小麦抗赤霉突变体离体筛选及其抗性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用体细胞无性系变异及赤霉菌毒素离体筛选技术,创造新抗源,培育抗赤霉病新品种,已成为小麦赤霉病抗性改良的重要途径。本研究以普通小麦品种为试材,通过幼胚培养毒素筛选及抗毒素细胞变异系再生植株的抗性筛选,获得了两个综合农艺性状与其各自供体亲本基本一致,但抗性与其供体亲本相比显著提高的抗赤霉突变体,并对获得的两个抗赤霉突变体的分子差异、生理生化特性及细胞组织学特性进行了分析。获得以下结果:
     1、以普通小麦幼胚为外植体对离体培养毒素筛选体系的研究表明,胚发育时间对离体培养有较大影响,花后10d~13d的幼胚愈伤组织和胚性愈伤组织的诱导率较高;蔗糖在20~50 g/L浓度范围内对胚性愈伤组织的诱导效果较好;6.0g/L的禾谷镰刀菌粗毒素是小麦幼胚离体筛选的一个敏感浓度,对愈伤组织诱导有明显抑制,对胚性愈伤组织的形成和苗分化产生强烈抑制,筛选中粗毒素浓度不宜高于这一浓度或连续使用,否则难以获得再生绿苗。
     2、对筛选获得的抗毒素细胞系再生植株不同世代的抗赤性表现及分离特点的研究表明,R0代再生植株抗赤性存在差异,经毒素筛选的后代抗病植株比例与未经毒素筛选的相比明显提高;抗病性主要在R1代分离,并趋向于感病方的分离;抗病性在R2代仍存在部分分离,在R3代稳定。
     对再生植株不同世代的农艺性状变异特点研究表明,变异可发生在株高、穗长、小穗数、穗型、株型、熟性和小穗密度等多个方面,不同基因型发生表型变异的频率不同;再生植株农艺性状变异的分离主要发生在R1代,部分性状在R2代继续分离,在R3代稳定。总体变异趋于矮杆、早熟和穗密度增加。
     通过田间抗性筛选,本实验最终在西农1376和花育888的抗毒素细胞变异系再生植株中分别获得一个抗赤霉病性明显改良的变异系,其抗赤霉病性与高抗扩展的苏麦3号和西农85相比呈中等抗性,但与各自感病亲本相比抗性显著提高。农艺性状鉴定结果显示,两个抗赤霉变异系与各自供体亲本基本相似。
     3、抗赤霉变异系RAPD检测结果显示,抗赤霉变异系与它们供体亲本相比在多个位点都发生了变异,变异率为2.10%~2.86%,从分子水平上证明了变异的真实性。抗赤霉变异系R西农1376-2和亲本西农1376间检测出的多态片段S3471220和S3751360,抗赤霉变异系R花育888和亲本花育888间检测到的多态片段S149620都可在抗扩展品种苏麦3号上找到,说明离体条件下发生变异的抗性位点具有特异性,初步判断这三个多态片段S3471220、S3751360和S149620与小麦赤霉病抗性有关。
     4、以典型抗扩展品种和突变体供体亲本为抗、感对照,对抗赤霉突变体的健康穗及接种穗的生理生化特性研究结果显示,在健康穗中,抗性突变体的PAL活性、总酚、类黄酮及MDA含量及变化趋势与其感病亲本相一致,但在病原菌侵染后,这些生理生化物质的含量与变化程度与其亲本有了明显的差异,其变化范围介于典型高抗品种和感病亲本之间,变化趋势与亲本或抗性品种一致。说明离体筛选的抗赤霉突变体的生理生化抗性机制与一般抗性品种类似。
     生理生化特性研究还表明,不同基因型健康穗或接种穗PAL活性、总酚及类黄酮含量存在显著差异,与材料的抗赤性无一定顺序关系。材料抗赤性强弱与接种穗与健康穗之间的PAL活性及总酚、类黄酮含量的增加幅度呈负相关。健康穗MDA含量在基因型间无差异,但在接种穗中,随处理时间延长在感病品种中MDA含量持续增加,在突变体与抗扩展品种中前期增加,第7d后下降,第11d后接种穗MDA含量高低与材料抗赤性强弱呈负相关。这些特性在典型抗、感品种间表现明显。
     5、对抗赤霉突变体的健康穗及接种穗的穗轴细胞组织学研究结果显示,抗性突变体与其感病亲本的花期健康穗轴在皮层厚壁组织、绿色组织及维管组织结构上基本一致,不同发育时间的变化趋势也一致;接种处理后,抗性突变体与其感病亲本的穗轴组织在各方面的变化趋势相一致,变化量也无明显差异。主要差异在于病菌侵染后抗性突变体穗轴组织中的菌丝量较少,受侵染程度较轻。据此可以认为,对供试的抗性突变体而言,其抗赤霉病性的提高与其穗轴组织结构无关。
     实验结果还证明,高抗品种和感病品种的穗轴组织结构确实存在一定差异,在健康穗中,主要表现在高抗品种的皮层厚壁细胞壁和皮层厚壁组织较厚,皮层厚壁细胞层数较多,维管束数目较多,穗轴表皮下绿色组织面积较小,抗、感品种间的差异达显著水平,随发育时间延长,高抗品种的皮层厚壁细胞壁厚度、厚壁组织厚度和厚壁细胞层数增加的幅度较大;在病穗中,主要表现在高抗品种的皮层厚壁组织细胞层数和厚壁细胞壁厚度增加的幅度较大。
     6、利用农艺性状和分子标记相结合的方法,对来自国内外的30多份小麦抗赤霉种质资源及本实验筛选的两个抗赤霉突变体的遗传多样性进行了分析,结果表明,供试材料总体表现植株较高、穗较长,小穗数少,穗密度较稀,穗粒数较多等相似的形态特征,各农艺性状的遗传变异程度由高到低依次为株高〉穗长〉小穗数〉穗粒数〉反应指数〉有效分蘖,变异系数在8.69%~28.75%之间,多样性指数在1.74~1.95之间,说明农艺性状的遗传多样性较丰富;RAPD分析结果表明,16种引物共扩增出176条带,多态性位点比例为84.09%,平均遗传相似系数0.7069,遗传距离0.3524,基于材料间的遗传距离,供试材料可聚为五类,地理来源相近的基本上聚为一类,亲缘关系较近的也被聚在一起,说明RAPD能充分反应材料间的遗传差异,能较好将供试材料进行分类,同时反映出材料间遗传关系与小麦生态环境和地理来源高度相关。
Using somatic clone variation and toxin-selecting method to produce new resistant strains and to cultivate new varieties has become the key method to improve Scab-resistance in wheat. The study, applying Fusarium Graminearum crude toxin to select embryogenic calli and to regenerate plants, was obtained two wheat mutants with Scab-resistance improved significantly and similar agronomical characters to their donors, and analyzed difference of the mutants at the molecular, physiological and biochemical, histological and cellular levels. The results showed as follows:
     1. The study of immature embryo culture and toxin-selecting system showed that inductivity of embryogenic calli was higher during 10-13 days after blooming date for young embryo culture; that suitable sugar concentration was 20- 50g/L. When the selective dose of Fusarium Graminearum crude toxin was beyond 6.0g/L, formation of embryogenic calli and differentiation of plantlets were inhibited intensively, so the toxin-selecting dose should not exceed this sensitive value or apply the dose successively, otherwise, the plantlets of regenerated could not obtained. The author suggested that a preferable dose for toxin selection should not affect growth of callus, at the same time, controlling embryonic callus formation and seedling differentiation effectively, and to a certain degree, without losing ability of differentiation.
     2. Scab-resistance and characteristics segregation of four generations of regeneration plants obtained from toxin-selecting somatic clones showed that Scab-resistance among regeneration plants of intra-generation of R0 was different, the percentage of anti-disease progenies selected by toxin was higher than that of unselected ones; that resistance segregation mainly appeared in generation R1 and inclined to the susceptible direction, continuing in some progenies in generation R2 and ending in generation R3.
     Agronomical characters variance among different generations of regenerated plants indicated that variance could take place on plant height, head length, the number of spikelet, spike shape, plant form, maturity and spike density, moreover, different genotypes had different frequency of phenotypes; that segregation of agronomical characters mainly appeared in generation R1, continuing in some progenies in R2 generation and ending in R3 generation, and the general trend of agronomical characters was dwarf, early-ripening and spike-densed.
     Through field resistance evaluation and selection of regeneration plants obtained from toxin-selecting somatic clones, a scab-resistant mutant was obtained from variety Xi’nong 1376 and Huayu 888, respectively. Compared with high-resistant checks, Sumai No.3 and Xi’nong 85, the mutants had middle-resistance to scab, which were improved more significantly than their susceptible donors. Agronomical characters of two mutants were similar to their donor parents, respectively.
     3. RAPD test of scab-resistant mutants showed that, the mutants were different to their donors in many loci with the variant rate from 2.10% to 2.86%, which verified the existence of mutation at the molecular level. Polymorphic fragment S3471220 and S3751380 detected from the mutant RXi’nong1376-2 and its donor Xi’nong1376, as well as polymorphic fragment S149620 detected from the mutant RHuayu888 and its donor Huayu888, was all detected in the high-resistant variety Sumai No.3, which suggested that resistant mutation loci under the condition of isolated culture had specificity and three polymorphic fragments may relate to scab- resistance.
     4. The dynamic changes of physiological and biochemical indexes of healthy spikes and inoculation ones of the resistant mutants indicated that PAL activity and content and changing tendency of total phenolate and flavoniods and MDA in the healthy spikes of the mutants were similar to that of their susceptible donors, whereas, for the inoculated spikes, content and changing range of these indexes existed significant difference between two kinds of strains, changing from high-resistant variety (Sumai3 ) to their susceptible donors. The result implied that resistance mechanism of the mutants and the normal resistant variety was alike at physiological and biochemical level.
     The result also showed that, compared with high-resistant variety PAL activity and content of total phenolate and flavoniods in the inoculated spikes of the mutants and their susceptible donors were increased significantly, which were also different within the healthy or inoculated spikes of different genotypes, yet, there was no relationship between scab-resistance and absolute value of PAL activity or content of total phenolate and flavoniods at a certain stage. But changing range of PAL activity or content of total phenolate and flavoniods between healthy spikes and infected spikes were related negatively to scab-resistance. Content of MDA in healthy spikes showed no difference among genotypes in inoculated spikes, however, in the spikes of susceptible variety, which increased continuously, but in the spikes of the mutants and high-resistant variety, which increased during the early period and decreased at the 7th-day, after 11 days later, content of MDA were negatively related to scab-resistance. This tendency was noticeable between the typical resistant and susceptible varieties.
     5. Histological and cellular research on rachis of healthy and inoculated spikes of the mutants at the different stages showed that, structure and developed tendency of cortical sclerenchyma tissue and green tissue and fibrovascular tissue in the rachis were alike between the mutants and their donors at anthesis stage, which also showed no apparent difference in the inoculated spikes’rachis between the mutants and their donors, major difference was that the mutants had less hyphae number than their donors. So it was considered that the increase of resistant ability in the mutants had no relationship to their rachis structure.
     This experiment also confirmed that there was different between rachis structure of high-resistant variety and that of susceptible variety. Healthy spikes of high-resistant varieties had thicker cell wall and tissue of cortical sclerenchyma, more number of cortical sclerenchyma layers, more number of fibrovascular bundles, smaller area of green subcutaneous tissue in rachis, and theses differences, except number of fibrovascular bundles, enlarged over time. Considering inoculated spikes, cell wall and tissue layers of cortical sclerenchyma displayed different, and to how much extent the relationship between this difference and anti-extension ability of variety had not determined.
     6. On the analysis of agronomical characters and molecular marking technology, more than 30 alien anti-Gibberella wheat materials and two mutants coming from this experiment were evaluated their hereditary multiplicity. The result indicated that agronomical characters, which were relatively rich in hereditary multiplicity with diversified index ranging between 1.74 and 1.95, the order of hereditary variance listing as plant height>spike length>number of spikelet>number of spike grains>reactive index>number of effective tillers, coefficient of variation changing from 8.69% to 28.75%, had not showed significant relationship to disease resistance based on correlation analysis; RAPD analysis indicated that 16 primers produced 176 amplification bands, percentage of polymorphism loci was 84.09%, mean hereditary resemblance coefficient 0.7069, hereditary distance 0.3524 and on which the materials was categorized 5 groups, the result of RAPD analysis revealed hereditary differences effectively because the materials coming from the same geographical areas and related varieties were grouped together, which also concluded that hereditary relationship among the materials were high related to wheat growth ecotope and original geographical area.
引文
[1] 陆维忠,程顺和,王裕中.小麦赤霉病研究[M].北京:北京科学出版社,2001.
    [2] 张正斌.小麦遗传学[M]. 北京:中国农业出版社,2001.
    [3] 陆维忠,姚金宝.中国小麦抗赤霉病育种的成就、问题与对策[A].中国农业学会主编,21 世纪小麦遗传育种展望-小麦遗传育种国际学术讨论会文集[C].北京:中国农业科技出版社,2001:104-109.
    [4] Wang JZ. Epidemiology and management of wheat scab in China .In:Dubin HJ,Gilchrist L,Reeves J,etal(eds) [A]. Fusarium head scab:global status and future prospects[C]. Mexico: CIMMYT, 1996:97-105.
    [5] Placinta CM, D'Mello JPF, Macdonald AMC. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins[J]. Anim Feed Sci Tech, 1999, 78: 21-37.
    [6] Windels CE. Economic and social impacts of Fusarium head blight: Changing farms and ruralcommunities in the Northern Great Plains[J]. Phytopathology, 2000, 90: 17-21.
    [7] Cleveland TE, Dowd PF, Desjardins AE, et al. United States Department of Agriculture-Agricultural Research Service research on pre-harvest prevention of mycotoxins and mycotoxigenic fungi in US crops[J]. Pest Manag Sci, 2003,59: 629-642.
    [8] 张 勇 , 程 顺 和 , 张 伯 桥 . 影 响 小 麦 抗 赤 霉 病 育 种 成 效 的 限 制 因 素 [J]. 安 徽 农 业 科 学 , 2005,33(3):375-395.
    [9] 刘大均.小麦抗赤霉病育种―一个世界性难题[A].21 世纪小麦遗传育种展望-小麦遗传育种国际学术讨论会文集[C].郑州:河南郑州科技出版社,2001:4-7.
    [10] 刁现民,孙敬三.植物体细胞无性系变异的细胞学和分子生物学研究进展[J].植物学通报,1999 ,16(4) :372-377.
    [11] 张春义,杨汉民.植物体细胞无性系变异的分子基础[J].遗传,1994,16(2):44-48.
    [12] 沈晓蓉,陆维忠,许仁林等.小麦体细胞无性系 895004 与供体亲本的抗赤性、农艺性比较和 RAPD分析[J].江苏农业科学,1996,12(1):7-10.
    [13] Larkin PJ , Ryan SA , Brettell RIS et al.Theor Appl Genet[J]. 1984,67:443-455.
    [14] Peschke VM, Phillips RL, Gengenbach BG. Scienc[J].1987,238 :804-807
    [15] Burr B and Burr A. In : Plant Transposable Elements[A]. Nelson D ed. Plenum Press[C].New York.1988:317.
    [16] 朱至清, 陈英主编,植物体细胞无性系变异与育种[M].南京:江苏科学技术出版社, 1991.
    [17] 裴新梧,王亚馥.植物体细胞胚发生与作物育种[J].生物技术通报,2000,5:15-17.
    [18] 张炎、吴郁文、张翠兰等.农业文摘(作物遗传育种) [J].1984,2:1-6
    [19] SANFORD JC. Regarding the noverlty and breeding value of protoplast- derived variants of resset burbank (Solararm tuberoston L)[J]. Enphytica, 1984(33):709-715.
    [20] 罗士韦,何卓培.高等植物突变细胞系的研究[J].细胞生物学杂志,1982,4(2):1-9.
    [21] LARKIN PJ, Scowcraft WR. Somaclonal variation-a novel source of variability from cell culture for plant improvement[J].Theor. April. genet.1981(60): 197-214.
    [22] 胡含,植物体细胞遗传与作物改良[M].北京:北京大学出版社.1988.
    [23] 孙敬三,朱至清.体细胞无性系变异与品种改良[A].胡含,王恒立主编.植物细胞工程与育种[M].北京:北京工业大学出版社,1990.209-214
    [24] CARLSON PS. Methionine sulfoximine- resistant mutants of tobacco[J], Science, 1973(180):1366-1368.
    [25] Gengenbach B G and Green C E.Selection of T-cytoplasm maize callus cultures resistant to Helminthosporium Maydis race T pathotoxin[J]. Crop science, 1975, 15:645 -647.
    [26] Behnke M. Selection of potato callus for resistance to culture filtrates of phytophthora infestants and regeneration of resistant plant[J]. Theor.Appl.Genet.,1979, 55:69-71.
    [27] Ocampo C A, Moerschbacher B, Grambow H J, Increased lipoxygenase activity is involved in the hypersensitive response of wheat leaf cells with avirulent fungi or treated with fungal elicitor[J].Z Naturforsch, 1986.41:559 一 563.
    [28] Larkin P J and William R. Scowcroft, Eyespot disease of sugarcane. Inducction of host-specific toxin and its interaction with leaf cells[J], Plant Physiology,1981,(67):408-414.
    [29] Rines H W, Luke H H. Selection and regeneration of toxin insensitive plants from tissue cultures of cats (Avena sativa) susceptible to Helminthosporium victoriae[J]. Theor APPL Genet,1985, 71:10-21.
    [30] 孙立华,余建民,吕学锋.用组织培养法筛选水稻抗叶枯病突变体[J].遗传学报,1986, 13 (3):188-193.
    [31] 凌定厚.运用植物毒素离体筛选水稻抗胡麻叶斑病种质的研究[J].遗传学报,1986 ,3(3):194-200.
    [32] Chawla. H. S and G. Wenzel. In vitro selection for Fusaric Acid Resistant Barley Plants[J].Plant Breeding, 1987(99):159-163.
    [33] Yoder OC.Toxin in pathogenesis[J]. Ann.Rev. Phytopathol. 1990, 18: 103- 129.
    [34] Yoder OC.Use of pathogen-produced toxins in genetic engineering of plants and pathogens[J].See Fef.1983,88:335-353.
    [35] 王裕中,J.D.米勒.中国小麦赤霉病菌优势种-禾谷镰刀菌产毒素能力的研究[J].真菌学报,1994,13 (3 ):229-234.
    [36] 白清云.农产品中的真菌毒素污染[J].农业环境保护,1997,16(l): 40-43.
    [37] 徐雍皋,姚成林,方中达.麦类赤霉病病麦毒素对小麦毒性作用的研究[[J].南京农业大学学报,1990, 13( 2 ):58-63.
    [38] 薛伟龙,陆仕华,魏春妹等.DON在小麦赤霉病菌早期侵染中的作用[J].上海农业学报,1993,7(增刊):30-34.
    [39] 俞刚,陈利锋,姚红燕等.脱氧雪腐镰刀菌烯醇在小麦赤霉病病程中的作用[J].植物病理学报,2003, 33(1): 40-43.
    [40] 武爱波,赵纯森,瞿波等.镰刀菌毒素及其分子生物学研究进展[J].华中农业大学学报,2003,22(5):516-521.
    [41] Desjardins AE, Proctor RH, Bai GH. Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests[J]. Mol Plant Microbe lnt, 1996, 9 (9): 775-781.
    [42] Proctor RH, Hohn TM, McCormick SP.Reduced virulence of Gibberella zeae caused by disruption of atrichothecene toxin biosynthetic gene[J]. Molecular Plant Microbe Interaction,1995, 8(4):593-601
    [43] Yang ZJ, Ren ZL. Chromosomal distribution and genetic expression of Lophopyrum elongatum (Host) A. Love genes for adult plant resistance to stripe rust in wheat background[J]. Genet Res Crop Ev, 2001,48: 183-187.
    [44] 姚红燕,陈利锋,孙枫等.禾谷镰孢 Tril2 基因敲除突变体的致病力[J].南京农业大学学报,2005,28(2):32-36.
    [45] Bai GH, Desjardins AE, Planner RD. Deoxynivalenol- nonproducing Fusarium graminearum Causes initial Infection, but does not Cause Disease Spread in wheat Spikes[J]. Mycopathologia, 2001, 153:91-98.
    [46] Desjardins AE, Hohn T M, McCormick S P. Trichothecene biosynthesis in Fusarium species:chemistry, genetics and significance[J]. Microbiol Rev, 1993, 57 (3): 595-604.
    [47] Mesterhazy A. Types and components of resistance to FHB of wheat[J],Plant Breeding, 1995,.98:25-36.
    [48] Proctor R H, Hohn TM, McCormick SP, Desjardins AE. TRl6 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sportrichioides[J]. Appl Environ Microbiol, 1995, 61:1923-1930
    [49] 史建荣,王裕中,何晨阳等.镰刀菌单端抱霉烯毒素及其在植物病程中的作用[J].植物病理学报,1997,24 (4): 298-302.
    [50] 俞刚,陈利锋,谢卫平等.禾谷镰抱的产毒与致病性[J].南京农业大学学报,2001,24(4): 19-23.
    [51] Cooney J M, Lauren D R, Menna M E. Impact of competitive fungi on trichothecene production by Fusarium graminearum[J].Agri.Food Chem,2001,49:522-526.
    [52] Evans C K, Xie W, Macky R D. Biosynthesis of deoxynivalenol in spikelets of barley inoculated with macroconidia of Fusarium graminearum[J]. Plant Disease, 2000, 84(6):654-660.
    [53] 柴守玺.麦类作物赤霉病抗性离体筛选的原理与方法[J].麦类作物学报,2001,21(1):76-78.
    [54] M iller J D, Ew en M A. Toxic effects of deoxynivaleno l on ribo somes and tissues of the spring wheat cultivars Frontana and Casavant [J]. N aturalToxins, 1997, 5:234- 237.
    [55] CasaleW L , Hart L P. Inh ibit ion of 3H-leucine incorporation by tricho thecene myco toxins in maize and wheat tissue[J]. Phytopathology, 1988, 78:1672- 1677.
    [56] 王裕中,陈怀谷,杨新宁等.禾谷镰刀菌粗毒素的生物活性及其在小麦品种抗赤霉病鉴定中的应用[J].中国农业科学,1989, 22 (4 ):54- 57.
    [57] 王裕中,Miller J D.小麦品种对禾谷镰刀菌毒素的抗性研究[J].植物病理学报,1989, 19(2):105-108.
    [58] 陈怀谷,王永文,王裕中.应用赤霉菌毒素—芽鞘生测法鉴定小麦品种的抗赤霉病性[J].江苏农业科学,1990 (6 ):23-25.
    [59] 唐凤兰,李忠杰,张景春等.小麦赤霉菌粗毒素的制备和活性测定及在抗病性鉴定中的作用[J].黑龙江农业科学,1993 (3 ): 6-8.
    [60] 姚泉洪,刘宗镇,曾以申.抗病小麦对脱氧雪腐镰刀菌烯醇的脱毒及产物的生物活性[J].真菌学报,1996, 15 (1): 59-64.
    [61] 刘宗镇,陆仕华,黄晓敏等.DON 毒素的类生长激素活性与小麦赤霉病[J].上海农业学报,1993,9(2):92-96.
    [62] 刘思衡,廖海林,潘祥华.应用赤霉菌粗毒素测定小麦品种抗赤霉病性的初步研究[J].江苏农业科学(增刊),1989,1:72-75.
    [63] 刘思衡,连秀叶,康水英等.赤霉菌毒素不同制剂对小麦的生物效应[J].福建农业大学学报(自然科学版),1994,23(4): 416-420.
    [64] 张秋英,张绍南,张海峰等.小麦赤霉病病麦粒浸出液在小麦抗赤霉病鉴定中的应用研究初报[J].福建省农科院学报, 1994,9(2):58-61.
    [65] 黄晓敏.不同抗赤性小麦品种叶肉原生质体对 DON 的敏感性[J].上海农业学报,1991,7(增刊):8-15.
    [66] 陆鸣等.江苏 4 个禾谷镰刀菌菌株产生的主要毒素成份分析[J].江苏农业学报,1989.5(3):46-48.
    [67] 周楠,崔叶龙,陆维忠.抗小麦赤霉病体细胞突变体筛选研究[J].江苏农业学报,1993,9(2):22-27.
    [68] 郭丽娟,姚庆筱,张春义.利用细胞工程技术筛选小麦抗病新种质的研究[J].遗传学报,1996, 23 (1):40-47.
    [69] 陆维忠 , 程顺和 , 沈晓蓉等 . 细胞工程在小麦抗赤霉病育种中的利用 [J]. 江苏农业学报,1998,14(1):9-14.
    [70] 张炎,张翠兰,吴郁文等.细胞培养筛选小麦抗赤霉病突变体[J].科学通报,1991,(3):216-220.
    [71] 吴志凤,王裕中.利用禾谷镰刀菌粗毒素筛选小麦抗赤霉病突变体[J].江苏农学院学报,1994,15(1):35-39.
    [72] 姚泉洪,刘宗镇,黄晓敏等.DON 与 2,4-D 在小麦愈伤组织分化、植株 K+吸收、运输上的相互作用[J].上海农业学报,1991,7(增刊):16-23.
    [73] 刘宗镇,陈全庆,姚泉洪等.脱氧雪腐镰刀菌烯醇对小麦愈伤组织诱导和分化的类生长激素作用[J].上海农业学报,1991,7(增刊):1-7.
    [74] Bruins MBM.,Karai I.,Schepers J.et al.Phytotoxicity of deoxynivalenol to wheat tissue with regard to in vitro selection for Fusarium head blight resistance[J].Plant Sci,1993,94:195-206.
    [75] Mesterhazy AT.,Baartok,Sagi F. New results in selecting scab resistant wheats and its impact on toxin contamination[J].Genet Pol,1994,35b:26-47.
    [76] MacDonald MV.,Ingram DS. In vitro selection for resistance to Alternaia Brassicicola in Brassica napus ssp.oleifera(winter oilseed rape) using partially purified culture filtrates[J].Cruc.Newslett. 1985,10:97-100.
    [77] Sacristan MD. Resistance response to Phoma Lingan of plants regenerated from selected cell and embryogenic cultures of haploid(Brassica napus) [J].Theor. Appl. Genet,1982,61:193-200.
    [78] 赵蕾,梁元存,张天宇.利用致病毒素筛选植物抗病突变体的研究进展[J].生物技术,2001,11(3):41-44.
    [79] 陆维忠.小麦抗赤霉病体细胞无性系变异的诱导与选育[J].江苏农业科学,1991,4:13-15.
    [80] 陆维忠 , 蒋宁 , 周楠等 . 小麦抗赤霉病无性系变异的研究与应用 [J]. 农业生物技术学报,1995,3(2):7-11.
    [81] 郭丽娟,姚庆筱,胡启德.通过组织培养筛选小麦抗赤霉病突变体的研究[J].遗传学报,1992,19(3):259-265.
    [82] 陈耀锋,韩德俊,闵东宏等.小麦单倍体无性系抗镰刀菌毒素细胞系的筛选[J].西北农业大学学报,1995,23(2):70-73.
    [83] 陈耀锋,李春莲,任惠莉等.普通小麦抗赤霉细胞工程育种研究Ⅱ抗镰刀菌毒素细胞变异系的生理生化特性及抗赤性鉴定[J].农业生物技术学报,1999,7(2):147-151.
    [84] 刘选明,徐合奎,周朴华.小麦体细胞无性系的建立及抗赤霉病突变体的诱导[J].湖南农业大学学报,1997,23(3):205-209.
    [85] 欧阳俊闻,周嘉平,贾双娥等.应用花药培养体系筛选小麦抗赤霉病突变体的研究[A].胡含,王恒立主编:植物细胞工程育种[C].北京工业大学出版社,1990: 254-260.
    [86] 刘思衡.小麦赤霉病菌毒素在育种中的应用[J].福建农业科技,1994,3:27-29.
    [87] 孙光祖,唐凤兰,王广金等.辐射诱变与生物技术结合创造小麦新种质的研究Ⅱ.小麦新种质的创造[J].麦类作物,1998,18(6):1-4.
    [88] 陈耀锋,韩德俊等,普通小麦抗赤霉病细胞工程育种研究 I 抗镰刀毒素细胞变异系的分离[J].农业生物技术学报,1998,6(3): 217-221.
    [89] Pedcoweki j. Distributian of deoxnivalenol in barky kernels infected by Fusarium[J]. Natural, 1998,42(2):s81-s83.
    [90] Coolley JM, Lauren DR, Menna ME.Impact of competitive fungi on trichothecene production by Fuarium graminearum[J]. Journal Agricultural Food Chemistry, 2001,49:522-526.
    [91] 石晓燕,邓福友.禾谷镰刀菌液体培养产毒条件研究初报[J].河北农业大学学报,1992, 15 (4): 34-38.
    [92] 陆鸣,王裕中,陈怀谷等.禾谷镰刀菌产毒素培养条件及粗毒素提取法[J].江苏农业学报,1992,8(1):30-34.
    [93] 王裕中.三个南京禾谷镰刀菌产生的毒素[J].植物病理学报,1989,19(1):40.
    [94] Miller JD et al. Production of deoxynivalenol and related compounds in liquid culture by Fusarium graminearum[J]. Can.J. Micrbiol. 1983,29: 1171-1178.
    [95] 匡开源.麦类赤霉菌的致毒力比较[J].上海农业科技,1985,(30):21-22.
    [96] 翁益群.用病原粗毒素进行小麦抗赤霉病性的生物学测定[J].南京农业大学编.农业生物技术研究进展.1989:63-64.
    [97] Pathre SV et al. Analysis of Deoxynivalenol from cultures of species. Applied and Environ[J]. Microbiology,1986,5:992-994.
    [98] 刘思衡.小麦赤霉菌毒素的提取与检测[J].福建稻麦科技,1994,12(1):43-48.
    [99] Lepoivre P.,Viseur K.,Duhem. et al. Double-layer culture technique as a tool for selection of calluses resistant to toxin in material from plant pathogenic fungi In:Somaclonal variations and crop improvement[M].Nijhoff, Dordrecht, 1986: 45-52.
    [100] 杨建明,沈秋泉,杨文新.抗赤霉病细胞工程育种进展[J].大麦科学,2000,2:8-12.
    [101] 穆利霞,何晓明,王小菁.植物抗性突变体离体筛选和鉴定研究进展[J].广东农业科学,2006,1:30-33.
    [102] 王蒂.细胞工程学[M].北京:中国农业出版社,2003.
    [103] Hartman,etal. Selection of Alfalfa (medicago stative cell lines and regeneration resistant to the toxin (s)produced by fusarium oxysporum f.sp[J]. Medicaginis.Plant Science Letter,1984,34:183-194.
    [104] 李社荣,张敬,李安生等.小麦抗赤霉菌毒素细胞变异体的筛选及再生植株生化特性分析[J].农业生物技术学报,1997,5(3):216-220.
    [105] 韦彦余,赵民安,王晓军.植物体细胞无性系变异在植物性状改良中的应用[J].植物生理学通讯,2004,40(6):763-770.
    [106] 孙光祖.利用体细胞无性系变异选育小麦抗赤霉病新品系的研究[A].中国科技报告[R].中国核情报中心.北京:原子能出版社,1997.1-8.
    [107] 李文雄,曾寒冰,胡尚连.小麦未熟胚离体培养的研究再生植株后代主要农艺性状变异的遗传稳定性[J].东北农业大学学报,1995,26(3):209-213.
    [108] 朱至清.植物细胞工程[M].北京:化学工业出版社,2003:104-105.
    [109] 傅雪琳,和平,朱庆麟.小麦禾谷镰刀菌毒素抗性系的筛选及抗性特性[J].西北农业大学学报,1996,24(3):16-20.
    [110] 郭丽娟,胡启德等.诱发玉米抗小斑病突变体的研究 IV.从玉米单倍体胚性细胞无性系筛选抗玉米小斑病突变体[J].遗传学报,1987,14(5): 355-362.
    [111] 史建荣,王裕中,沈素文等,DON 毒素和小麦互作对小麦幼穗细胞可溶性蛋白的影响[J].植物病理学报,1998. 28(4):317-322.
    [112] Miller J D, Arnison P G. Degradation of deoxynivalenol by suspension cultures of the Fusarium head blight resistant wheat cultivar Frontana [J]. Canadian Journal of Plant Pathology, 1986, 8:147-152.
    [113] 胡尚连,李文雄,曾寒冰.小麦未熟胚离体培养的研究—再生植株后代籽粒醇溶蛋白和谷蛋白亚基及蛋白质含量变化[J].作物学报,1998,24(2):204-212.
    [114] 陈佩度.作物育种生物技术[M].北京:中国农业出版社,2001 第一版.
    [115] 贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10.
    [116] 沈晓蓉,张忠廷,许仁林等.小麦抗感赤霉病品种的 RAPD 分析初报,江苏农业科学,1993,9(4):50-52.
    [117] 沈晓蓉,周淼平,任丽娟等.抗、感小麦赤霉病品种 RFLP 的初步分析[J].江苏农业科学,1998,14(3):129-134.
    [118] 孙光祖,李忠杰,李希臣等.小麦抗赤霉病突变体的选育及 RAPD 分子验证[J].核农学报,1999,13(4):202-205.
    [119] 向海洋,陆维忠,朱作为等.小麦品种“扬麦 158”与其两个抗赤霉病突变系的 AFLP 分析[J].江苏农业科学,2001,17(3):190-192.
    [120] 董汉松主编.植物诱导抗病性原理和研究[M].北京:科学出版社,1995 第一版.
    [121] 曹仪植,宋占午主编.植物生理学[M].甘肃:兰州大学出版,1998 第一版.
    [122] 何觉民.关于小麦抗赤霉病育种的研究Ⅱ小麦品种形态抗赤霉病性的机制[J].湖南农学院学报,1983,3:13-18.
    [123] 段双科,王保通.陕西小麦新品种(系)抗小麦赤霉病、白粉病和雪腐病性鉴定研究,国外农学-麦类作物,1996(4):38-42.
    [124] 沈秋泉,陈楚和,全张德.小麦杂种一代赤霉病抗性遗传研究[J].杭州农业科学,1979(5):12-19.
    [125] 陈楚和.小麦抗赤霉病遗传的研究[J].浙江农业大学学报,1983,9(2):115-126.
    [126] 廖玉才,余毓君.七个小麦品种抗赤霉病性的双列杂交分析[J].华中农学院学报,1985(3):1-10.
    [127] 刘景松.小麦有关性状与赤霉病的相关分析[J].黑龙江农业科学,1982,2:39-42.
    [128] 黄德崇,汪志远,赵文俊等.抗赤霉病小麦基因库群体的抗性分析[J].上海农业学报,1988,4(2):7-12.
    [129] 刘思衡,杨彬元.小麦抗赤霉病性遗传的初步分析[J].福建农业学报 , 1988,2:43-48.
    [130] 姚金保,葛永福,周朝飞等.小麦赤霉病抗性与若干农艺性状的相关性研究[J].江苏农业科学,1995,6:13-16.
    [131] 刘思衡,巫升鑫,李始明等.小麦抗赤霉病性超亲选育研究[J].中国农业科学 1998,31(1):40-45.
    [132] Gocho,H.,T.Hirai and T.Kashio. Induced mutations and genetic correlation between scab resistance and some agronomic characters in wheat[A].Proc.6th International Wheat Genetics Symposium.pp[C]. 1983,801-805.
    [133] 邹明烈,柏贵华,赵寅槐等.小麦品种不同株高等基因系赤霉病抗性比较[J].江苏农业科学,1988,4(1):1-5.
    [134] 刘宗镇,汪志远,赵文俊.小麦品种资源抗赤霉病性研究[J].上海农业学报,1985,1(2):75-84.
    [135] 陈焕玉,张乐庆,潘雪萍等.普通小麦八个品种对赤霉病抗扩展性的双列杂交分析[J].华南农业大学学报,1989,10(4):56-64.
    [136] 林一波,杨竹平,吴兆苏.不同地理来源抗赤霉病小麦品种的抗性遗传分析[J].上海农业学报,1992,8(1):31-36.
    [137] 杨崇力,赵玲瑛.小麦赤霉病抗性与农艺性状的相关性[J].作物杂志,1996 (1):33-34.
    [137] 刘惕若,薛国兴,张匀华等.小麦品种对赤霉病的抗性与抗病害扩展力的研究[J].植物病理学报,1988,18(5):113-118.
    [139] 蒋国梁,吴兆苏.小麦矮秆早 x 苏麦 3 号杂交组合对赤霉病的抗扩展性遗传和几个农艺性状相关的分析[J].南京农业大学学报,1989,12(4):122-123.
    [140] 陆维忠,刘芬兰,林一波等.小麦赤霉病抗性与株高的相关性分析[A],朱立宏主编:主要农作物抗病性遗传研究进展[C],南京江苏科学技术出版社,1990:229-235.
    [141] 刘思衡.小麦抗赤霉病形态结构研究进展[J].福建稻麦科学,1994,4:43-47.
    [142] 欧阳研.小麦叶片接种赤霉病后的组织病理学研究[J].湖北农业科学,1988(1):19-20.
    [143] 张永红,叶华智.小麦品种抗赤霉病的组织学研究[J].四川农业大学学报,1993,11(3):444-445.
    [144] 于泉林,刘惕若,刘宇新等.小麦品种抗赤霉病穗轴病理解剖的研究[J].黑龙江八一农垦大学学报,1996,8(3):42-45.
    [145] 黄丽华.不同小麦品种初花期穗轴解剖结构的差异[J].安徽农业科学,1998,26(3):254-255.
    [146] 张匀华.我国小麦赤霉病抗性机制研究进展[J].黑龙江农业科学,2000(1):41-43.
    [147] 刘思衡.小麦抗赤霉病生理生化研究进展[J].福建稻麦科学,1994,12(2):43-47.
    [148] 李又芳.小麦品种根细胞膜透性与抗赤霉病性关系的初步研究[J].华中农业大学学报[J],1987,6(3):234-237.
    [149] 魏春妹,陆仕华,薛伟龙等.DON对小麦愈伤组织呼吸及透性的影响[J].上海农业学报,1991,7(增刊):40-43.
    [150] 候宁,刘春光,刘根齐等.异源细胞质小麦的赤霉病抗病性研究[J].麦类作物学报[J],2003,23(1):7-11.
    [151] 姚泉洪,刘宗镇,黄晓敏等.DON 对小麦胚芽鞘伸长作用[J].上海农业学报,1991, 7(增刊):79-80.
    [152] 王宝山.生物自由基与植物膜伤害[J].植物生理学通讯,1988,(2):12-16.
    [153] 王保通,商鸿生.小麦高温抗条锈性表达与苯丙氨酸解氨酶和多酚氧化酶活性的关系[J].麦类作物学报,2001,21(3):42-45.
    [154] 张建军,李 祥,候明生.小麦品种对梭条斑花叶病毒病抗病特性的研究 Ⅱ抗病性与植株内多酚氧化酶活性、过氧化物酶活性及其同工酶酶谱的关系[J].华中农业大学学报,1996,15(5):420-425.
    [155] 张 薇,李天林,曹连莆.小麦抗白粉病性与酶活性的关系[J].石河子大学学报,1997,1(1):43-46.
    [156] 彭世清.植物多酚氧化酶的研究进展[J].热带农业科学,2000,3:61-66.
    [157] 王雅平,刘伊强,施磊等.小麦对赤霉病抗性不同品种的 SOD 活性[J].植物生理学报,1993,19(4):353-358.
    [158] 宋玉立. 小麦品种抗赤霉病性与 SOD 酶活性比较[A].全国第二届青年农学学术年会论文集[C].中国农业科技出版社,1995:809-812.
    [159] 陈利锋,宋玉立,徐雍皋等.抗感赤霉病小麦品种超氧化物歧化酶和过氧化氢酶的活性比较[J].植物病理学报,1997,27(3):209-213.
    [160] Maria AS. Peroxidase activity and isoenzymes in the culture medium of Tacl adapted tomato to suspension cell[J]. Plant Cell Tissue and Organ Culture. 1996. (44):161-167.
    [161] Mellen JE. Elicitation of cotton isoperoxidase by aspergillus fiavus and other fungi pathogenic to cotton physiological[J].Plant Pathology. 1985,27:?81-288.
    [162] 李矩华,李又芳.小麦不同品种抗赤霉病与同工酶[J].华中师范学报,1982,(2):105-110.
    [163] 叶华智.小麦与禾谷镰刀菌相互作用下病穗过氧化物酶和酯酶的变化[J].植物病理学报,1988,18(3):169-174.
    [164] 谢曲.小麦过氧化物酶活性与抗病性的相关分析[J].湖北农业科学,1989,1:9-13.
    [165] 徐郎莱,徐雍皋.过氧化物酶及其同工酶与小麦抗赤霉病性的关系[J].植物病理学报,1991,21(4):285-290.
    [166] 徐健容,叶华智.抗坏血酸氧化酶与小麦抗赤霉病关系的研究[J].四川农业大学学报,1998,16(3):319-321.
    [167] 陈利锋,叶茂炳,陈永幸等.抗坏血酸与小麦抗赤霉病性的关系[J].植物病理学报,1997,27 (2 ):113-118.
    [168] 赵会贤,薛秀庄,王祥正等.小麦抗赤霉病菌毒素的生理生化机制Ⅰ赤霉病菌粗毒素对小麦幼苗膜脂过氧化的影响[J].陕西农业科学,1995,(1):4-8.
    [169] 叶茂炳,徐郎莱,徐雍皋等.苯丙氨酸解氨酶和绿原酸与小麦抗赤霉病性的关系[J].南京农业大学学报,1990,3:103-107.
    [170] 万永芳,叶华智.小麦抗赤霉病的一些生理生化特性[J].四川农业大学学报,1993,11(3):439-443.
    [171] 王雅平,吴兆苏,刘伊强.小麦抗赤霉病性的生化研究及其机制的探讨[J].作物学报,1994,20(3):327-333.
    [172] 黄 丽 华 , 吴 兆 苏 . 抽 穗 期 小 麦 抗 赤 霉 病 与 酚 类 物 质 的 关 系 初 探 [J]. 安 徽 农 业 科学,1998,26(3):250-251.
    [173] 杨艳芳,梁永超,娄运生等.硅对小麦过氧化物酶、超氧化物歧化酶和木质素的影响及与抗白粉病的关系[J].中国农业科学, 2003,36(7):813-81.
    [174] Hammerschmidt R,Lamport DTA,Mulden EP. Cell wall hydroxyproline enhancement and lignin deposition as an early event in the resistance of cucumber to Cladosporium cucumerinum[J].Physiol Mol Plant Pathol.1986,29:147-153.
    [175] 宋凤鸣,郑重,葛起新.富含羟脯氨酸糖蛋白在植物-病原菌相互作用中的积累、作用及调控[J].植物生理学通讯,1992,28:141-145.
    [176] 宋凤鸣,郑重.细胞壁羟脯氨酸和游离脯氨酸与棉花对枯萎病抗性的关系[J].植物生理学报,1995,21(3):233-241.
    [177] 贾波,刘宇刚,欧阳光察.黄瓜叶片富含羟脯氨酸糖蛋白的诱导[J].植物生理学通讯,1993,29:337-339.
    [178] 胡景江,朱玮,文建雷,杨树细胞壁 HRGP 和木质素的诱导积累与其对溃疡病抗性的关系[J].植物病理学报,1999,29(2):151-156.
    [179] 孙金月,赵玉田,常汝镇等.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究[J].中国农业科学,1997,30(4):9-15.
    [180] 王海仁,徐誉泰,杨秀梅等.麦胚凝集亲在小麦体内的存在及消长[J].山东大学学报(自然科学版),1985,1:89-94.
    [181] 袁汉博,赵立忱,蔡敏莺等.麦胚凝集素对小麦赤霉病菌禾谷镰刀菌分生孢子萌发作用的研究[J].上海师范大学学报(自然科学版),1985. (4): 57-60.
    [182] 许燕,吴畏,沈瑛等.可溶性水稻凝集素与水稻稻瘟病关系的研究[J].上海师范大学学报(自然科学版),1999,26(2):99-100.
    [183] 刘士庄,施承,张洁等.棉花凝集素的分离纯化及其对棉花枯萎病菌的影响[J].植物病理学报,1996.26(4):311-315.
    [184] Strange RN,Smith H.,A fungal stimulant in anthers which predisposes wheat to attack by Fusarium graminearum, Physiological Plant Pthology[J].1971,(1): 141-150.
    [185] Strange RN,Mjer JR,Smith H,The isolation and identification of choline and betaine as two major components in anthers and wheat germ that stimulate Fusarium graminearum in vitro [J]. Physiological Plant Pthology,1974 (4):277-290.
    [186] Pearce RB,Strange RN,Smith H,Glycine betaine and choline in wheat: distribution and relation to infection by Fusarium graminearum[J]. Phytochemistry, 1976,(15):953-954.
    [187] 李祥义.小麦盛花期穗胆碱浓度与赤霉病抗性的关系研究初报[J].作物学报,1994,20(2):176-185.
    [188] 叶华智.胆碱与小麦品种抗赤霉病关系的研究[J].西南农业大学学报,2001,23(6):544-546.
    [189] 姜晓红,沈晓荣,许仁林等.小麦抗赤霉病性及其可溶性蛋白[A],小麦抗病生物技术育种研讨会论文集[C],1993:156-161.
    [190] 童一中.小麦品种对赤霉病抗性及其遗传基础的初步探讨[J].上海农业科技,1980,2:8-11.
    [191] 张乐庆,潘雪萍.小麦品种对赤霉病抗扩展的遗传研究[J].华南农学院学报,1982,3(4):21-29.
    [192] 夏穗生,周朝飞,钱存鸣等.苏麦 3 号、望水白赤霉病抗性遗传初步研究[J].江苏农业科学,1984,8:5-8.
    [193] 廖玉才,余毓君.小麦地方品种望水白抗赤霉病性的遗传分析[J].华中农学院学报,1985,4(2):6-14.
    [194] 杨云蒸.小麦抗赤霉病育种的实践与思考[J].江苏农业科学,1989(增刊):60-63.
    [195] 顾佳清.小麦赤霉病抗性遗传的研究[J].中国农业科学,1983,16(6):61-64.
    [196] 赵忠贞,闵捷.小麦品种抗赤霉病遗传特性的初步观察[J].浙江农业科学,1980,6:286-287.
    [197] 周朝飞,夏穗生,钱存鸣等.关于小麦抗赤霉病育种问题[J].中国农业科学,1987,20(2):19-25.
    [198] 柏贵华,肖庆璞,梅籍芳.六个小麦品种抗赤霉病性的遗传表现[J].上海农业学报,1989,5(4):17-23.
    [199] 柏贵华,周朝飞,钱存鸣等.小麦品种抗赤霉病扩展基因的遗传分析[A].朱立宏主编,主要农作物抗病性遗传研究进展[M],南京:江苏科学技术出版社.1990:170-175.
    [200] 肖世和.小麦抗赤霉病性的配合力及因子分析[J].湖南农学院学报,1985,11(1):9-16.
    [201] 李又芳,余毓君.七个小麦品种对赤霉病抗扩展性指标的双列杂交分析[J].华中农业大学学报,1988,7(1):7-14.
    [202] 余毓君,廖玉才.小麦品种对赤霉病抗扩展类型抗性组分的探索分析[J].作物学报,1988,14(3):194-201.
    [203] 蒋国梁,吴兆苏.小麦品种对赤霉病抗扩展性遗传的动态分析[J].作物杂志,1989,3:15-16.
    [204] 王雅平,王先进,刘伊强.小麦抗赤霉病品种的配合力及复交 F1 的抗性特点[J].中国农业科学,1990,23(6):6-12.
    [205] 贾高峰,陈佩度,秦跟基等.望水白和苏麦 3 号构建的 DH 群体赤霉病抗性比较[J].作物学报,2005,31(9):1179-1185.
    [206] 高力,陈 飞,周立人等.小麦品种望水白的抗赤霉病性遗传分析[J].麦类作物学报 2005,25(5):5-9.
    [207] 盖钧槛,管荣展,王建康等.植物数量性状 QTL 体系检测的遗传试验方法[J].世界科技研究与发展,1999,21(1):34-40.
    [208] Nakagawa,Mo. Studies on the resistance of wheat varieties to gibberella saubine II Genetic factors affecting resistance to G. Saubinetti lkushuguku zasshi(In Japanese,English Summary) [J]. Jap. J.Breed:1955,5:15-22.
    [209] Bai GH, et al. Scab of Wheat:Prospects for Control[J].Plant Disease, 1994, 78:760-766.
    [210] 姚金宝,陆维忠.中国小麦抗赤霉病育种研究进展[J].江苏农业科学,2000,16(4):242-248.
    [211] Ban T. Genetic analysis of resistance to fusarium head blight caused by Fusarium graminearum in wheat[A]. Proceeding of the 9th international wheat genetics symposium[A]. 1998,1:192-196.
    [212] Snijders CHA. The inheritance of resistance to head blight caused by Fusarium culmorum in winter wheat[J].Euphytica.,1990,50:11-18.
    [213] 余毓君.小麦品种苏麦 3 号抗赤霉病性及产量因素的单体分析[J].华中农学院学报,1982,2:70-72.
    [214] 姚金宝,葛永福,王书文等.小麦品种苏麦 3 号抗赤霉病的染色体定位研究[J].作物学报,1997,23(4):450-453.
    [215] ZHOU WC, KOLB,FL. BAI GH et al. Effect of individual Sumai3 chromosmes on resistance to scab spread with in spikes and deoxynivalenol accumulation within kernels in wheat[J]. Hereditas,2002,137:81-89.
    [216] Anderson J,waldron BL. Moreno-Sevilla B.et al. Detection of Fusarium head blight resistance QTL in wheat using AFLPs and RLFPs RLFPs[A]. Canada:Proc 9th International Wheat Genet symposium (SlinkardAEed)[C],1998:135-137.
    [217] 任丽娟,沈晓蓉,周森平等.3 个小麦重组自交系群体抗赤霉病 QTLs 的 SSR 分析[J].中国农业科学 2003,36(10):1150-1155.
    [218] 李又芳,余毓君.小麦品种温州红和尚对赤霉病抗性指标的单体分析[J].华中农业大学学报,1988,7(4):327-331.
    [219] 余毓君.平湖剑子麦、平湖大太宝、崇阳红麦、延岗坊主、万年 2 号抗赤霉病性基因分析[J].华中农业大学学报,1991,17(4):248-254.
    [220] 陈军营,何盛莲,陈新建等.体细胞无性系变异在小麦育种中的应用[J].麦类作物学报,2005,25(2):112-115.
    [221] 陈耀锋.普通小麦单倍体细胞无性系的建立[J].西北农业学报,1993,2(3):15-18.
    [222] 陈耀锋,李春莲,韩德俊等.离体培养的小麦花药对镰刀菌毒素反应之研究[J].西北农业学报,1997. 6 (2 ):23-25.
    [223] 阎博.利用幼穗愈伤组织筛选小麦抗赤霉病菌毒素体细胞突变体的研究[J].西北农业学报,1995,4(4):8-12.
    [224] 刘思衡.小麦幼穗离体培养筛选抗赤霉病细胞无性系的研究[J].福建农科院学报,1997, 12(3):7-10 .
    [225] 顾玉成,吴金平.利用离体培养技术筛选抗病突变体的研究进展[J].湖北农业科学,2004,2:56-59.
    [226] Wang, Y. Z. and Miller, J. D. Effects of Fusarium graminearum metabolites on wheat tissue in ralation to Fusarium Head Blight resistance[J]. Phytopathology,1988, 122:118-125.
    [227] 刘录祥,郑企成.农作物细胞工程育种:现状与未来[J].植物细胞工程与分子育种技术研究,2004:13-19.
    [228] 赵成章.禾谷类作物体细胞无性系变异及其应用[A].颜昌敬主编,农作物组织培养[M].上海:上海科学技术出版社,1991:91-101.
    [229] 余毓君.小麦体细胞多个性状变异特点的研究[J].华中农业大学学报,1997,16(3):236-240.
    [230] 李浚明.植物组织培养教程[M].北京:中国农业大学出版社,2002.
    [231] 李莉,官春云,刘忠松.植物体细胞无性系变异及其突变体的RAPD鉴定分析[J].作物研究,2004,4(5):376-379.
    [232] 向海洋,陆维忠,朱作为等.小麦赤霉病抗性的 RAPD 标记筛选与分析[J].农业生物技术学报,2001,9(3):247-250.
    [233] 任丽娟,许雯,沈晓蓉等.中国春-苏麦 3 号 7A 代换系抗赤霉病基因的 RAPD 分析[J].农业生物技术学报,2000,8(3):216.
    [234] 赵涵,陈佩度,赵寅槐等.苏麦 3 号感赤霉病近等基因系的选育及分子标记[J].遗传学报,2002,10(2):894-898.
    [235] 杨安钢,毛积芳,药立波主编.生物化学与分子生物学实验技术[M].北京:高等教育出版社,2001:248-252.
    [236] Devos KM,Gale MD.The use of random amplified polymorphic DNA marker in wheat[J].TheorApplGenet,1992,84:567-572.
    [237] Brown PTH,Lange FD,Kranz E and Lorz H. Analysis of single protoplasts and regenerated plants by PCR and RAPD technology[J]. Mol Gen Genet. 1993,237:311-317.
    [238] Yao Guang Liu,Naoki Mori and koichiro TSUNEWAKI. Restrietion fragment length polymorphism (RFLP) analysis in wheat .I.Geneomic DNA library construction and RFLP analysis in common wheat[J].Jpn J Genet. 1990,65:367-380.
    [239] 薛应龙,欧阳光察.植物抗病的物质代谢基础[A].余叔文,汤章城主编,植物生理与分子生物学(第二版)[M],北京:科学出版社,2001:770-781.
    [240] 薛应龙.植物生理学实验手册[M].上海:上海科学技术出版社,1985.
    [241] 苗则彦,赵奎华,刘长远等.葡萄抗感白腐病品种 PAL 酶、PPO 酶和 SOD 酶活性比较[J].沈阳农业大学学报,2003-06,34(3): 177-180.
    [242] 吕秀兰,苟琳,龚荣高等. 葡萄品种对霜霉病抗性鉴定的生化指标研究[J].植物病理学报,2004,34(6):512-517.
    [243] Schroeder HW. Factors affecting resistance of wheat to scab caused by Gibberella zeae (Schw.)[J]. Petch. St. Paul,MN:University of Minnesota, 1963,53:831-838
    [244] 沈 浩,刘登义.遗传多样性概述[J].生物学杂志,2001,18(3):5-9.
    [245] 孙其信,黄铁诚,倪中福.小麦杂种优势群研究 I.利用 RAPD 标记研究小麦品种间遗传差异[J].农业生物技术学报,1996,4(2 ): 103-109.
    [246] 郑有良,陈玉清,魏育明等.四川主栽小麦品种遗传多样性研究[A].中国农学会.21 世纪小麦遗传育种展望-小麦遗传育种国际学术讨论会文集[C].北京:中国农业科技出版社,2001:363-368.
    [247] 刘三才,郑殿升,曹永生等.中国小麦选育品种与地方品种的遗传多样性[J].中国农业科学,2000,33(4):20-24.
    [248] 张玉.小麦抗赤霉病地方品种的品质性状和 RAPD 分析[D].四川农业大学,硕士学位论文,2005.
    [249] 董玉琛,曹永生,张学勇等.中国普通小麦初选核心种质的产生[J].植物遗传资源学报,2003,4(1)1-8.
    [250] Nei M,Li WH. Mathematical modal for studying genetic variation in term of restriction endonucleases[J]. Proc Natl Acad Sci USA,1979,96:714-722.
    [251] 解新明,云锦凤.植物遗传多样性及其检测方法[J].中国草地,2000,6:51-59.
    [252] 沈 浩,刘登义.遗传多样性概述[J].生物学杂志,2001,18(3):5-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700