瑞玲, 等. 基于模拟模型的玉米栽培管理信息系统. 中国农业科学, 2004, 37(4): 619~624
    76. 马新明. 棉花蕾铃发育与产量形成的模拟模型. 江苏农业学报, 1999, 15(2): 71~76
    77. 李秉柏, 马新明, 徐立华. 棉花干物质积累的模拟模型与检验. 中国农业气象 1998, 19(2): 20 ~24
    78. 金之庆, 葛道阔, 高亮之, 等. 我国东部样带适应全球气候变化的若干粮食生产对策的模拟研究. 中国农业科学, 1998, 31(4): 51~58
    79. 曹卫星, 江海东. 小麦温光反应与发育进程的模拟. 南京农业大学学报, 1996, 19(1): 9~16
    80. 孟亚利, 曹卫星, 周治国. 基于生长过程的水稻阶段发育与物候期模拟模型. 中国农业科学 2003, 36(11): 1362~1367
    81. 孟亚利, 曹卫星, 柳新伟. 水稻茎蘖动态的模拟研究. 南京农业大学学报, 2003, 26(2): 1~6
    82. 柳新伟, 孟亚利, 周治国. 水稻颖花与籽粒发育模拟的初步研究. 中国水稻科学 2004, 18(3): 249~254
    83. 孟亚利, 曹卫星, 柳新伟, 等. 水稻地上部干物质分配动态模拟的初步研究. 作物学报, 2004, 30(4): 376~381
    84. 张立祯, 曹卫星, 张思平, 等. 基于生理发育时间的棉花生育模拟模型. 棉花学报, 2003, 15(2): 97~103
    85. 张立桢, 曹卫星, 张思平, 等. 棉花形态发生和叶面积指数的模拟模型. 棉花学报 2004, 16(2): 77~83
    86. 张立桢, 曹卫星. 棉花光合生产与干物质积累过程的模拟. 棉花学报, 2003, 15(3): 138~145
    87. 刘铁梅. 油菜发育过程及生育期机理模型的研究. 华中农业大学学报, 2004: 17~23
    88. 曹卫星. 国外小麦生长模拟研究的进展. 南京农业大学学报, 1995, 18(1): 10~14
    89. Wang j y. A critique of heat unit approach to plant response studies. Ecology. 1960, 41: 785~790
    90. Ritchie J T, Otter S. description and performance of CERES-Wheat:A user-oriented wheat yield model, in ARS wheat yield project. ARS-38. natl Tech Info Serv Springfield, 1985. 159~175
    91. Ritchie J T. CERES-WHEAT. Michigan State University, 1988
    92. Weir A H, P L Bragg, J R Porter, et al. Awinter wheat crop simulation model without water or nutrient limitation. J Agric Sci Camb, 1984, 102: 371~382
    93. Mc Master G S, Klepper B. Simulation of shoot vegetative development and growth of unstressed winter wheat. Ecological Modeling. 1991, 53: 189~204
    94. Mc Master G S,Wilheim W W, Morgan J A.Simulating winter wheat shoot apex phenology. J Agric Sci, 1992, 119: 1~12
    95. Stapper M. Simtag: Asimulation model of wheat genotypes. Model documentation. International Center for Agricultural in the Dry Areas Publication. Aleppo Syria, 1984
    96. Porter J R. A model of canopy development in wheat. J Agric Sci, 1994, 103: 383~392
    97. Van Keulen H, Seligman N G. Simulation of water use,nitrogen nutrition and growth of spring wheat crop. Simulation Monographs Pudoc. The Netherlands Wageningen, 1987. 310
    98. Van Laar H, Goudriaan J, Van Keulen H. Simulation of crop growth for potential and water-limited production simulation (as applied to spring wheat). Simulation Report 27 CABO-TT, 1992, 72
    99. Sinclair T R, Muchow R C. Effect of nitrogen supply on maize yield : Ⅰ. Modelling physiological responses. Agron J, 1995 , 87: 632~641
    100. Willis W O. ARS wheat yield project, ARS-38. USDA Agricultural Reseach Service, 1985
    101. Jamieson P D, Semenov M A, Brooking I R, et,al. Sirius: a mechanistic model of wheat response to environmental variation. Eur J Agron, 1998, 8: 161~179
    102. Subhash Chander, Lajpat R. Ahuja, Frank B. Peairs Modeling the effect of Russian wheat aphid, Diuraphis noxia (Mordvilko) and weeds in winter wheat as guide to management. Agricultural Systems, 2006, 88: 494~513
    103. Wilfried, Mirschel, Karl-Otto Wenkel, et al. Dynamic phenological model for winter rye and barley. European Journal of Agronomy, 2005, 23: 123~135
    104. 严美春, 曹卫星, 罗卫红, 等. 小麦发育过程及生育期机理模型的研究Ⅰ建模的基本设想与模型描述. 应用生态学报, 2000, 11(3): 355-359.
    105. 严美春, 曹卫星, 李存东, 等. 小麦发育过程及生育期机理模型的检验与评价. 中国农业科学, 2000, 33(2): 43~50.
    106. 刘铁梅, 曹卫星, 罗卫红. 小麦抽穗后生理发育时间的计算与生育期的预测. 麦类作物学报, 2000, 20(3): 29~34
    107. 陈 杰, 杨京平, 王兆骞. 大麦生长发育的模拟研究. 农业系统科学与综合研究, 1999, 15(4): 262~265.
    108. 殷新佑, 唐建军, 刘桃菊. 作物发育模型生理参数的 QTL 定位与应用研究初报. 江西农业大学学报, 2003, 25(6): 839~843
    109. 徐寿军, 顾小莉, 庄恒扬, 等. 大麦顶端发育和物候期的模拟. 麦类作物学报, 2006, 26(30) ; 123~127
    110. 李永秀, 罗卫红, 倪纪恒, 等. 用辐热积法模拟温室黄瓜叶面积、光合速率与干物质产量.农业工程学报, 2005, 21(12): 131~136
    111. 严美春, 曹卫星, 罗卫红, 等. 小麦地上部器官建成模拟模型的研究. 作物学报, 2001, 27(2): 221~229
    112. 严美春, 曹卫星, 罗卫红, 等. 小麦茎顶端原基发育模拟模型的研究. 作物学报, 2001, 27(3): 356~362
    113. 刘铁梅, 曹卫星, 罗卫红, 等.小麦茎孽动态模拟模型的研究. 华中农业大学学报, 2001, 20(5 ): 416~421
    114. 赵春江, 王纪华, 吴华瑞, 等. 小麦叶形空间分布的模拟模型及推理系统. 农业工程学报, 2002, 18(5): 221~226
    115. 陈国庆, 朱艳, 曹卫星. 小麦叶鞘和节间生长过程的模拟研究. 麦类作物学报, 2005, 25(1): 71~74
    116. 陈国庆, 朱艳, 曹卫星. 冬小麦叶片生长特征的动态模拟. 作物学报, 2005, 31(11): 1524~1527
    117. 谭子辉, 朱艳, 姚霞, 等. 冬小麦麦穗生长过程的模拟研究. 麦类作物学报, 2006, 26(4): 93~97
    118. J Berntsena. H Hauggard-Nielsen J E. Olesen, et al. Modelling dry matter production and resource use in intercrops of pea and barley. Field Crops Research, 2004, 88: 69~83
    119. Sinclair J R, Amir J. A model to assess nitrogen limitations on the growth and yield of spring wheat. FieldCrop Res, 1992, 30: 63~78
    120. Sinclair J R, N G Seligman. Crop modeling: from infancy to maturity. Agron J, 1996, 88: 698~704
    121. 刘建栋, 傅抱璞, 林振山, 等. 冬小麦光合生产潜力数值模拟. 地理研究, 1998, 17(1): 56~65
    122. 刘铁梅, 曹卫星, 罗卫红, 等. 小麦物质生产与积累的模拟模型. 麦类作物学报, 2001, 21(3): 26~31
    123. Saxton K E, Porter M A, McMahon T A. Climate impacts on dryland winter wheat yield by daily soilwater and crop stress simulations. Agric For Meteorol, 1992, 58: 177~192
    124. O’Leary G J, Connor D J. Asimulation model of the wheat crop in response to water and nitrogen supply: modol validation. Agric Syst, 1996, 52: 31~35
    125. Makowski D,Wallach D, Meynard J M. Models of yield,grain protein and residual mineral nitrogen responses to applied nitrogen for winter wheat. Agron J, 1999, 91: 377~385
    126. Jamieson P D, Stone P J, Semenov M A. Towards modelling quality in wheat—from grain nitrogen concentration to protein composition. Aspects Appl Biol, 2001, 64: 111~126
    127. Martre P, Porter J R, Jamieson P D, ET AL. Modeling grain nitrogen accumulation and protein composition to understand the sink-source regulations of nitrogen remobilization for wheat. Plant Physiol, 2003, 133: 1959~1967
    128. Pierre Martre, Peter D, Jamieson, et al. Moddlling protein content and composition in relation to crop nitrogen dynamics for wheat. European Journal of Agronomy, 2006, 4: 1~17
    129. 刘铁梅, 曹卫星, 罗卫红, 等. 小麦器官间干物质分配动态的定量模拟. 麦类作物学报, 2001, 21(1): 25~31
    130. 乔玉辉, 宇振荣. 冬小麦干物质在各器官中的累积和分配规律研究. 应用生态学报, 2002, 13(5): 543~546
    131. 王桂玲, 高亮之. 冬小麦田间土壤水分平衡动态模拟模型的研究. 江苏农业学报, 1998, 14(1): 36~41
    132. 姜青珍, 张建平, 李雁鸣. 水分影响小麦光合物质生产模拟模型的初步研究. 河北农业大学学报, 1999, 22(2): 27~31
    133. 曹宏鑫, 孙立荣, 高亮之, 等. 长江下游地区小麦生长期土壤水分动态的模拟. 南京农业大学学报, 1998, 21(5): 25~30
    134. 石春林, 金之庆, 基于WCSODS的小麦渍害模型及其在灾害预警上的应用. 应用气象学报, 2003, 14(4): 462~468
    135. 丛振涛. 用于田间作物-水分关系研究的 ThuSPAC 模型. 沈阳农业大学学报, 2004, 21: 25~27
    136. 胡继超, 曹卫星, 罗卫红. 渍水麦田土壤水分动态模型研究. 应用生态学报, 2004, 1: 36~41
    137. 纪江明. 不同地下水位对大麦生长发育及产量影响的计算机模拟研究[硕士学位论文]. 杭州: 浙江大学, 2001
    138. 穆兴民, 樊小林. 土壤氮素矿化的生态模型. 应用生态学报,1999, 10(1): 114 ~118
    139. Myers R J K, Campbell C A, Weier K L. Quantitative relationship between net nitrogen mineralization and moisture content of soils. Can J Soil Sci, 1982, 62: 111~124
    140. Standford G, Fere M H, Schwaninger D H. Temperature coefficient of soil nitrogen mineralization. Soil Sci, 1974, 119: 222~226
    141. McLaren A D. Temporal and vectorial reactions of nitrogen in soil. Can J Soil Sci, 1970, 50: 97~109
    142. Addiscott T M, Wagenet R J. Concepts of solute leaching in soil: A review of modeling approaches. J Soil Sci, 1985, 36: 411~424
    143. Barraclough D. A usable model of nitrate leaching: Ⅰ. The model. J Soil Sci, 1989, 40: 543-554
    144. Jemison J M, Jabro J D, Fox R H, et al. Evaluation of LEACHM: Ⅱ. Simulation of nitrate leaching from nitrogen-fertilized and manured corn. Agron J, 1994, 86: 852~859
    145. Lengnick L L, Fox R H. Simulation of NCSWAP of seasonal nitrogen dynamics in corn: Ⅰ. Soil nitrate. Agron J, 1994, 86: 167~175
    146. Nye P H, Tinker P B. Solute movement in the soil-root system. Oxford. England: Blackwell Scientific Publishers, 1977
    147. Barber S A. Soil nutrient bioavailability: A mechanistic approach. New York: John Wiley & Sons Inc, 1984,114 ~135
    148. Drenth H, ten Berge H F M , Riethoven J J M (Editor). ORYZA simulation modules for potential and nitrogen limited rice. SARP Research Proceedings, 1994
    149. Sinclair T R, Muchow R C. Effect of nitrogen supply on maize yield : Ⅰ Modelling physiological responses. Agron J, 1995 , 87: 632~641
    150. WANG Zong-Ming, ZHANG Bai, LI Xiao-Yan, et al. Using CropSyst to Simulate Spring Wheat Growth in Black Soil Zone of Northeast China, Pedosphere, 2006, 16(3): 354~361
    151. 曹宏鑫, 孙立荣, 高亮之, 等. 长江下游地区马肝土小麦生长期土壤氮素动态的模拟. 中国农业气象, 1999, 20(2): 35~38
    152. 王康, 沈荣开, 王富庆. 冬小麦生长及根系吸氮的动态模拟研究. 灌溉排水, 2002, 21(1): 6~11
    153. 庄恒扬, 曹卫星, 任正龙, 等. 土壤有机氮矿化与有机物氮素释放的动态模拟. 扬州大学学报(农业与生命科学版), 2002, 23(2): 63~67
    1. 翁训珠. 大麦生物学特性与栽培. 上海:上海科学技术出版社, 1987. 82~167
    2. 赵永新, 方光华, 冯幕衍, 等. 大麦. 上海: 上海科学技术出版社, 1986. 148~154
    3. 何立人, 李正玮, 李来胜. 大麦发育与温光条件的关系. 见: 中国作物学会大麦专业委员会主编. 中国大麦文集(第二集). 西安: 陕西科学技术出版社, 1991. 260~265
    4. 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000
    5. 梁兰英. 紫外分光光度法测定土壤中的硝态氮. 甘肃环境研究与监测, 2001, 2: 2~8
    6. 涂常青, 温欣荣. 双波长分光光度法测定土壤硝态氮. 土壤肥料, 2006, 1: 1~12
    7. 易小琳, 李酉开, 韩琅丰. 紫外分光光度法测定土壤硝态氮. 土壤通报, 1983, 6: 35~39
    8. 布都会, 朱建楚, 高 莉, 等. Li-6400 光合作用测定仪在小麦上应用的商榷. 麦类作物学报, 2004, 24(1): 92~94
    9. 卢良恕主编. 中国大麦学. 北京: 中国农业出版社, 1995
    10. 曹卫星, 罗卫红. 作物系统模拟及智能管理. 北京: 华文出版社, 2000. 34~145
    11. Snyder R L, Spano D, Cesaraccio C, et al. Determining degree-day thresholds from field observations. International Journal of Biometeorology, 1999, 42(4): 177~182
    1. Ritchie J R. Wheat phasic development. In: Modeling plant and soil systems. W I USA: Crop science society of America, 1991. 31~54
    2. Porter J R. AFRC WHEAT 2: A Model of the growth and development of wheat incorporating response to water and nitrogen. Europ J Agron, 1993, 2: 69~82
    3. McMaster G S, Wilheim W W, Morgan J A. Simulating winter wheat shoot apex phenology. J Agric Sci, 1992, 119: 1~12.
    4. Weir A H, Bragg p l. A winter wheat crop simulation model without water or nutrient limitations. J Agric Sci, 1984, 102: 371~382
    5. Travis K Z. Modeling the timing of the early development of winter wheat. Agri Meteo, 1988, 44: 67~69
    6. 宇振荣. 作物生长模拟模型研究和应用. 生态学杂志, 1994, 13(1): 69~73
    7. 曹卫星, 江海东. 小麦温光反应与发育进程的模拟. 南京农业大学学报, 1996, 19(1): 9~16
    8. 张 宇, 陶炳炎. 冬小麦生长发育的模拟研究. 南京气象学院学报, 1991, 14(1): 113~121
    9. 曹宏鑫. 小麦群体与水分及氮素动态的模拟优化决策研究[博士学位论文]. 南京:南京农业大学,1997
    10. 严美春. 基于过程的小麦生育期和器官形成的机理模型[博士学位论文]. 南京:南京农业大学,1999
    11. 刘铁梅, 曹卫星, 罗卫红. 小麦抽穗后生理发育时间的计算与生育期的预测. 麦类作物学报, 2000, 20(3): 29~34
    12. 陈 杰, 杨京平, 王兆骞. 大麦生长发育的模拟研究. 农业系统科学与综合研究, 1999, 15(4): 262~265
    13. Wilfried, Mirschel, Karl~Otto Wenkel, et al. Dynamic phenological model for winter rye and barley. European Journal of Agronomy, 2005, 23: 123~135
    14. 郑国清. 浅论对水稻发育期模型的认识. 中国农业气象, 1999, 20(2): 31~40
    15. 刁操权主编. 作物栽培学各论(南方本). 北京: 中国农业出版社, 1994. 47~57
    16. 杨文钰, 屠乃美主编. 作物栽培学各论(南方本). 北京: 中国农业出版社, 2003. 10~11
    17. 沈国权. 影响作物发育速度的非线性函数. 气象, 1980, (6): 9~11
    18. 黄冲平, 王爱华, 胡秉民. 作物生长温度效应函数的非线性模型及其比较研究. 生物数学学报, 2004, 19(4): 481~486
    19. 黄冲平, 张放, 王爱华, 等. 马铃薯生育期进程的动态模拟研究. 应用生态学报, 2004, 15(7): 1203~1206
    20. 殷新佑. 水稻发育温度效应的非线性模型及其应用. 作物学报, 1994, 20(6): 692-700.
    21. Yin X Y, van Laar H H. Crop Systems Dynamics. Wageningen. The Netherlands,Wageningen Academic Publishers, 2005. 40~41
    22. 翁训珠. 大麦生物学特性与栽培. 上海:上海科学技术出版社, 1987. 82~167
    23. 卢良恕主编. 中国大麦学. 北京: 中国农业出版社, 1995. 295~347
    24. 何立人, 李正玮, 李来胜. 大麦发育与温光条件的关系. 见: 中国作物学会大麦专业委员会主编. 中国大麦文集(第二集). 西安: 陕西科学技术出版社, 1991. 260~265
    25. 赵永新, 方光华, 冯幕衍, 等. 大麦. 上海: 上海科学技术出版社, 1986. 148~154
    26. G C Kernich 著. 光周期变化率对大麦发育的影响. 麦类作物, 1997, 17(2): 58~60
    27. 曹卫星, 罗卫红. 作物系统模拟及智能管理. 北京: 华文出版社, 2000. 34~145
    28. 高亮之, 金之庆, 黄耀, 等. 水稻钟模型――水稻发育动态的计算机模型. 中国农业气象, 1989, 10(5): 3~9
    29. 殷新佑. 对预测作物发育的积温法的评价. 作物学报 1999, 25(4): 474~482
    30. 郑国清,高亮之. 玉米发育期动态模拟模型. 江苏农业学报, 2000, 16(1): 15~21
    31. 严美春, 曹卫星, 罗卫红, 等. 小麦发育过程及生育期机理模型的研究Ⅰ建模的基本设想与模型描述. 应用生态学报, 2000, 11(3): 355~359
    32. 严美春, 曹卫星, 李存东, 等. 小麦发育过程及生育期机理模型的检验与评价. 中国农业科学, 2000, 33(2): 43~50
    1. 卢良恕主编. 中国大麦学. 北京: 中国农业出版社, 1995
    2. 严美春, 曹卫星, 罗卫红, 等. 小麦地上部器官建成模拟模型的研究. 作物学报, 2001, 27(2): 221~229
    3. 严美春, 曹卫星, 罗卫红, 等. 小麦茎顶端原基发育模拟模型的研究. 作物学报, 2001, 27(3): 356~362
    4. 刘铁梅, 曹卫星, 罗卫红, 等.小麦茎孽动态模拟模型的研究. 华中农业大学学报, 2001, 20(5 ): 416~421
    5. 陈 杰, 杨京平, 王兆骞. 大麦生长发育的模拟研究. 农业系统科学与综合研究, 1999, 15(4): 262~265
    6. Wilfried, Mirschel, Karl-Otto Wenkel, et al. Dynamic phenological model for winter rye and barley. European Journal of Agronomy, 2005, 23: 123~135
    7. 曹卫星, 罗卫红. 作物系统模拟及智能管理. 北京: 华文出版社, 2000. 34~145
    8. 徐寿军, 顾小莉, 庄恒扬, 等. 大麦顶端发育和物候期的模拟. 麦类作物学报, 2006, 26(30) ; 123~127
    9. 顾世梁, 惠大丰, 莫惠栋. 非线性方程最优拟合的缩张算法. 作物学报, 1998, 24(5): 513~519
    10. Reffye(de) P , Houllier F. Modelling plant grow and architecture: some recent advances and applications to agronomy and forestryJ. Current Scienc, 1997, 73(11): 984~992
    11. Prusinkiewicz P W, Remphrey W R, Davidson C G, et al. Modeling the architecture of expanding fraxinus pennsylvnaica shoots using L-systems. Can J.Bot, 1994, 72: 701~714
    12. Pages L, Jordan M O, Picard D. A simulation model of the three-di-mensional architecture of the maize root system. Plant and soil, 1989, 119: 147~154
    13. Ournier C, Andrieu B. A 30 architectural and process-based model for maize development. Annals of Botany, 1998, 81: 233~250
    14. 姜丽平, 陈树人. 虚拟植物的研究进展. 农机化研究, 2006, 4: 4~7
    15. 郑文刚, 郭新宇, 赵春江, 等. 玉米叶片几何造型研究. 农业工程学报, 2004, 20(1): 152~154
    16. 陈国庆, 朱艳, 曹卫星. 小麦叶鞘和节间生长过程的模拟研究. 麦类作物学报, 2005, 25(1): 71~74
    17. 陈国庆, 朱艳, 曹卫星. 冬小麦叶片生长特征的动态模拟. 作物学报, 2005, 31(11): 1524~1527
    18. 谭子辉, 朱艳, 姚霞, 等. 冬小麦麦穗生长过程的模拟研究. 麦类作物学报, 2006, 26(4): 93~97
    1. de Wit C T, et al. Simulation of assimilation, respiration and transpiration of crops. Pudoc , Waggeningen : Simulation Monographs, 1978
    2. Richie J T. A uer oriented model of the soil water balance in wheat. In: Fry E and T K Atkins. Wheat growth and modeling. Plenum publishing corporation. NATO-AST Series, 1985, 293~305
    3. Penningde Vries F W T, Jansen-D M, Bergeten H F M and A B akema. Simulation of ecophsiological processes of growth in several annual crops. Pudoc, Wageningen,1989,271
    4. Goudriaan J . Van Laar H H . Modelling protential crop growth processes: textbook with excercises. Currentis-sues in production ecology. Dordrecht:Kuwer Aca-demic Publishers. 1994.
    5. 高亮之. 农业模型学基础. 香港: 天马图书有限公司, 2004
    6. 刘铁梅. 小麦光合生产与物质分配的模拟研究[博士学位论文]. 南京: 南京农业大学, 2000
    7. 陈 杰, 杨京平, 王兆骞. 大麦生长发育的模拟研究. 农业系统科学与综合研究, 1999, 15(4):262~265
    8. J Berntsena. H Hauggard-Nielsen J E. Olesen, et al. Modelling dry matter production and resource usein intercrops of pea and barley. Field Crops Research, 2004, 88: 69~83
    9. 张怀渝, 王化新, 郭大智, 等. 大麦光合产物的分配、再分配与产量形成的关系. 核农学报, 1995, 9(3): 168~174
    10. 郑涛. 大麦不同光合器官对籽粒灌浆及产量的影响. 大麦科学, 1999, 1: 21~22
    11. 王晓明, 张恩和. 啤酒大麦冠层光合特性与产量关系的研究. 西北农业学报, 1995, 4(1) : 15~19
    12. 卢良恕主编. 中国大麦学[M]. 北京: 中国农业出版社, 1995
    13. 薛亚锋, 周明耀, 徐英, 等. 冬小麦叶面积指数的空间结构分析[J]. 扬州大学学报(农业与生命科学版), 2006, 27(1): 54-58
    14. 曹卫星, 罗卫红. 作物系统模拟及智能管理[M]. 北京: 华文出版社, 2000. 34-145
    15. 潘波. 大麦叶片光合速率日变化的初步研究. 莱阳农学院学报, 1992, 9(1): 45~48
    16. 潘波, 王宝玲, 于希春, 等. 春大麦的光合特性与干物质生产. 莱阳农学院学报, 1995, 12(1): 16~20
    17. 刘铁梅, 曹卫星, 罗卫红, 等. 小麦器官间干物质分配动态的定量模拟. 麦类作物学报, 2001, 21(1): 25~31
    18. 李永秀, 罗卫红, 倪纪恒. 用辐热积法模拟温室黄瓜叶面积、光合速率与干物质产量. 农业工程学报, 2005, 21(12): 131~136
    19. 倪继恒, 罗卫红, 李永秀, 等. 温室番茄叶面积与干物质生产的模拟. 中国农业科学, 2005, 38(8): 1629~1635
    20. 李永秀, 罗卫红, 倪纪恒, 等. 温室黄瓜干物质分配与产量预测模拟模型初步研究. 农业工程学报, 2006, 22(2): 116~121
    21. 杨瑞因, 邹振宏. 大麦籽粒灌浆干物质积累的生理研究. 大麦科学, 1990, 4: 8~11
    22. 顾自奋, 李金诚, 翁训珠. 灌浆特性和时间对大麦籽粒增重的影响. 作物学报 1987, 13(4): 288~295
    23. 裴阿卫, 毛建昌. 源库调节对大麦灌浆规律的影响. 大麦科学, 1998, 1: 10~12
    1. Ritchie J T. CERES-WHEAT. Michigan State University, 1988
    2. Drenth H, ten Berge H F M and Riethoven J J M (Editor). ORYZA simulation modules for potential and nitrogen limited rice. SARP Research Procedings, 1994
    3. Aggarwal P K et al. Analyzing the limitations set by climate factors, genotype, water and 4 nitrogen availability on productivity of wheat Ⅰ. The model description , parameterization and validation. Field Crops Res, 1994, 38: 73~91
    4. Mickinion J M, et al. Application of the GOSSYM/COMMAX system to cotton management. Agricultural system, 1989, 31: 55~65
    5. 高亮之, 金之庆, 黄 耀, 等. 水稻栽培计算机模拟优化决策系统(RCSODS). 中国农业科技出版社, 1992
    6. 曹宏鑫. 小麦群体与水分及氮素动态的模拟优化决策研究[博士学位论文]. 南京农业大学,1999
    7. 赵春江, 诸德辉, 李鸿祥, 等. 小麦栽培管理计算机专家系统的研究与应用. 中国农业科学, 1997, 30(5): 42-49
    8. 庄恒扬. 作物-土壤系统氮磷钾养分的动态模拟与管理决策[博士学位论文]. 南京: 南京农业大学, 2001
    9. 黄德明, 俞仲林, 朱德峰, 等. 淮北地区高产小麦植株吸N与土壤供氮特征. 中国农业科学, 1988, 21(5): 59~66
    10. Li C, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall event: Ⅰ. Model structure and sensitivity. J Geophysical Res, 1992, 97(9): 9759-9776
    11. Li C, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall event: Ⅱ. Model application. J Geophysical Res, 1992, 97(9): 9777-9782
    12. 刘铁梅, 曹卫星, 罗卫红, 等. 小麦器官间干物质分配动态的定量模拟. 麦类作物学报, 2001, 21(1): 25~31
    13. 徐寿军, 顾小莉, 庄恒扬, 等. 大麦顶端发育和物候期的模拟. 麦类作物学报, 2006, 26(30) : 123~127
    14. 张福锁, 龚元石, 李晓林, 等. 土壤与植物营养研究新动态(第三卷). 北京: 中国农业出版社, 1995. 68~81
    15. 顾世梁, 惠大丰, 莫惠栋. 非线性方程最优拟合的缩张算法. 作物学报, 1998, 24(5): 513~519
    16. Drenth H, ten Berge H F M , Riethoven J J M (Editor). ORYZA simulation modules for potential and nitrogen limited rice. SARP Research Proceedings, 1994
    17. Richie J T, E C Alocilija, U Singh. IBSNAT and the CERES-Wheat model. In: Wheat and rice, IRRI, Los BANOS, Philippines, 1987, 271~281
    18. 骆世明, 郑华, 陈春焕, 等. 水稻高产栽培中应用计算机模拟的研究. 广东农业科学, 1990, 3: 14~16
    1. von Bothmer R, van Hintum T, Helmut K, et al. Diversity in Barley. Amsterlands: ELSEVIER SCIENCE B V, 2003. 77~94
    2. 拾方坚, 郭孝, 田玉山. 饲用大麦品种生物产量、粗蛋白和氨基酸含量的动态研究[J]. 中国农业科学, 1994, 27(2): 38~44
    3. 陈锦新, 陈叶平, 陈培玉, 等. 大麦籽粒产量和氮积累的农艺因素效应. 大麦科学, 1998, (2): 5~8
    4. 王新其, 李军, 金小妹. 氮肥效应对直播大麦产量及若干生育指标的影响. 上海农学院学报, 1994, 12(1): 56~60
    5. 许明, 封超年, 李长亚, 等. 氮肥对啤酒大麦籽粒品质的影响. 扬州大学学报(农业与生命科学版), 2004, 25(6): 34~39
    6. 赵檀方. 不同栽培因素对啤酒大麦籽粒产量和品质的影响. 山东农业大学学报, 1990, 21(4): 41~44
    7. 齐军苍, 张莉, 幕自新, 等. 大麦籽粒形成期不同器官氮素变化规律的研究. 石河子大学学报, 1998, 2(3): 177~182
    8. 谢志新. 氮肥用量对大麦氮代谢和籽粒品质的效应. 浙江农业大学学报, 1989, 15(1): 1~7
    9. 党爱华, 许文芝, 崔永龙, 等. 不同播种时期对大麦产量和品质的影响. 大麦与谷类科学, 2006, 6(3): 19~22
    10. 许如根, 吕超, 魏大海, 等. 大麦标位基因系籽粒营养品质性状及胚大小的差异性研究. 麦类作物学报, 2004, 24(4): 54~67
    11. 黄祖六, 潘裕平. 大麦品质和农艺性状的通径分析. 扬州大学学报(自然科学版), 2000, 3(1): 36~41
    12. 常金华, 张俊梅, 王宝义, 等. 氮肥效应对啤酒大麦品质及产量的影响. 河北农业大学学报, 2000, 23(4): 26~29
    13. 卢良恕主编. 中国大麦学. 北京: 中国农业出版社, 1995
    14. Makowski D,Wallach D, Meynard J M. Models of yield,grain protein and residual mineral nitrogen responses to applied nitrogen for winter wheat. Agron J, 1999, 91: 377~385
    15. Jamieson P D, Stone P J, Semenov M A. Towards modelling quality in wheat—from grain nitrogen concentration to protein composition. Aspects Appl Biol, 2001, 64: 111~126
    16. Martre P, Porter J R, Jamieson P D, ET AL. Modeling grain nitrogen accumulation and protein composition to understand the sink-source regulations of nitrogen remobilization for wheat. Plant Physiol, 2003, 133: 1959~1967
    17. Pierre M, Peter D, Jamieson D, et al. Moddlling protein content and composition in relation to crop nitrogen dynamics for wheat. European Journal of Agronomy, 2006, 4: 1~17
    18. 潘洁, 戴延波, 姜东, 等. 基于气候因子效应的冬小麦籽粒蛋白质预测模型. 中国农业科学, 2005, 38(4): 684~691
    19. 翁训珠. 大麦生物学特性与栽培. 上海:上海科学技术出版社, 1987. 82~167
    20. 何立人, 李正玮, 李来胜. 大麦发育与温光条件的关系. 见: 中国作物学会大麦专业委员会主编. 中国大麦文集(第二集). 西安: 陕西科学技术出版社, 1991. 260~265
    21. 赵永新, 方光华, 冯幕衍, 等. 大麦. 上海: 上海科学技术出版社, 1986. 148~154
    22. Kernich G C 著. 光周期变化率对大麦发育的影响. 麦类作物, 1997, 17(2): 58~60
    23. Aggarwal P K. Analyzing the limitations set by climate factors, genotype, water and nitrogen availability on productivity of wheat Ⅰ. The model description , parameterization and validation. Field Crops Res, 1994, 38: 73~91
    1. 冯利平, 高亮之, 金之庆, 等. 小麦发育期动态模拟模型的研究. 作物学报, 1997, 23(4): 418~424
    2. 王爱华, 黄冲平. 马铃薯生育进程的计算机模拟模型研究. 中国马铃薯, 2003, 17(2): 74~78
    3. 孟亚利, 曹卫星, 周治国, 等. 基于生长过程的水稻阶段发育与物候期模拟模型. 中国农业科学, 2003, 36(11): 1362~1367
    4. 徐寿军, 顾小莉, 庄恒扬, 等. 大麦顶端发育和物候期的模拟. 麦类作物学报, 2006, 26(30) : 123~127
    5. 严美春, 曹卫星, 罗卫红, 等. 小麦地上部器官建成模拟模型的研究. 作物学报, 2001, 27(2): 221~229
    6. Ritchie J T, Otter S. Description and performance of CERES-Wheat:A user-oriented wheat yieldmodel, in ARS wheat yield project. ARS-38. natl Tech Info Serv Springfield, 1985. 159~175
    7. Ritchie J T. CERES-WHEAT. Michigan State University, 1988
    8. Weir A H, P L Bragg, J R Porter, et al. A winter wheat crop simulation model without water or nutrient limitation. J Agric Sci Camb, 1984, 102: 371~382
    9. Mc Master G S,Klepper B. Simulation of shoot vegetative development and growth of unstressed winter wheat. Ecological Modeling. 1991, 53: 189~204
    10. 严美春, 曹卫星, 罗卫红, 等. 小麦茎顶端原基发育模拟模型的研究. 作物学报, 2001, 27(3): 356~362
    11. 刘铁梅, 曹卫星, 罗卫红, 等.小麦茎孽动态模拟模型的研究. 华中农业大学学报, 2001, 20(5 ): 416~421
    12. 陈国庆, 朱艳, 曹卫星. 小麦叶鞘和节间生长过程的模拟研究. 麦类作物学报, 2005, 25(1): 71~74
    13. 陈国庆, 朱艳, 曹卫星. 冬小麦叶片生长特征的动态模拟. 作物学报, 2005, 31(11): 1524~1527
    14. 谭子辉, 朱艳, 姚霞, 等. 冬小麦麦穗生长过程的模拟研究. 麦类作物学报, 2006, 26(4): 93~97
    15. 李永秀, 罗卫红, 倪纪恒, 等. 温室黄瓜干物质分配与产量预测模拟模型初步研究. 农业工程学报, 2006, 22(2): 116~121
    16. 刘铁梅, 曹卫星, 罗卫红, 等. 小麦器官间干物质分配动态的定量模拟. 麦类作物学报, 2001, 21(1): 25~31
    17. 杨瑞因, 邹振宏. 大麦籽粒灌浆干物质积累的生理研究. 大麦科学, 1990, 4: 8~11
    18. 顾自奋, 李金诚, 翁训珠. 灌浆特性和时间对大麦籽粒增重的影响. 作物学报 1987, 13(4): 288~295
    19. 裴阿卫, 毛建昌. 源库调节对大麦灌浆规律的影响. 大麦科学, 1998, 1: 10~12
    20. 顾世梁, 惠大丰, 莫惠栋. 非线性方程最优拟合的缩张算法. 作物学报, 1998, 24(5): 513~519
    21. Li C, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall event: Ⅰ. Model structure and sensitivity. J Geophysical Res, 1992, 97(9): 9759~9776
    22. Li C, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall event: Ⅱ. Model application. J Geophysical Res, 1992, 97(9): 9777~9782
    23. Makowski D,Wallach D, Meynard J M. Models of yield, grain protein and residual mineral nitrogen responses to applied nitrogen for winter wheat. Agron J, 1999, 91: 377~385
    24. Jamieson P D, Stone P J, Semenov M A. Towards modelling quality in wheat—from grain nitrogen concentration to protein composition. Aspects Appl Biol, 2001, 64: 111~126
    25. Martre P, Porter J R, Jamieson P D, ET AL. Modeling grain nitrogen accumulation and protein composition to understand the sink-source regulations of nitrogen remobilization for wheat. Plant Physiol, 2003, 133: 1959~1967
    26. Pierre Martre, Peter D, Jamieson, et al. Moddlling protein content and composition in relation to crop nitrogen dynamics for wheat. European Journal of Agronomy, 2006, 4: 1~17
    27. Sinclair T R,Muchow R C. Effect of nitrogen supply on maize yield :Ⅰ .Modelling physiological responses. Agron. J. 1995, 87: 632~641
    28. 卢良恕主编. 中国大麦学. 北京: 中国农业出版社, 1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700