食细菌线虫与细菌的相互作用及其对土壤氮素矿化和植物根系生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食细菌线虫是土壤中重要的食细菌微型动物,由于其在土壤中数量多,代谢活性高,与微生物关系密切,关于食细菌线虫与微生物的相互作用及其生态效应的研究引起了生态学家普遍的关注。尽管研究结果不尽相同,但总体趋势都揭示食细菌线虫对细菌的取食所产生的直接或间接作用促进了土壤氮素矿化及氮素养分供应,促进了多数植物的生长和氮素营养状况改善。但是食细菌线虫与细菌之间的相互作用必然也会受到线虫种类、密度,细菌种类及环境因素等的影响。并且基于原生动物对植物生长促进作用的激素效应的研究,由于食细菌线虫在生理及生态上与原生动物极相似,并且在土壤中其数量和原生动物相当甚至超过原生动物,因此有理由认为食细菌线虫对植物生长的促进作用机理也可能存在线虫作用下的激素效应。
     本文在实验室已有工作基础上,首先采用悉生培养系统,并在设置了不同线虫牧食强度和不同湿度条件下,研究模式食细菌线虫(C.elegans)与细菌(B.subtilis)的相互作用及其对土壤氮素矿化的影响;其次,在自然土培条件下,研究供试土壤土著食细菌线虫及模式线虫(C.elegans)对番茄(Lycopersicon esculentum Mill)和小麦(宁麦9号)根系生长的影响,并初步探讨其中的激素作用及同时对土壤微生物群落结构的影响。旨在进一步阐明土壤食细菌线虫与细菌的相互作用及其对植物生长的促进作用机理。
     研究结果表明:
     1.土壤食细菌线虫与细菌的相互作用对细菌数量的影响有别于一般的牧食关系,食细菌线虫的取食促进了细菌的繁殖,并且能够促进细菌的活性。土壤食细菌线虫与细菌的相互作用进一步促进了土壤氮素的矿化,尤其是铵态氮和矿质氮含量的提高,但是,在悉生培养条件下,土壤硝态氮表现出强烈的降低趋势。
     2.食细菌线虫对细菌的促进作用存在“适度牧食”密度,即过度牧食的情况下,线虫对细菌的促进作用下降,同时线虫的增长幅度也下降。在试验设置的三个线虫取食密度下,线虫对细菌的促进作用表现为接种20条线虫·g~(-1)土处理>10条线虫·g~(-1)土>40条线虫·g~(-1)土。并且,线虫对细菌过度牧食在相对降低细菌数量的同时,对土壤氮素的矿化作用也相应下降。不同取食密度处理间,线虫对土壤氮素矿化的促进作用程度与对细菌的增殖促进作用程度趋势一致。
     3.食细菌线虫与细菌之间的相互作用受土壤水分含量的影响,在试验设置的含水量条件下,线虫对细菌的增殖促进作用总体表现为23%含水量处理>17%含水量处理>28%含水量处理,并且对土壤氮素矿化的促进作用也表现为23%含水量处理高于17%和28%两个含水量处理,而后两个含水量处理之间没有明显差异。因为线虫是水生动物,在土壤中需要水膜来生存和运动。但是,线虫在薄的水膜中的迁移活动比在自由水中要快,而线虫在不同含水量条件下迁移、分布和活动的改变也就影响了对细菌生物量周转以及土壤养分的作用。
     4.通过添加基质(猪粪和稻草)培养获得食细菌线虫的大量繁殖,并根据线虫虫体大小的特点采用两种孔径的网袋将内层添加基质土壤和外层未加基质土壤区分,从而内层大量繁殖的线虫通过1mm网袋迁移至外层未加基质的土壤,而采用5μm网袋则限制了线虫向外层土壤的迁移,从而获得土著食细菌线虫大量富集的外层土壤及对照土壤。并且1mm网袋外层主要是Protorhabditis.sp线虫的增加。添加两种基质的5μm网袋处理,外层土壤线虫数和空白处理差异不大。添加猪粪处理对食细菌线虫的繁殖作用优于添加稻草处理,这主要可能是由于猪粪的C:N比比较小,分解较快,线虫的繁殖,尤其是食细菌线虫的繁殖,和有机物料的分解速度直接相关。
     5.无论是直接原位富化获得土著食细菌线虫的大量繁殖,还是接种外源食细菌线虫,都促进了植物(番茄和小麦)的根系生长,主要是促进了根系形态的改变,即根系发育成了更长、更细、有更多分支的根系系统。
     6.食细菌线虫富集处理与对照处理相比,在种植番茄和小麦的土壤中IAA和GA_3的含量都显著提高。将食细菌线虫各处理作总平均值的分析表明,在种植番茄的土壤中,食细菌线虫使IAA和GA_3含量分别提高了72.7%和71.4%;种植小麦的土壤中,食细菌线虫分别使IAA和GA_3含量提高了90.7%和41%。通过Biolog的测定考察食细菌线虫对种植植物土壤微生物(细菌)群落的影响表明食细菌线虫的存在促进了土壤微生物群落的总体活性(AWCD值表示),并显著地改变了土壤微生物群落结构:接种食细菌线虫处理,土壤微生物对碳源类群的利用发生了显著的改变。而土壤中激素含量的提高主要应该是由于线虫的选择性取食对土壤微生物群落结构的改变。将这些结果与食细菌线虫对植物根系生长的促进作用相结合,在一定程度上说明了食细菌线虫同原生动物一样,存在对植物根系生长促进作用的激素效应。
     7.食细菌线虫对微生物群落结构的影响以及对植物根系的促进作用大小受线虫种类的影响,试验土壤富化的土著食细菌线虫对植物根系生长的促进作用优于实验室培养基上培养获得的外源食细菌线虫C.elegans,对土壤微生物群落的总体活性(AWCD值表示)的促进作用也表现为前者大于后者,并且两个处理微生物群落对碳源类群的利用也不同。而食细菌线虫与微生物和根系之间的相互作用同样受植物种类的影响,因为不同植物其根系分泌物不同,对微生物也会产生不同的影响。反映了植物根际土壤动物-微生物-根系之间复杂的相互作用。
     本研究进一步明确了土壤食细菌线虫与细菌之间相互作用及其对土壤氮素矿化的影响因素,并初步探讨了食细菌线虫对植物根系生长的促进作用及其基于改变微生物群落结构促进有益微生物生长的激素机理。本研究可为今后有效开发利用土壤有益线虫资源改善土壤养分管理、提高作物生产提供理论依据和潜在的技术储备,有较重要的理论意义和一定的应用前景。
Bacterial-feeding nematodes is one of the most important bacterial grazer in soil.Interactions between bacterial-feeding nematodes and microbe and their ecological effectsin terrestrial ecosystems have caused great attention of ecologists due to their high biomassand turnover and the close interactions with microbe. Despite the results were notconsistent up to now, mostly researches found that the direct or indirect effects due tobacterial-feeding nematodes grazing on bacteria increased the nitrogen mineralization andimproved the status of the supply of inorganic nitrogen, so subsequently the plant growthwas stimulated. But this effect must be affected by the species and density of nematode andbacteria and the surrounding environmental condition, such as the humidity. Researchesabout protozoa found that there were hormonal effects on plant growth by protozoangrazing changing the rhizosphere bacterial community to stimulate plant growth-promotingrhizobacteria. Considering the similarly of the physiology and zoology betweenbacterial-feeding nematodes and protozoa, and that the bacterial-feeding nematodes occurat equal or greater biomass in the rhizosphere than protozoa, it is believed that the activityof bacterial-feeding nematodes in the rhizosphere will also stimulate root proliferation byhormonal effects as seen for protozoan grazing.
     On the base of previous experiments in our lab, the gnotobiotic microcosmexperiments were conducted to study the interactions between bacterial-feeding nematode(Caenorhabditis elegans) and bacteria (Bacillus subtilis) and their effects on soil nitrogenmineralization at different nematode density or different soil moisture content. Then,experiments with natural soil (soil didn't sterile but directly incubated for enriched in soilnative nematodes or inoculated with nematodes) were manipulated to determine the effectsof bacterial-feeding nematodes on the root development of tomato and wheat seedlings. Thehormonal effect by nematode grazing changing the microbiall community was also discussed.
     The main results were as follows:
     1. Interactions between bacterial-feeding nematodes and bacteria were different fromthose between other hunters and preys. The grazing of nematodes significantly stimulatedthe growth and activity of the bacteria. Furthermore, the activity of nematodes mainlyenhanced soil nitrogen mineralization, especially remarkably increased the soil NH_4~+-N andmineral N. But the NO_3~--N was significantly decreased with the inoculation ofbacterial-feeding nematodes in the experiments.
     2. The effect of bacterial-feeding nematodes on bacteria growth was exhibited a"moderate density" of nematodes, which means when the number of nematodes was morethan this density, the increment of the nematodes on bacteria was decreased. With thetreatments designed in the experiment, the effect of nematodes on bacteria was in the orderof 20 nematodes·g~(-1) dry soil>10 nematodes·g~(-1) dry soil>40 nematodes·g~(-1) dry soil. At thesame time, the enhancement of nematodes on soil nitrogen mineralization was alsodecreased in the excessive grazing of nematodes on bacteria, and the increment ofnematodes on nitrogen mineralization was also in the same order of nematode densities asaffected on bacterial population in the experiment.
     3. Soil moisture content affected the interactions between bacterial-feeding nematodesand bacteria. The stimulated effect of nematodes on bacteria growth was different with thesoil moisture content in the order of 23% water content (w/w) treatment>17% watercontent (w/w) treatment>28% water content (w/w) treatment as designed in the experiment.The increment of nematodes on soil nitrogen mineralization was also greater in the 23%water content (w/w) treatment than the other two treatments, while there were nosignificantly difference between those two. These results indicated that at the lower soilmoisture content, effects of nematodes on bacteria growth and soil nitrogen mineralizationwere enhanced with the increasing of soil moisture content. But these effects weredecreased in the soil with too higher moisture content. Nematodes are aquatic and theirsurvival and movement need water films, and they can move quickly in thin water film than in free water. The difference of movement, distribution and activity of nematodes atdifferent soil moisture contents will affect their effects on bacteria growth and soil nutrientmineralization.
     4. Soil mixed with either pig manure or rice straw was placed in a mesh bag (1mm or5μm), and then surrounded by an outer layer of unamended soil. The greater populations ofbacterial-feeding nematodes that generated in the soil mixed with pig manure or rice strawmigrated through the 1 mm diameter mesh bag into the outer soil, thus giving greaterpopulations than in soil surrounding the control treatment of 5μm diameter mesh bag,through which nematodes cannot migrate. The increased bacterial-feeding nematodes wereprimarily Protorhabditis. sp. There were more nematodes in the pig manure treatment thanin the rice straw treatment. This is probably related to the more rapid bacterialdecomposition of the pig manure, as reflected in its lower C: N ratio. The increase innematode numbers, especially bacterial-feeders, is directly related to the rate ofdecomposition of different organic amendments.
     5. Tomato and wheat seedlings grown in the soils containing more bacterial-feedingnematodes (no matter by stimulating the native population or by adding additionalnematodes) developed a highly branched root system with longer and thinner roots.
     6. The contents of IAA and GA_3 were significantly enhanced in the soils containing morebacterial-feeding nematodes compared with the control soils, no matter planted with tomatoor wheat. The mean values of all nematode treatments showed that in the presence of morebacterial-feeding nematodes, IAA and GA_3 increased by 72.7% and 71.4% respectively inthe soils planted with tomato, while in the soils planted with wheat, increased by 90.7% and41% respectively. Bacterial-feeding nematodes also stimulated the total microbial activity(indicated by AWCD) and significantly changed the soil microbial community structure thatthe soil microbe's functions shifted evidently based on the sole carbon use pattern derivedform Biolog method. The increment of IAA and GA_3 in the soils should be caused by thechanges of soil microbial community structure due to the selective grazing of nematodes.Combined these results with the effects of bacterial-feeding nematodes on plant root proliferation, in some extent illustrated that bacterial-feeding nematodes affect plant rootgrowth likely through the hormonal effects by a grazing-induced change of soil microbialcommunity as found in the presence of protozoa.
     7. Bacterial-feeding nematode's effects on soil microbial community and plant rootgrowth were affected by nematode species. Tomato and wheat seedlings grown in the soilscontaining more native bacterial-feeding nematodes developed a more highly branched rootsystem than those grown in the soils inoculated with C.elegans. The microbial activity wasalso higher in the soil with more native nematodes than with C.elegans and the soilmicrobe's use pattern of the sole carbon was different in the presence of these twonematodes species. While the plant species also affected the interactions amongbacterial-feeding nematodes, microbe and plant root, for different plant will affect the soilmicrobe by releasing different root exudates. That the interactions among soil microfauna,microbe and root were complex.
     To summarize, the research farther discussed the factors affected the interactionsbetween bacterial-feeding nematodes and bacteria and their effects on soil nitrogenmineralization, and probed into bacterial-feeding nematode's effects on plant root growththrough the hormonal effects by grazing-induced changes of soil microbial community.These findings supported theoretic knowledge and technic to host soil nematodes as animportant bio-resource in soil nutrient management and plant growth. The present studymay be valid not only for theory, but also for future application in agriculture.
引文
1.胡锋,吴珊眉.土壤生态系统中生物的相互作用与碎屑食物网研究进展.徐琪,李永昌主编.土壤·资源·生态·环境.青岛海洋大学出版社,青岛,1992,p:28-32.
    2.胡锋,李辉信,武心齐,吴珊眉.接种线虫对土壤.作物系统中肥料~(15)N去向的影响.南京农业大学学报,1998a,21:125-127.
    3.胡锋,李辉信,武心齐,吴珊眉.杀灭土壤中线虫对小麦生长和吸收N、P的影响.应用生态学报,1998b,9:419-424.
    4.胡锋,李辉信,谢涟琪,吴珊眉.土壤食细菌线虫与细菌的相互作用及其对N、P矿化-生物固定的影响及机理.生态学报,1999,19:914-920.
    5.梁文举,史奕.农业生态系统线虫多样性研究进展.应用生态学报.,2000,11(增刊):1-4.
    6. Abrams BI, Mitchell MJ. Role of nematode-bacterial interactions in heterotrophic systems with emphasis on sewage sludge decomposition. Oikos., 1980, 35: 404-410.
    7. Anderson RV, Elliott ET, McClellan JF, Coleman DC, Cole CV, Hunt ET. Trophic interactions in soils as they affect energy and nutrient dynamics. Ⅲ. Biotic interactions of bacteria, amoebae and nematodes. Microbial Ecology., 1978, 4: 361-371.
    8. Anderson RV, Gould WD, Woods LE, Cambardella C, Ingham RE, Coleman CD. Organic and inorganic nitrogenous losses by microbivorous nematodes in soil. Oikos., 1983, 40: 75-80.
    9. Bardgett RD, Keiller S, Cook R, Gillburn AS. Dynamic interactions between soil animals and microorganisms in upland grassland soils amended with sheep dung: a microcosm experiment. Soil Biology and Biochemistry., 1998, 30: 531-539.
    10. Bernard EC. Soil nematode biodiversity. Biology and Fertility of Soils., 1992, 14: 99-103.
    11. Bonkowski M. Protozoa and plant growth: the microbial loop in soil revisited. New Phytologist., 2004, 162: 617-631.
    12. Bonkowski M, Brandt F. Do soil protozoa enhance plant growth by hormonal effects? Soil Biology and Biochemistry., 2002, 34: 1709-1715.
    13. Bonkowski M, Cheng WX, Griffiths BS, Alphei J, Scheu S. Microbial-faunal interactions in the rhizosphere and effects on plant growth. European Journal of Soil Biology., 2000, 36: 135-147.
    14. Coleman DC. The role of microfloral and faunal interactions in affecting soil processes. In: Mitchell MJ, Nakas JP, eds. Microfloral and fauna interaction in natural and agro-ecosystems. Martinus Nijhoff/Dr W.Junk Publishers, Dordrecht, 1986, p: 317-348.
    15. Coleman DC, Cole CV, Anderson RV, Blaha M, Campion MK, Clarholm M, Elliott ET, Hunt HW, Shaefer B, Sinclair J. An analysis of rhizosphere saprophage interactions in terrestrial ecosystems. In: Lohm UL, Persson T. eds. Soil organisms as components of ecosystems. Ecological Bulletins-NFR., 1977, 25: 299-309.
    16. Djigal D, Biauman A, Diop TA, Chotte JL, Villenave C. Influence of bacterial-feeding nematodes (Cephalobidae) on soil microbial communities during maize growth. Soil Biology and Biochemistry., 2004: 323-331.
    17. Ferris H, Venette RC, van der Meulen HR, Lau SS. Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement. Plant and Soil., 1998,203:159-171.
    18. Griffiths BS. The role of bacterial-feeding nematodes and protozoa in rhizosphere nutrient cycling. Aspects of Applied Biology., 1989, 22:141-145.
    19. Griffiths BS. A comparison of microbial feeding nematodes and protozoa in the rhizosphere of different plants. Biology and Fertility of Soils., 1990, 9: 83-88.
    20. Griffiths BS. Microbial-feeding nematodes and protozoa in soil: Their effects on microbial activity and nitrogen mineralization in decomposition hotspots and the rhizosphere. Plant and Soil., 1994, 164:25-33.
    21. Griffiths BS, Bonkowski M, Dobson G, Sandra C. Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa. Pedobiologia., 1999, 43: 297-304.
    22. Heikki S, Marshall VG, Trofymow JA. Influence of body size of soil fauna on litter decomposition and ~(15)N uptake by poplar in a pot trial. Soil Biology & Biochemistry., 1996, 28(12): 1661-1675.
    23. Hodge A, Robinson D, Griffiths BS, Fitter AH. Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant, Cell and Environment., 1999, 22: 811-820.
    24. Ingham RE, Trofymow JA, Ingham ER, Coleman DC. Interactions of bacteria, fungi and their nematode grazers: effects on nutrient cycling and plant growth. Ecological Monographs., 1985, 55: 119-140.
    25. Kreuzer K, Adamczyk J, Iijima M, Wagner M., Scheu S, Bonkowski M. Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). Soil Biology and Biochemistry., 2006, in press.
    26. Lavelle p. Faunua activities and soil process: adaptive strategies that determine ecosystem function. In: Transctions of 15~# world congress of soil science, 1994,1:189-220.
    27. Li HX, Hu F. Effect of bacterial-feeding nematode inoculation on wheat growth and N and P uptake. Pedosphere., 2001,11(1): 57-62.
    28. Li HX, Kazuyuki I, Johji M. Effects of Temperature on Population Growth and N Mineralization of Soil Bacteria and a Bacterial-feeding Nematode. Microbes and Environments., 2001, 16 (3): 141-146.
    29. Liao H, Rubio G, Yah X, Cao A, Brown KM, Lynch JP. Effect of phosphorus availability on basal root shallowness in common bean. Plant and Soil., 2001, 232: 69-79.
    30. Puiter PC, Moore JC, Zwart KB. Simulation of nitrogen mineralization in the below-ground food webs of two winter fields. Journal of Applied Ecology., 1993, 30: 95-106.
    31. Sulkava P, Huhta V, Laakso J. Impact of soil faunal structure on decomposition and N-mineralization in relation to temperature and moisture in forest soil. Pedebiologia., 1996, 40: 505-513.
    32. Sundin P, Valeur A, Olsson S, Odham G. Interactions between bacteria-feeding nematodes and bacteria in the rape rhizosphere: effects on root exudation and distribution of bacteria. FEMS Microbiology Ecology., 1990, 73:13-22.
    1.陈小云,李辉信,胡锋,刘满强.食细菌线虫对土壤微生物量和微生物群落结构的影响.生态学报,2004,24(12):2825-2831.
    2.胡锋,吴珊眉.土壤生态系统中生物的相互作用与碎屑食物网研究进展.徐琪,李永昌主编.土壤·资源·生态·环境.青岛海洋大学出版社,青岛,1992,p:28-32.
    3.胡锋,林茂松,吴珊眉.赣中低丘红壤生态系统线虫种群特征.王明珠等主编.红壤生态系统研究(第二集).江西科技出版社,南昌,1992,p:177-182.
    4.胡锋,李辉信,武心齐,吴珊眉.杀灭土壤中线虫对小麦生长和吸收N、P的影响.应用生态学报,1998a,9:419-424.
    5.胡锋,李辉信,武心齐,吴珊眉.接种线虫对土壤.作物系统中肥料~(15)N去向的影响.南京农业大学学报,1998b,21:125-127.
    6.胡锋,李辉信,史玉英,武心齐,王道军.两种基因型小麦根际土壤生物动态及根际效应.土壤通报,1998c,29(3):133-135.
    7.胡锋,李辉信,谢涟琪,吴珊眉.土壤食细菌线虫与细菌的相互作用及其对N、P矿化-生物固定的影响及机理.生态学报,1999,19:914-920.
    8.梁文举,史奕。农业生态系统线虫多样性研究进展.应用生态学报.,2000,11(增刊):1-4.
    9. Abrams BI, Mitchell MJ. Role of nematode-bacterial interactions in heterotrophic systems with emphasis on sewage sludge decomposition. Oikos., 1980, 35: 404-410.
    10. Alphei J, Bonkowski M, Scheu S. Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europaers (Poaceae): Faunal interactions, response of microorganisms and effects on plant growth. Oecologia., 1996, 106:111-126.
    11. Anderson RV, Elliott ET, McClellan JF, Coleman DC, Cole CV, Hunt ET. Trophic interactions in soils as they affect energy and nutrient dynamics. Ⅲ. Biotic interactions of bacteria, amoebae and nematodes. Microbial Ecology., 1978, 4: 361-371.
    12. Anderson RV, Coleman DC, Cole CV, Elliott ET, McClellan JF. The use of soil microcosms in evaluating bacteriophagic nematode responses to other organisms and effects on nutrient cycling. International Journal of Environmental Studies., 1979, 13: 175-182.
    13. Anderson RV, Gould WD, Woods LE, Cambardella C, lngham RE, Coleman CD. Organic and inorganic nitrogenous losses by microbivorous nematodes in soil. Oikos., 1983, 40: 75-80.
    14. Badalucco Let al. Protease and deaminase activities in wheat rhizosphere and their relation to bacterial and protozoa populations. Biology and Fertility of Soils., 1996, 23: 99-104.
    15. Bardgett RD, Chan KF. Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biology and Biochemistry., 1999, 31: 1007-1014.
    16. Bardgett RD, Keiller S, Cook R, Gillburn AS. Dynamic interactions between soil animals and microorganisms in upland grassland soils amended with sheep dung: a microcosm experiment. Soil Biology and Biochemistry., 1998, 30: 531-539.
    17. Baudoin E, Benizri E, Guckert A. Impact of artificial root exudates on the bacterial community structure in bulk soil andmaize rhizosphere. Soil Biology & Biochemistry., 2003, 35: 1183-1192.
    18. Bernard, EC. Soil nematode biodiversity. Biology and Fertility of Soils., 1992,14:99-103.
    19. Bird AF, Ryder MH. Feeding of the nematode Acrobeloides nanus on bacteria. Journal of Nematology., 1993, 25:493-499.
    20. Bodelier PLE, Wijlhuizen AG, Blom CWPM, Laanbroek HJ. Effects of photoperiod on growth of and denitrification by Pseudomonas chlororaphis in the root zone of Glyceria maxima, studied in a gnotobiotiic microcosm. Plant and Soil., 1997,190:91-103.
    21. Bonkowski M. Protozoa and plant growth: the microbial loop in soil revisited. New Phytologist., 2004,162: 617-631.
    22. Bonkowski M, Brandt F. Do soil protozoa enhance plant growth by hormonal effects? Soil Biology and Biochemistry., 2002, 34:1709-1715.
    23. Bonkowski M, Griffiths BS, Scrimgeour C. Substrate heterogeneity and microfauna in soil organic 'hotspots' as determinants of nitrogen capture and growth of rye-grass. Applied Soil Ecology., 2000a, 4:37-53.
    24. Bonkowski M, Chen WX, Griffiths BS, Alphei J, Scheu S. Microbiol-faunal interactions in the rhizosphere and effects on plant growth. European Journal of soil Biology., 2000b, 36: 135-147.
    25. Briones Jr AM, Okabe S, Umemiya Y, Ramsing NB, Reichardt W, Okuyama H. Ammonia-oxidising bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars. Plant and Soil., 2003, 250: 335-348.
    26. Calenza JL, Grisafi PL, Fink GR, A pathway for lateral root formation in Aiabidopsis thaliana. Gene Development., 1995, 9: 2131-2142.
    27. Cheng WX, Zhang QL, Coleman DC, Carroll CR, Hoffman CA. Is available carbon limiting microbial respiration in the rhizosphere. Soil Biology & Biochemistry., 1996, 28: 1283-1288.
    28. Christensen H, Griffiths BS, Christensen S. Bacterial incorporation of tritiated thymidine and populations of bacteriophagous fauna in the rhizosphere of wheat. Soil Biology and Biochemistry., 1992a, 24: 703-709.
    29. Christensen S, Griffiths BS, Ekelund F, Ronn R. Huge increase in bacterivores on freshly killed barley roots. FEMS Microbiology Ecology., 1992b, 86: 303-310.
    30. Cole L et al. Enchytraeid worms (Oligochaeta) enhance mineralization of carbon in organic upland soils. Europen Journal of Soil Science., 2000,51:185-192.
    31. Coleman DC. The role of microfloral and faunal interactions in affecting soil processes. In: Mitchell MJ, Nakas JP, eds. Microfloral and fauna interaction in natural and agro-ecosystems. Martinus Nijhoff/Dr WJunk Publishers, Dordrecht, 1986, p: 317-348.
    32. Coleman DC, Cole CV, Anderson RV, Blaha M, Campion MK, Clarholm M, Elliott ET, Hunt HW, Shaefer B, Sinclair J. An analysis of rhizosphere saprophage interactions in terrestrial ecosystems. In: Lohm UL, Persson T. eds. Soil organisms as components of ecosystems. Ecological Bulletins-NFR., 1977, 25: 299-309.
    33. Coleman DC, Reid CPP, Cole CV. Biological strategies of nutrient cycling in soil systems. Advances in Ecological Research., 1983,13:1-55.
    34. Cocking EC. Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant and Soil., 2003., 252:169-175.
    35. Couteaux MM, Bottner P. Biological interactions between fauna and the microbial community in soils. In: Ritz K et al., eds. Beyond the biomass. Composition and functional analysis of soil microbial communities. John Wiley and Sons, Baffins Lane, Chichester, UK., 1994.
    36. de Neergard A, Magid J. Influence of the rhizosphere on microbial biomass and recently formed organic matter. European Journal of Soil Science.,2001,52: 377-384.
    37. Djigal D, Brauman A, Diop TA, Chotte JL, Villenave C. Influence of bacterial-feeding nematodes (Cephalobidae) on soil microbial communities during maize growth. Soil Biology and Biochemistry., 2004: 323-331.
    38. Duineveld BM et al. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturiag gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Applied Environmental Microbiology., 2001,67:172-178.
    39. Edqards CA, Stinner BR. Interactions between soil-inhabiting invertebrates and microorganisms in relation to plant growth and ecosystem processes: an introduction. Agriculture, Ecosystems and Environment., 1988, 24:1-3.
    40. Ferris H, Venette RC, Lau SS. Population energetics of bacterial-feeding nematodes: carbon and nitrogen budgets. Soil Biology and Biochemistry., 1997, 29:1183-1194.
    41. Ferris H, Venette RC, van der Meulen HR, Lau SS. Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement. Plant and Soil., 1998, 203:159-171.
    42. Francisco SS, Houdusse F, Zamarreno AM, Garnica M, Casanova E, Garci a-Mina JM. Effects of IAA and IAA precursors on the development, mineral nutrition, IAA content and free polyamine content of pepper plants cultivated in hydroponic conditions. Scientia Horticulturae., 2005, 106: 38-52.
    43. Fu SL, Ferris H, Brown D, Plant R. Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil Biology and Biochemistry., 2005, 37:1979-1987.
    44. Germida JJ, Sicillano SD, Defreitas JR, Seib AM. Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS of Microbial Ecology., 1998, 26:43-50.
    45. Grayston SJ, Vaughan D, Jones D. Rhizosphere carbon flow in trees in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology., 1996,5: 29-56.
    46. Grayston SJ, Wang SQ, Campbell CD, Edwards AC. Selective influence of plant soecies on microbial diversity in the rhizosphere. Soil Biology and Biochemistry., 1998, 30: 369-378.
    47. Grayston SJ, Griffith GS, Mawdsley JL, Campbell CD, Bardgett RD. Accounting for variability in soil microbial communities of temperate upland grassland ecosystem. Soil Biology and Biochemistry., 2001,33: 533-551.
    48. Grewel PS, Wright DJ. Migration of Caenorhabditis elegans (Nematoda Rhabditidae) larvae towards bacteria and the nature of the bacterial stimulus. Fund. Appl. Nematol., 15: 159-166.
    49. Griffiths BS. The role of bacterial-feeding nematodes and protozoa in rhizosphere nutrient cycling. Aspects of Applied Biology., 1989, 22: 141-145.
    50. Griffiths BS. A comparison of microbial feeding nematodes and protozoa in the rhizosphere of different plants. Biology and Fertility of Soils., 1990, 9: 83-88.
    51. Griffiths BS. Microbial-feeding nematodes and protozoa in soil: Their effects on microbial activity and nitrogen mineralization in decomposition hotspots and the rhizosphere. Plant and Soil., 1994, 164:25-33.
    52. Griffiths BS, Caul S. Migration of bacterial-feeding nematodes, but not protozoa, to decomposing grass residues. Soil Biology and Biochemistry., 1993, 15: 201-207.
    53. Griffiths BS, Bardgett RD. Interactions between micro-feeding invertebrates and soil microorganisms. In: van Elsas JD, Wellington E, Trevors JT. eds. Modern Soil Microbiology. Marcell Dekker, New York., 1997,165-182.
    54. Griffiths BS, Young IM, Boag B. Nematodes associated with the rhizosphere of barly (Hordeum vulgare). Pedobiologia., 1991, 35: 265-272.
    55. Griffiths BS, Welschen R, Van Arendonk JCM, Lambers H. The effect of nitrate-nitrogen supply on bacteria and bacterial-feeding fauna in the rhizosphere of different grass species. Oecologia., 1992, 91: 253-259.
    56. Griffiths BS, Bonkowski M, Dobson G, Sandra C. Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa. Pedobiologia., 1999,43: 297-304.
    57. Guiran de C, Bonnel L, Abriached M. Landspreading of pig manures. IV. Effect on soil nematodes. In Gasser JKR ed. Effluences from Livestock. Applied Science Publishers Ltd., London., 1980, pp 109-119.
    58. Hanson PJ, Edwards NT, Garten CT, Andrews JA. Separating root and soil microbial contributions to soil respiration: a review of methods and observation. Biogeochemistry., 2000,48:115-146.
    59. Hedlund K, Augustsson A. Effects of Enchytraeid grazing on fungal growth and respiration. Soil Biology and Biochemistry., 1995, 27: 905-909.
    60. Hodge A, Robinson D, Griffiths BS, Fitter AH. Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant, Cell and Environment., 1999,22: 811-820.
    61. Hofman TW, s'Jacob JJ. Distribution and dynamics of mycophagous and microbivorous nematodes in potato fields and their relationship to some food sources. Annual Applied Biology., 1989, 115: 291-298.
    62. Huttl RF, Schneider BU. Forest ecosystem degradation and rehabilitation. Ecological Engineering., 1998,10: 19-31.
    63. Ibekwe AM, Kennedy AC. Fatty acid methyl ester (FAME) profiles as a tool to investigate community composition of two agricultural soils. Plant and Soil., 1998,206:151-161.
    64. Ingham RE, Trofymow JA, Ingham ER, Coleman DC. Interactions of bacteria, fungi and their nematode grazers: effects on nutrient cycling and plant growth. Ecological Monographs., 1985a, 55: 119-140.
    65. Ingham RE, Anderson RV, Gould WD, Coleman DC. Vertical distribution of nematodes in a short grass prairie. Pedobiologia., 1985b, 28:155-160.
    66. Jentschke G, Bonkowski M, Godbold DL, Scheu S. Soil protozoa and forest tree growth: Non-nutritional effects and interaction with mycorrhizas. Biology and Fertility of Soils., 1995, 20: 263-269.
    67. Kandeler E, Marschner P, Tsherko D, Gahoonia TS, Nielsen NE. Microbial community composition and functional diversity in the rhizosphere of maize. Plant and Soil., 2002, 238: 301-312.
    68. Kreuzer K, Adamczyk J, Iijima M, Wagner M., Scheu S, Bonkowski M. Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). Soil Biology and Biochemistry., 2006, in press.
    69. Kuikman PJ, Jansen AG, Van Veen JA, Zehnder AJB. Protozoan predation and the turnover of soil organic carbon and nitrogen in the presence of plants. Biology and Fertility of Soils., 1990, 10: 22-28.
    70. Kuikman PJ, Jansen AG, Van Veen JA. ~(15)N nitrogen mineralization from bacteria by protozoan grazing at different soil moisture regimes. Soil Biology and Biochemistry., 1991, 23:193-200.
    71. Lavelle p. Faunua activities and soil process: adaptive strategies that determine ecosystem function. In: Transctions of 15~# world congress of soil science, 1994, 1:189-220.
    72. Li HX, Hu F. Effect of bacterial-feeding nematode inoculation on wheat growth and N and P uptake. Pedosphere., 2001,11(1): 57-62.
    73. Li HX, Kazuyuki I, Johji M. Effects of Temperature on Population Growth and N Mineralization of Soil Bacteria and a Bacterial-feeding Nematode. Microbes and Environments., 2001, 16 (3): 141-146.
    74. Liao H, Rubio G, Yan X, Cao A, Brown KM, Lynch JP. Effect of phosphorus availability on basal root shallowness in common bean. Plant and Soil., 2001,232: 69-79.
    75. Lynch JM, Whipps JM. Substrate flow in the rhizosphere. Plant and Soil., 1990,129: 1-10.
    76. Lynch JM. ed. The rhizosphere. John Wiley and Sons, Chichester., 1990, 458.
    77. Mahaffee WF, Kloepper JW. Bacterial communities of the rhizosphere and endorhiza associated with field-grown cucumber plants inoculated with a plant growth-promoting rhizobacterium or its genetically modified derivative. Canadian Journal of Microbiology., 1997, 43: 344-353.
    78. Mamilov AS, Byzov BA, Zvyagintsev DG, Dilly OM. Predation on fungal and bacterial biomass in a soddy-podzolic soil amended with starch, wheat straw and alfalfa meal. Applied Soil Ecology., 2001, 16:131-139.
    79. Marschner H. Mineral nutrition of higher plants. Academic Press, New York, 1995. 889.
    80. Marschner P, Yang CH, Lieberei R, Crowley DE. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry., 2001, 33: 1437-1445.
    81. Merbach W, Mirus E, Knof G, Remus R, Ruppel S, Russow R, Gransee A, Schulze J. Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. J. Plant Nutr. Soil Sci., 1999, 162: 373-383.
    82. Meuwly P, Pilet P. Local treatment with indole-3-acetic acid induces differential growth responses in Zea mays L. roots. Planta., 1991,185:58-64.
    83. Miethling R, Wieland G, Backhaus H, Tebbe CC. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L. Microbial Ecology., 2000, 40: 43-56.
    84. Morel C, Hinsinger P. Root induced modifications of the exchange of phosphate ion between soil solution and soil solid phase. Plant and Soil., 1999, 211:103-110.
    85. Naseby DC, Loccoz YM, Powell J, Gara FO, Lynch JM. Soil enzyme activities in the rhizosphere of field-grown sugar beet inoculated with the biocontrol agent Pseudomonas fluoresens F113. Biology and Fertility of Soils., 1998,27: 39-43.
    86. Nikolyuk VF, Tapilskaja NV. Bodenamoben als Produzenten von biotisch aktiven Stoffen. Pedobiologia., 1969, 9:182-187.
    87. Opperman MH, Wood M, Harris PJ, Cherrett CP. Nematode and nitrate dynamics in soils treated with cattle slurry. Soil Biology and Biochemistry., 1993, 25:19-24.
    88. Puiter PC, Moore JC, Zwart KB. Simulation of nitrogen mineralization in the below-ground food webs of two winter fields. Journal of Applied Ecology., 1993,30:95-106.
    89. Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S. Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiology., 2002,130:1908-1917.
    90. Rouatt JW et al. Statistical evaluation of the rhizosphere effect. Soil Science Society of America, Proceedings., 1960, 24: 271-273.
    91. Ronn R et al. Spatial distribution and successional pattern of microbial activit and miro-faunal populations on decomposing barley roots. Journal of Applied Ecology., 1996, 33:662-672.
    92. Singh BK, Millard P, Whiteley AS, Murrell JC. Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends in Microbiology., 2004,12(8): 286-293.
    93. Soderberg KH, Jumpponen A, Baath E. The microbial community in the rhizosphere determined by community level-physiological profile (CLPP) and direct soil- and cfu-PLFA techniques. Applied Soil Ecology., 2004, 25:135-145.
    94. Sohlenius B, Sandor A. Vertical distribution of nematodes in arable soil under grass (Festuca pratensis) and barley (Hordeum vulgare). Biology and Fertility of Soils., 1987, 3: 19-25.
    95. Sonnemann I, Dogan H, Klein A, Pieper B, Ekschmitt K, Wolters V. Response of soil microflora to changes in nematode abundance-evidence for large scale effects in grassland soil. Journal of Plant Nutrient of Soil Science., 1999,162: 38-391.
    96. Strom L. Root exudation of organic acids: importance to nutrient availability and the calcifuge and calcicole behaviour of plants. Oikos., 1997. 80: 459-466.
    97. Steer J, Harris JA. Shifts in the microbial community in rhizosphere and non-rhizosphere soils during the growth of Agrostis stolonifera, Soil Biology and Biochemistry., 2000, 32: 869-878.
    98. Sulkava P, Huhta V, Laakso J. Impact of soil faunal structure on decomposition and N-mineralization in relation to temperature and moisture in forest soil. Pedebiologia., 1996, 40: 505-513.
    99. Sundin P, Valeur A, Olsson S, Odham G. Interactions between bacteria-feeding nematodes and bacteria in the rape rhizosphere: effects on root exudation and distribution of bacteria. FEMS Microbiology Ecology., 1990,73:13-22.
    100. Tapilskaja NV. Amoeba albida Na'gler und ihre Beziehungen zu dem Pilz Verticillum dahliae Kleb, dem Erreger der Welkekrankheit von Baumwollpflanzen. Pedobiologia., 1967, 7:156-165.
    101. Trevors JT. Electron transport system activity in soil, sediment and pure cultures. CRC Critical Rev. Microbiol., 1984,11:83-100.
    102. Trofymow JA, Coleman DC. The role of bacterivorous and fungivorous nematodes in cellulose and chitin decomposition. In: Freckman DW, ed. Nematodes in soil ecosystems. University of Texas Press, Austin, Texas, USA., 1982,117-138.
    103. Venette RC, Ferris H. Influence of bacterial type and density on population growth of bacterial-feeding nematodes. Soil Biology and Biochemistry., 1998, 30: 949-960.
    104. Westover KM, Kennedy AC, Kelley SE. Patterns of rhizosphere microbial community composition associated with co-occurring plant species. Journal of Ecology., 1997, 85: 863-873.
    105. Woods LE, Cole CV, Elliott ET, Anderson RV, Coleman DC. Nitrogen transformations in soil as affected by bacterial- microfauna interactions. Soil Biology and Biochemistry., 1982,14: 93-98.
    106. Zwart KB, Kuikman PJ, Van Veen JA. Rhizosphere protozoa: their significance in nutrient dynamics. In: Darbyshire JF ed. Soil Protozoa. CAB International Wallingford Oxon, 1994, p: 93-121.
    1.陈小云,胡锋,李辉信,毛小芳.不同悉生培养条件下食细菌线虫对细菌种群的影响.应用生态学报,2003,14(9):1585-1587.
    2.关松荫编著.土壤酶及其研究法.北京:农业出版社,1986.
    3.胡锋,林茂松,吴珊眉.赣中低丘红壤生态系统线虫种群特征.王明珠等主编.红壤生态系统研究(第二集).江西科技出版社,南昌,1992,p:177-182.
    4.胡锋,李辉信,谢涟琪,吴珊眉.土壤食细菌线虫与细菌的相互作用及其对N、P矿化-生物固定的影响及机理.生态学报.,1999,19:914-920.
    5.鲁如坤主编.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
    6. Abrams BI, Mitchell MJ. Role of nematode-bacterial interactions in heterotrophic systems with emphasis on sewage sludge decomposition. Oikos., 1980, 35: 404-410.
    7. Alphei J, Bonkowski M, Scheu S. Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europaers (Poaceae): Faunal interactions, response of microorganisms and effects on plant growth. Oecologia., 1996, 106:111-126.
    8. Bakonyi G, Posta K, Kiss I, Nagy P, Nosek JN. Density-dependent regulation of arbuscular mycorrhiza by collembola. Soil Biology & Biochemistry., 2002, 34: 661-664.
    9. Bardgett RD, Keiller S, Cook R, Gillburn AS. Dynamic interactions between soil animals and microorganisms in upland grassland soils amended with sheep dung: a microcosm experiment. Soil Biology and Biochemistry., 1998, 30: 531-539.
    10. Cole L, Dromph KM, Boaglio V, Bardgett RD. Effect of density and species richness of soil mesofauna on nutrient mineralisation and plant growth. Biology and Fertility of Soils., 2004, 39: 337-343.
    11. Coleman DC, Cole CV, Anderson RV, Blaha M, Campion MK, Clarholm M, Elliott ET, Hunt HW, Shaefer B, Sinclair J. An analysis of rhizosphere saprophage interactions in terrestrial ecosystems. In: Lohm UL, Persson T. eds. Soil organisms as components of ecosystems. Ecological Bulletins-NFR., 1977, 25: 299-309.
    12. Coleman DC, Reid CPP, Cole CV. Biological strategies of nutrient cycling in soil systems. Advances in Ecological Research., 1983, 13: 1-55.
    13. Djigal D, Brauman A, Diop TA, Chotte JL, Villenave C. Influence of bacterial-feeding nematodes (Cephalobidae) on soil microbial communities during maize growth. Soil Biology and Biochemistry.: 2004: 323-331.
    14. Ferris H, Venette RC, Lau SS. Population energetics of bacterial-feeding nematodes: carbon and nitrogen budgets. Soil Biology and Biochemistry., 1997,29:1183-1194.
    15. Ferris H, Venette RC, van der Meulen HR, Lau SS. Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement. Plant and Soil., 1998,203:159-171.
    16. Fu SL, Ferris H, Brown D, Plant R. Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil Biology and Biochemistry., 2005, 37:1979-1987.
    17. Griffiths BS. Microbial-feeding nematodes and protozoa in soil: Their effects on microbial activity and nitrogen mineralization in decomposition hotspots and the rhizosphere. Plant and Soil., 1994, 164:25-33.
    18. Griffiths BS, Bardgett RD. Interactions between micro-feeding invertebrates and soil microorganisms. In: van Elsas JD, Wellington E, Trevors JT. eds. Modern Soil Microbiology. Marcell Dekker, New York., 1997,165-182.
    19. Hedlund K, Augustsson A. Effects of Enchytraeid grazing on fungal growth and respiration. Soil Biology and Biochemistry., 1995, 27: 905-909.
    20. Ingham RE, Trofymow JA, Ingham ER, Coleman DC. Interactions of bacteria, fungi and their nematode grazers: effects on nutrient cycling and plant growth. Ecological Monographs., 1985, 55: 119-140.
    21. Kandeler E. Urease activity by colorimetric technique. In: Schinner F, Ohlinger R, Kandeler E et al eds. Methods in Soil Biology. Springer-Verlag Berlin: Heidelberg, 1995,171-174.
    22. Mamilov AS, Byzov BA, Zvyagintsev DG, Dilly OM. Predation on fungal and bacterial biomass in a soddy-podzolic soil amended with starch, wheat straw and alfalfa meal. Applied Soil Ecology., 2001,16:131-139.
    23. Mikola J, Setala H. No evidence of trophic cascades in an experimental microbial-based soil food webs. Ecology., 1998, 79:153-164.
    24. Sonnemann I, Dogan H, Klein A, Pieper B, Ekschmitt K, Wolters V. Response of soil microflora to changes in nematode abundance-evidence for large scale effects in grassland soil. Journal of Plant Nutrient of Soil Science., 1999,162: 38-391.
    25. Sundin P, Valeur A, Olsson S, Odham G. Interactions between bacteria-feeding nematodes and bacteria in the rape rhizosphere: effects on root exudation and distribution of bacteria. FEMS Microbiology Ecology., 1990, 73:13-22.
    26. Woods LE, Cole CV, Elliott ET, Anderson RV, Coleman DC. Nitrogen transformations in soil as affected by bacterial- microfauna interactions. Soil Biology and Biochemistry., 1982, 14: 93-98.
    1.胡锋,李辉信,谢涟琪,吴珊眉.土壤食细菌线虫与细菌的相互作用及其对N、P矿化-生物固定的影响及机理.生态学报,1999,19:914-920.
    2. Alphei J, Bonkowski M, Scheu S. Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europaers (Poaceae): Faunal interactions, response of microorganisms and effects on plant growth. Oecologia., 1996, 106:111-126.
    3. Bonkowski M, Griffiths BS, Scrimgeour C. Substrate heterogeneity and microfauna in soil organic 'hotspots' as determinants of nitrogen capture and growth of rye-grass. Applied Soil Ecology., 2000, 4:37-53.
    4. de Ruiter PC, Moore JC, Zwart KB, et al. Simulation of nitrogen mineralization in the belowground food webs of two winter wheat fields. Journal of Applied Ecology., 1993, 30: 95-106.
    5. Ferris H, Venette RC, van der Meulen HR, Lau SS. Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement. Plant and Soil., 1998, 203: 159-171.
    6. Griffiths BS. Microbial-feeding nematodes and protozoa in soil: Their effects on microbial activity and nitrogen mineralization in decomposition hotspots and the rhizosphere. Plant and Soil., 1994, 164:25-33.
    7. Griffiths BS, Bardgett RD. Interactions between micro-feeding invertebrates and soil microorganisms. In: van Elsas JD, Wellington E, Trevors JT. eds. Modern Soil Microbiology. Marcell Dekker, New York., 1997, 165-182.
    8. Griffiths BS, Young IM, Caul S. Nematode and protozoan population dynamics on decomposing barley leaves incubated at different soil matric potentials. Pedobiologia., 1995, 39: 454-461.
    9. Hendix PE, Crossley DA, Blair JM. Soil biota as components of sustainable agroecosystems. In: Edwards CA ed. Sustainable Agricultural Systems. Ankeny: Soil and Water Conservation Society, 1990, 637-654.
    10. Li HX, Hu F. Effect of bacterial-feeding nematode inoculation on wheat growth and N and P uptake. Pedosphere., 2001, 11(1): 57-62.
    11. Li HX, Kazuyuki I, Johji M. Effects of Temperature on Population Growth and N Mineralization of Soil Bacteria and a Bacterial-feeding Nematode. Microbes and Environments., 2001, 16 (3): 141-146.
    12. Mamilov AS, Byzov BA, Zvyagintsev DG, Dilly OM. Predation on fungal and bacterial biomass in a soddy-podzolic soil amended with starch, wheat straw and alfalfa meal. Applied Soil Ecology., 2001,16:131-139.
    13. Mikola J, Setala H. No evidence of trophic cascades in an experimental microbial-based soil food webs. Ecology., 1998, 79:153-164.
    14. Schouten J, van Esbroek MLP, Alkemade JRM. Dynamics and stratification of functional groups of nematodes in the organic layer of a Scots pine forest in relation to temperature and moisture. Biology and Fertility of Soils., 1998,26: 293-304.
    15. Sonnemann 1, Dogan H, Klein A, Pieper B, Ekschmitt K, Wolters V. Response of soil microflora to changes in nematode abundance-evidence for large scale effects in grassland soil. Journal of Plant Nutrient of Soil Science., 1999,162: 38-391.
    16. Treonis AM, Wall DH, Virginia RA. Field and Microcosm Studies of Decomposition and Soil Biota in a Cold Desert Soil. Ecosystems., 2002, 5: 159-170.
    17. Wallace HR. Movement of eelworms. II. A comparative study of the movement in soil of Heterodera schachtii Schmidt and of Ditylenchus dipsaci (Kuhn). Ann.Appl.Biol., 1958,46: 86-94.
    18. Yeates GW, Dando JL, Shepherd TG. Pressure plate studies to determine how moisture affects access of bacterial-feeding nematodes to food in soil. European Journal of Soil Science., 2002, 53: 355-365.
    19. Young IM, Griffiths BS, Roberston WM, Mcnicol JW. Nematode (Caenorhabditis elegans) movement in sand as affected by particle size, moisture and the presence of bacteria (Escherichia coli). European Journal of Soil Science., 1998, 49: 237-241.
    1. Alphei J, Bonkowski M, Scheu S. Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europaers (Poaceae): Faunal interactions, response of microorganisms and effects on plant growth. Oecologia., 1996,106:111-126.
    2. Arshad M, Frankenberger WT. Plant growth-regulating substances in the rhizosphere: Microbial production and functions. Advances in Agronomy., 1998, 62: 45-151.
    3. Bonkowski M. Protozoa and plant growth: the microbial loop in soil revisited. New Phytologist., 2004, 162: 617-631.
    4. Bonkowski M, Brandt F. Do soil protozoa enhance plant growth by hormonal effects? Soil Biology and Biochemistry., 2002, 34: 1709-1715.
    5. Bonkowski M, Griffiths BS, Scrimgeour C. Substrate heterogeneity and microfauna in soil organic 'hotspots' as determinants of nitrogen capture and growth of rye-grass. Applied Soil Ecology., 2000,14: 37-53.
    6. Bonkowski M, Jentschke G, Scheu S. Contrasting effects of microbes in the rhizosphere: interactions of mycorrhiza (Paxillus involutus (Batsch) Fr ), naked amoebae (Protozoa) and Norway Spruce seedlings (Picea abies Karst.). Applied Soil Ecology., 2001,18: 193-204.
    7. Djigal D, Brauman A, Diop TA, Chotte JL, Villenave C. Influence of bacterial-feeding nematodes (Cephalobidae) on soil microbial communities during maize growth. Soil Biology and Biochemistry., 2004: 323-331.
    8. Drew MC. Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot in barley. New Phytologist., 1975,75:479-490.
    9. Fukai S, Cooper M. Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crop Research., 1995, 40: 67-86.
    10. Goodfriend WL, Olsen WL, Frye RJ. Soil microfloral and microfaunal response to Salicornia bigelovii planting density and soil residue amendment. Plant and Soil., 2000, 223: 23-32.
    11. Griffiths BS. Enhanced nitrification in the presence of bacteriophagous protozoa. Soil Biology & Biochemistry., 1989,21: 1045-1051.
    12. Griffiths BS. A comparison of microbial feeding nematodes and protozoa in the rhizosphere of different plants. Biology and Fertility of Soils., 1990, 9: 83-88.
    13. Griffiths BS. Microbial-feeding nematodes and protozoa in soil: Their effects on microbial activity and nitrogen mineralization in decomposition hotspots and the rhizosphere. Plant and Soil., 1994, 164:25-33.
    14. Griffiths BS, Caul S. Migration of bacterial-feeding nematodes, but not protozoa, to decomposing grass residues. Biology and Fertility of Soils., 1993,15: 201-207.
    15. Griffiths BS, Ritz K, Wheatley RE. Nematodes as indicators of enhanced microbiological activity in a Scottish organic farming system. Soil Use and Management., 1994,10: 20-24.
    16. Griffiths BS, Wheatley RE, Olesen T, Henriksen K, Ekelund F, Ronn, R. Dynamics of nematodes and protozoa following the experimental addition of cattle or pig slurry to soil. Soil Biology & Biochemistry., 1998, 30: 1379-1387.
    17. Griffiths BS, Bonkowski M, Dobson G, Caul S. Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa. Pedobiologia., 1999, 43:297-304.
    18. Griffiths BS, Bengough AG, Neilson R, Trudgill DL. The extent to which nematode communities are affected by soil factors-a pot experiment. Nematology., 2002, 4: 943-952.
    19. Hodge A, Robinson D, Griffiths BS, Fitter AH. Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant, Cell and Environment., 1999, 22: 811-820.
    20. Iijima M, Kono Y. Interspecific differences of the root system structures of four cereal species as affected by soil compaction. Japanese Journal of Crop Science., 1991,60:130-138.
    21. Jentschke G, Bonkowski M, Godbold DL, Scheu S. Soil protozoa and forest tree growth: Non-nutritional effects and interaction with mycorrhizas. Biology and Fertility of Soils., 1995, 20: 263-269.
    22. Joseph CM, Phillips DA. Metabolites from soil bacteria affect plant water relations. Plant Physiology and Biochemistry., 2003, 41: 189-192.
    23. Knox OGG, Killham K, Artz RRE, Mullins CE, Wilson MJ. Effect of nematodes on rhizosphere colonization by seed-applied bacteria. Applied and Environmental Microbiology., 2004, 70: 4666-4671.
    24. Kreuzer K, Adamczyk J, Iijima M, Wagner M., Scheu S, Bonkowski M. Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). Soil Biology & Biochemistry., 2006, in press.
    25. Liao H, Rubio G, Yan X, Cao A, Brown KM, Lynch JP. Effect of phosphorus availability on basal root shallowness in common bean. Plant and Soil., 2001, 232: 69-79.
    26. Liang WJ, Mouratov S, Pinhasi-Adiv Y, Avigad P, Serinberger Y. Seasonal variation in the nematode communities associated with two halophytes in a desert ecosystem. Pedobiologia., 2002, 46: 63-74.
    27. Malamy JE. Intrinsic and environmental response pathways that regulate root system architecture. Plant, Cell and Environment., 2005, 28: 67-77.
    28. Matiru VN, Dakora FD. The rhizosphere signal molecule lumichrome alters seedling development in both legumes and cereals. New Phytologist., 2005,166: 439-444.
    29. Olesen T, Griffiths BS, Henriksen K, Moldrup P, Wheatley R. Modeling diffusion and reaction in soils: V. Nitrogen transformations in organic manure-amended soil. Soil Science., 1997, 162: 157-168.
    30. Opperman MH, Wood M, Harris PJ, Cherrett CP. Nematode and nitrate dynamics in soils treated with cattle slurry. Soil Biology & Biochemistry., 1993, 25: 19-24.
    31. Phillips DA, Joseph CM, Yang GP, Mart□' nez-Romero E, Sanborn JR, Volpin H. Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proceedings of the National Academy of Science USA., 1999, 96:12275-12280.
    32. Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR. Microbial products trigger amino acid exudation from plant roots. Plant Physiology., 2004,136: 2887-2894.
    33. Price AH, Tomos AD, Virk DS. Genetic dissection of root growth in rice (Oryza sativa L.): I: a hydrophonic screen. Theoretical Applied Genetics., 1997,95:132-142.
    34. Robinson D. The responses of plants to non-uniform supplies of nutrients. New Phytologist., 1994, 127: 635-674.
    35. Schippers B, Bakker AW, Bakker PAHM, van Peer R. Beneficial and deletrious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant and Soil., 1990,129: 75-83.
    36. Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Molecular Biology., 2002, 48: 683-695.
    37. Venette RC, Ferris H. Influence of bacterial type and density on population growth of bacterial-feeding nematodes. Soil Biology & Biochemistry., 1998, 30: 949-960.
    38. Verhagen FJM. Hagemann PEJ, Woldendorp JW, Laanbroek HJ. Competition for ammonium between nitrifying bacteria and plant roots in soil in pots; effects of grazing by flagellates and fertilization. Soil Biology & Biochemistry., 1994, 26: 89-96.
    39. Villenave C, Bongers T, Ekschmitt K, Fernandes P, Oliver R. Changes in nematode communities after manuring in millet fields in Senegal. Nematology., 2003, 5(3): 351-358.
    40. Yeates GW, Bongers T, de Goede RGM, Freckman DW, Georgieva SS. Feeding habits in soil nematode families and genera-an outline for soil ecologists. Journal of nematology., 1993, 25: 315-331.
    41. Young IM, Griffiths BS, Robertson WM. Continuous foraging by bacterial-feeding nematodes. Nematologica., 1996,42:378-382.
    42. Zhang H, Forde BG. Regulation of Arabidopsis root development by nitrate availability. Journal of Experimental Botany., 2000, 51: 51-59.
    1.胡佩,杨红,刘德辉,胡锋.高效液相色谱法测定蚓粪中的植物激素.分析实验室,2001,20(6):8-10.
    2. Alphei J, Bonkowski M, Scheu S. Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europaers (Poaceae): Faunal interactions, response of microorganisms and effects on plant growth. Oecologia., 1996, 106:111-126.
    3. Bonkowski M. Protozoa and plant growth: the microbial loop in soil revisited. New Phytologist., 2004, 162: 617-631.
    4. Bonkowski M, Brandt F. Do soil protozoa enhance plant growth by hormonal effects? Soil Biology and Biochemistry., 2002, 34: 1709-1715.
    5. Bonkowski M, Griffiths BS, Scrimgeour C. Substrate heterogeneity and microfauna in soil organic 'hotspots' as determinants of nitrogen capture and growth of rye-grass. Applied Soil Ecology., 2000, 4:37-53.
    6. Bonkowski M, Jentschke G, Scheu S. Contrasting effects of microbes in the rhizosphere: interactions of mycorrhiza (Paxillus involutus (Batsch) Fr), naked amoebae (Protozoa) and Norway Spruce seedlings (Picea abies Karst.). Applied Soil Ecology., 2001, 18: 193-204.
    7. Calenza JL, Grisafi PL, Fink GR, A pathway for lateral root formation in Arabidopsis thaliana. Gene Development., 1995, 9: 2131-2142.
    8. Francisco SS, Houdusse F, Zamarrefio AM, Gamica M, Casanova E, Garci a-Mina JM. Effects of IAA and IAA precursors on the development, mineral nutrition, IAA content and free polyamine content of pepper plants cultivated in hydroponic conditions. Scientia Horticulturae., 2005, 106: 38-52.
    9. Germida JJ, Sicillano SD, Defreitas JR, Seib AM. Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS of Microbial Ecology., 1998, 26: 43-50.
    10. Goodfriend WL, Olsen WL, Frye RJ. Soil microfloral and microfaunal response to Salicornia bigelovii planting density and soil residue amendment. Plant and Soil., 2000, 223: 23-32.
    11. Griffiths BS. Microbial-feeding nematodes and protozoa in soil: Their effects on microbial activity and nitrogen mineralization in decomposition hotspots and the rhizosphere. Plant and Soil., 1994, 164:25-33.
    12. Jentschke G, Bonkowski M, Godbold DL, Scheu S. Soil protozoa and forest tree growth: Non-nutritional effects and interaction with mycorrhizas. Biology and Fertility of Soils., 1995, 20: 263-269.
    13. Knox OGG, Killham K, Artz RRE, Mullins CE, Wilson MJ. Effect of nematodes on rhizosphere colonization by seed-applied bacteria. Applied and Environmental Microbiology., 2004, 70: 4666-4671.
    14. Kuikman PJ, Jansen AG, van Veen JA, Zehnder AJB. Protozoan predation and the turnover of soil organic carbon and nitrogen in the presence of plants. Biology and Fertility of Soils., 1990, 10: 22-28.
    15. Li HX, Hu F. Effect of bacterial-feeding nematode inoculation on wheat growth and N and P uptake. Pedosphere., 2001, 11(1): 57-62.
    16. Marschner P, Yang CH, Lieberei R, Crowley DE. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry., 2001, 33: 1437-1445.
    17. Merbach W, Minis E, Knof G, Remus R, Ruppel S, Russow R, Gransee A, Schulze J. Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. J. Plant Nutr. Soil Sci., 1999,162: 373-383.
    18. Meuwly P, Pilet P. Local treatment with indole-3-acetic acid induces differential growth responses in Zea mays L. roots. Planta., 1991,185: 58-64.
    19. Miethling R, Wieland G, Backhaus H, Tebbe CC. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L. Microbial Ecology., 2000, 40: 43-56.
    20. Nikolyuk VF, Tapilskaja NV. Bodenamoben als Produzenten von biotisch aktiven Stoffen. Pedobiologia., 1969, 9: 182-187.
    21. Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S. Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiology., 2002, 130: 1908-1917.
    22. Tapilskaja NV. Amoeba albida Na'gler und ihre Beziehungen zu dem Pilz Verticillum dahliae Kleb, dem Erreger der Welkekrankheit von Baumwollpflanzen. Pedobiologia., 1967, 7:156-165.
    1.郑华,欧阳志云,方治国,赵同谦.BIOLOG在土壤微生物群落功能多样性研究中的应用.土壤学报,2004,41(3):456-461.
    2. Arshad M, Frankenberger WT. Plant growth-regulating substances in the rhizosphere: microbial production and functions. Advances in Agronomy., 1998, 62: 45-51.
    3. Bonkowski M. Protozoa and plant growth: the microbial loop in soil revisited. New Phytologist., 2004, 162: 617-631.
    4. Bonkowski M, Brandt F. Do soil protozoa enhance plant growth by hormonal effects? Soil Biology and Biochemistry., 2002, 34: 1709-1715.
    5. Bonkowski M, Chen WX, Griffiths BS, Alphei J, Scheu S. Microbiol-faunal interactions in the rhizosphere and effects on plant growth. European Journal of soil Biology., 2000, 36: 135-147.
    6. Campbell CD, Grayston SJ, Hirst DJ. Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. Journal of Microbiological Methods., 1997, 30: 33-41.
    7. Cocking EC. Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant and Soil., 2003., 252: 169-175.
    8. Choi KH, Dobbs FC. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. Journal of Microbiological Methods., 1999, 36: 203-213.
    9. Djigal D, Brauman A, Diop TA, Chotte JL, Villenave C. Influence of bacterial-feeding nematodes (Cephalobidae) on soil microbial communities during maize growth. Soil Biology and Biochemistry., 2004: 323-331.
    10. Epstein SS, Shiaris MP. Size-selective grazing of coastal bacterioplankton by natural assemblages of pigmented flagellates. Colorless flagellates and ciliates. Microbial Ecology., 1992, 23: 211-225.
    11. Ferris H, Venette RC, van der Meulen HR, Lau SS. Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement. Plant and Soil., 1998, 203: 159-171.
    12. Francisco SS, Houdusse F, Zamarrefio AM, Garnica M, Casanova E, Garci a-Mina JM. Effects of IAA and IAA precursors on the development, mineral nutrition, IAA content and free polyamine content of pepper plants cultivated in hydroponic conditions. Scientia Horticulturae., 2005, 106: 38-52.
    13. Garland JL. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biology & Biochemistry., 1996, 28:213~221.
    14. Garland JL. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiology Ecology., 1997,24:289-300.
    15. Garland JL, Mills AL. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied Environmental Microbiology., 1991, 57: 2351 - 2359.
    16. Grayston SJ, Wang SQ, Campbell CD, Edwards AC. Selective influence of plant soecies on microbial diversity in the rhizosphere. Soil Biology and Biochemistry., 1998, 30: 369-378.
    17. Grewel PS. Influence of bacteria and temperature on the reproduction of Caenorhabditis elegans (Nematoda: Rhabditidae) infesting mushrooms (Agaricus bisporus). Nematologica., 1991, 37: 72-82.
    18. Griffiths BS, Bardgett RD. Interactions between micro-feeding invertebrates and soil microorganisms. In: van Elsas JD, Wellington E, Trevors JT. eds. Modern Soil Microbiology. Marcell Dekker, New York., 1997,165-182.
    19. Hackett CA, Griffiths BS. Statistical analysis of the time-course of Biolog substrate utilization. Journal of Microbiological Methods., 1997, 30: 63-69.
    20. Kinner NE, Harvey RW, Blakeslee K, Novarino G, Meeker LD. Size-selective predation on ground-water bacteria by nanoflagellates in an organic contaminated aquifer. Applied and Environmental Microbiology., 1998, 64: 618-625.
    21. Kreuzer K, Adamczyk J, Iijima M, Wagner M., Scheu S, Bonkowski M. Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). Soil Biology and Biochemistry., 2006, in press.
    22. Larkin RP. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biology & Biochemistry., 2003, 35:1451-1466.
    23. Martens DA, Frankenberge Jr WT. Assimilation of exogenous 2-~(14)C-indole acetic acid and 3-~(14)Ctryptophan exposed to roots of three wheat varieties. Plant and Soil., 1994,166: 281-290.
    24. Marschner P, Yang CH, Lieberei R, Crowley DE. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry., 2001, 33:1437-1445.
    25. Phillips DA, Ferris H, Cook DR, Strong DR. Molecular control points in rhizosphere food webs. Ecology., 2003, 84: 816-826.
    26. Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR. Microbial products trigger amino acid exudation from plant roots. Plant Physiology., 2004, 136: 2887-2894.
    27. Sherr BF, Sherr EB, McDaniel J. Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages. Applied and Environmental Microbiology., 1992, 58: 2381-2385.
    28. Snyder RA. Chemoattraction of a bactedvorous ciliates to bacteria surface compounds. Hydrobiologia., 1991, 215: 205-213.
    29. S6derberg KH, Jumpponen A, Baath E. The microbial community in the rhizosphere determined by community level-physiological profile (CLPP) and direct soil-and cfu-PLFA techniques. Applied Soil Ecology., 2004, 25:135-145.
    30. Sundin P, Valeur A, Olsson S, Odham G. Interactions between bacteria-feeding nematodes and bacteria in the rape rhizosphere: effects on root exudation and distribution of bacteria. FEMS Microbiology Ecology., 1990, 73: 13-22.
    31. Venette RC, Fen'is H. Influence of bacterial type and density on population growth of bacterial-feeding nematodes. Soil Biology and Biochemistry., 1998, 30: 949-960.
    32. Verity PG. Feeding in planktonic protozoans: Evidence for non-random acquisition of prey. Journal of Protozoology., 1991, 38: 69-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700