针对c-myc基因的小干扰RNA对急性淋巴细胞白血病细胞系Jurkat细胞增殖、凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:c-myc基因是调控细胞增殖与分化的癌基因,在急性白血病细胞株及急性白血病、恶性淋巴瘤患者的细胞中均出现高表达,是影响这些恶性肿瘤发生、发展的重要基因之一。RNA干扰(RNA interference)是许多生物体内的一种保守机制,是指一种双链RNA(double-stranded RNA,dsRNA)分子在mRNA水平关闭相应序列基因的表达使其沉默的过程,是一种序列特异性的转录后基因沉默(post-transcriptional gene silencing,PTGS)。其基本原理是dsRNA通过RNaseⅢ内切酶Dicer的作用产生21~23 nt有活性的小干扰RNA(small interfering RNA,siRNA),然后在细胞内形成RNA诱导沉默复合体(RNA induced silence complex,RISC),RISC根据碱基互补以siRNA为模板特异地识别其同源基因mRNA,并对其进行递进式剪切,诱导序列特异性mRNA的降解,从而抑制基因表达。RNAi是新近发展起来的一种基因功能研究的新方法[1,2],因而得到迅速发展,目前已广泛应用于功能基因组和基因治疗的研究[3,4]。本研究选择c-myc表达较高且c-myc在细胞增殖、凋亡中起重要作用的Jurkat细胞[5,6]作为研究对象,观察c-myc siRNA对其增殖、凋亡的影响。
     目的:探讨c-myc小干扰RNA对急性淋巴细胞白血病细胞系Jurkat细胞的增殖、凋亡的影响及对c-myc基因、蛋白表达的影响。对白血病的基因治疗提供新方法和靶点。
     方法:针对c-myc mRNA的第1545-1565靶位点设计siRNA,采取化学合成法合成。合成的c-myc siRNA,经转染剂转染入Jurkat细胞,观察细胞形态学变化,应用四唑氮化合物(MTS)法绘制细胞生长曲线,细胞集落培养观察c-myc siRNA对Jurkat细胞增殖的影响,应用流式细胞术和TdT酶介导的末端缺失原位标记(TUNEL)法分析细胞的凋亡,RT-PCR及Western blot检测c-myc siRNA作用前后c-myc、hTERT基因的mRNA及蛋白表达水平的变化。
     结果:(1) c-myc siRNA能明显抑制Jurkat细胞的增殖,作用48小时的半数抑制浓度(IC50)约为75nM,MTS法检测c-myc siRNA对Jurkat细胞的生长有抑制作用,对克隆形成也有明显的抑制作用。(2) c-myc siRNA可引起Jurkat细胞凋亡,经流式细胞仪、TdT酶介导的末端缺失原位标记(TUNEL)法均检测出细胞凋亡,且随着作用时间的延长,凋亡率也逐渐上升。(3) c-myc siRNA可引起Jurkat细胞的c-myc、hTERT mRNA表达水平的降低。(4) c-myc siRNA可引起Jurkat细胞的c-myc、hTERT蛋白表达水平的降低。
     结论:化学合成法合成的c-myc siRNA能明显抑制Jurkat细胞的增殖与克隆形成,并可显著诱导Jurkat细胞发生凋亡。c-myc siRNA明显降低Jurkat细胞c-myc、hTERT基因的mRNA及蛋白表达水平,有望成为白血病靶向基因治疗的新工具。
Backgrounds: c-myc gene is an oncogene regulating proliferation and differentiation of cell. It has been found to be overexpressed in acute leukemia cell lines and cells of acute leukemia and malignant lymphoma patients. It’s one of the important genes influencing growth and progression of these malignancies. RNA interference(RNAi) is the sequence-specific gene silencing induced by double-stranded RNA(dsRNA), is the process of sequence-specific post-transcriptional gene silencing(PTGS) in animals and plants, initiated by double-stranded RNA that is homologous in sequence to the silenced gene. This phenomenon is conserved in a variety of organisms. RNAi is mediated by small interfering RNAs(siRNAs) that are produced from long dsRNAs of exogenous or endogenous origin by an endonuclease-Ⅲtype, called Dicer. The resulting siRNAs are about 21-23 nucleotides(nt) long and are then incorporated into a nuclease complex, the RNA-inducing silencing complex (RISC), which then targets and cleaves mRNA containing a sequence identical to that of the siRNA. Recently RNAi has became the new tool used to study the functions of genes and was used widly in the fields of genemic function research and gene therapy. In this study, Jurkat cell line with rather high expression level of c-myc which plays an important role in its proliferation and apoptosis was chosen to be the object which was treated with the anti c-myc siRNA.
     Objective: The aim of this study is to investigate the effects of anti c-myc siRNA on apoptosis and proliferation and on c-myc protein and mRNA expression in human lymphoblastic leukemia cell line Jurkat cells and is to provide a target for treatment and new gene therapy method of leukemia.
     Methods: siRNA targeting the site 1545-1565 of c-myc mRNA was designed and chemically synthesized. In vitro cultured Jurkat cells were transfected with transfection agent. Growth inhibition was detected by MTS assay and colony formation assay, and cell apoptosis by flow cytometry and detection of TdT mediated dUTP nick end labeling(TUNEL). The expression of c-myc and hTERT was detected by RT-PCR and Western blot.
     Result: (1) c-myc siRNA remarkably inhibited the cell proliferation, and the inhibitory concentration 50%(IC50) after 48 hour of treatment was about 75nM. By MTS assay, c-myc siRNA had inhibition effects on the growth of Jurkat cells and inhibited clone growth significantly. (2) c-myc siRNA induced apoptosis in Jurkat cells that could be detected by flow cytometry and detection of TdT mediated dUTP nick end labeling(TUNEL), These also showed that c-myc siRNA induced apoptosis in Jurkat cells in time-dependent manner. (3) c-myc siRNA can decrease the expression levels of c-myc and hTERT mRNA expression in Jurkat cells. (4) c-myc siRNA can decrease the expression levels of c-myc and hTERT proteins in Jurkat cells.
     Conclusion: c-myc siRNA chemically synthesized could inhibit significently Jurkat cells proliferation and induce apoptosis. c-myc siRNA decreased c-myc and hTERT mRNA and proteins expression in Jurkat cells, it may become one of the new tools of gene therapy to acute leukemia.
引文
1. Demburg AF, Karpen GH. A chromosome RNAissance[J]. Cell,2002,111(2): 159-162.
    2. Borkhardt A. Blocking oncogenes in malignant cells by RNA interference-new hope for a highly specifice cancer treatment[J]. Cancer Cell, 2002,2(3):167-168.
    3. Fire A, Xu S,Montgomery MK,et al. Potent and specific interference by double-stranded RNA in Caenorhabditfs elegans[J]. Nature, 1998,391(6669): 806-811.
    4. Mello CC, Conte DJ. Revealing the world of RNA interference[J]. Nature,2004,431(7006): 338-342.
    5. Induction of G2/M arrest and inhibition of c-myc and p53 transcription by PW631 in Jurkat T lymphocytes[J]. Biochem Pharmacol, 2002, 63(7): 1251-1258.
    6. Cholesteryl butyrate solid lipid nanoparticles as a butyric acid pro-drug: effects on cell proliferation, cell-cycle distribution and c-myc expression in human leukemic cells[J]. Anti-Cancer Drugs, 2004, 15(5):525-536.
    7. 陈子化,吕新生,文继舫,等. 原癌基因 Jun/c-myc 在原发性肝细胞癌中的表达及意义[J]. 中华实验外科杂志,1997,14(5):277-278.
    8. Tsai LC ,Hung M W,Yuan CC,et al.Effect fo tamexifen and retinoic acid on cell growth and c-myc expression in human breast and cervical cancer cells[J]. Anticancer Res,1997,17(6):4557-4562.
    9. Henriksson M,Luscher B. Protains of the Myc network:essential regulations of cell growth and differentation[J]. Adv Cancer Res,1996,68:109-182.
    10. Willams ME, Friersen HFJ, Tabbarah S, et al. Fineneedle aspiration of mon-Hodgkin’s lymphoma. Southern blot analysis for antigen receptor, bcl-2 and c-myc gene rearrangements[J]. Am-J-Clin-Pathol,1990,93(6):754.
    11. Palnmbo AP, Boccadoro M, Ballaglio S. et al. Human homologue of moloney leukemia virus mtergration-4 locust (MLVI-4) located 20 kilobases 3′ of the myc gene is reagrranged in multiple myelomas[J]. Cancer Research, 1990,50(20):6478.
    12. Mirranda P. EI, Valles AY, Hernandej ML, et al. Myc protein and proteinsantigenically related with myc in acute lymphoblastic leukemia[J]. Rev-Invest-Clin, 1991,43(2):139.
    13. Wickstrom EL,Bacon TA,Gongaleg A,et al. Anti-c-myc increases differentiation and decreases colony formation by HL-60 cells[J]. In Vitro Cellular Developmental biology, 1989,24:297.
    14. Holy JT, Redmer RL, Nienhuis AW. An oligomer complementary to c-myc mRNA inhibits proliferation of HL-60 promyelocytic cells and induces differentiation mollular and cellular[J]. Biology, 1988,8(2):963.
    15. Evans G, Harriagten E,Fanidi A, et al. Integrated control of cell proliferation and cell death by the c-myc oncogene[J]. Phil Tran R Rol Lond B, 1994,345:269-281.
    16. Reynolds A,Leake D,Boese Q,et al. Rational siRNA design for RNAinterferenc[J]. Nat Biotechnol, 2004,22(3):326-330.
    17. Barltrop JA, Owen TC, Cory AH, et al. 5-(3-Carboxyl-methopheny1)-2-(4,5-dimethylthiazolyl)-3-(4-sulfophenyl)tetrazolium, inner salt(MTS) and related analogs of M'IT reducing to purple water-soluble formazans as cell-viability indicators[J]. Bioorg Med Chem Lett,1991,1:611-614.
    18. Goodwin CJ, Holt SJ, Downs S, Marshall NJ.Microculture tetrazolium assays:a comparison between two new tetrazolium salts, XTT and MTS[J]. J Immunol Methods,1995,179(1):95-103.
    19. 姜泊,张亚历,周殿元.《分子生物学常用实验方法》.人民军医出版社,1996 第 1版,174-177.
    20. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in culture mammalian cells[J]. Nature, 2001,411 (6836):494-498.
    21. Tuschl T. Functional genomics: RNA sets the standard[J]. Nature,2003,421 (6920): 220-221.
    22. Aoki Y, Cioca D, Oidaira H, et al. RNA interference may be more potent than antisense RNA in human cancer cell lines[J]. Clin Exp Pharmacol Physiol,2003,3(1-2):96-102.
    23. 彭智,冯文莉,肖志坚,等. RNAi 对白血病细胞 mdr-1 基因和多药耐药表型的影响[J]. 肿瘤, 2006,26(12):1074-1077.
    24. Cioac DP, Aoki Y, Kiyosawa K. RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines[J]. Cancer Gene Ther,2003,10(2):125-133.
    25. Borkhardt A. Blocking oncogenes in malignant cells by RNA interference:new hope for a highly, specific cancer treatment[J]. Cancer Cells,2002,2(3):167-168.
    26. Auki Y, Cioca D, Oidam H, et al. RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol[J].2003, 30(1-2): 96-102.
    27. Neel BG , Jhannar SC, Chaganti RSK, et al. Two human oncogenes are located on the long arm of chromosome 8[J]. Proc Natl Acad Sci USA,1982,79(24): 7842-7844.
    28. 王子明,种铁,张鹏. c-myc 反义寡核苷酸对肾癌细胞的生长抑制作用及对细胞周期的影响[J]. 西安交通大学学报(医学版),2003,24(6):611-615.
    29. Resnitzky D, Kimchi A. Dregulated c-myc expression abrogates the interferon and interleukin-6 mediated G0/G1 cell cycle arrest but not other inhibitory responses in M1myeloblastic cells[J]. Cell Growth Differ,1991,2(1):33-41.
    30. Aldo B, ConstanceM, Cultraro CM, et al. c-myc inactivation by mutant Max alters growth and morphology of NCI-H-630 colon cancer cells[J]. Cell Physiol,1996, 169(3):200-206.
    31. Collins S, Groudine M. Amplification of endogenous myc-related DNA sequences in a human myeloid leukemia cell line[J]. Nature,1982, 298(5875): 679-681.
    32. 陈曙平,唐果成.急性白血病患者 bcl-2,c-myc 基因的表达及两者之间的关系[J]. 湖南医科大学学报,2001, 26(1): 83-85.
    33. Weng AP, Millholland JM, Yumi YO, et al. c-myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma[J]. Genes Dev,2006,20(15): 2096-2109.
    34. 曾嵘. c-myc 的基因调节作用[J]. 国外医学. 遗传学分册,1997,20(2):64-66.
    35. Grieder C, Blackburn E. Identification of a specific telomere terminal transferaseactivity in Tetrahymena extracts[J]. Cell,1985,43:405-413.
    36. Feng J, FunkWD, Wang SS,et al. The RNA component of human telomerase[J]. Science, 1995, 269(5228): 1236-1241.
    37. Counter CM, Gupta J, Harley CB, et al. Telomerase activity in normal leukocytes and in hematologic malignancies[J]. Blood, 1995,85:2315-2320.
    38. 李红梅,辛晓燕,杜辉,等.逆转录酶抑制剂对卵巢癌细胞株 HO-8910 细胞端粒酶活性和细胞周期的影响[J]. 第四军医大学学学报, 2001,22(2): 122-124.
    39. 刘利,孙秉中,张传山,等. 端粒酶反义 RNA 对人髓性白血病细胞系 HL-60 的作用[J]. 第四军医大学学报,2000,21(4): 518-520.
    40. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer[J]. Science,1994,266(5193): 2011-2015.
    41. Bodnar AG, Ouellette M, Frolkis M, et al. Extensioin of life span by introduction of telomerase into normal human cells[J]. Science,1998, 279(5349): 349-352.
    42. Counter CM, Gupta J, Harley CB, et al. Telomerase activity in normal leukocytes and in hematologic malignancies[J]. Blood, 1995, 85(9):2315-2320.
    43. Yokoyama Y, Takahashi Y, Shinohara A, et al. The 5′-end of hTERT mRNA is a good target for hammer head ribozyme to suppress telomerase activity[J].Biochem Biophys Res Commun, 2000,273(1): 316-321.
    44. Yamada K, Yajima T, Yagihashi A, et al. Role of human telomerase reverse transcriptase and telomeric-repeat binding factor protein 1 and 2 in human hematopoietic cells[J]. Jpn J Cancer Res.2000,91(12):1278-1284.
    45. Ohyashiki JH, Hayashi S, Yahata N, et al. Impaired telomere regulation mechanism by TRF1 (telomere-binding protein),but not TRF2 expression, in acute leukemia cells[J]. Int J Oncol,2001,18(3):593-598.
    46. 梁铮铮,胡剑. 端粒(酶)的结构功能及其与衰老和癌症的关系[J]. 细胞生物学杂志,2003, 25(1): 8-14.
    47. Greenberg RA, O’Hagan RC, Deng H, et al. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation[J]. Oncogene, 1999, 18(5): 1219-1226.
    48. Wu KJ, Grandori C, Amacker M. Direct activation of TERT transcription by c-myc [J]. Nature Genet,1999,21(2):220-224.
    49. Wick M, Zubov D, Hagen G. Genomic organization and promoter characterization of the gene encoding the human T reverse trancriptase(hTERT)[J]. Gene,1999,232(1):97-106.
    50. 程旭,陈子兴,王玮,等. 急性白血病端粒酶活性、端粒酶逆转录酶和 c-myc 的表达及其相互间的关系[J]. 癌症,2003,22(11):1175-1179.
    51. Latil A, Vidavd D, Yaleri A, et al. hTERT expression correlates with MYC over-expression in human prostate Cancer cell[J]. Int J Cancer, 2000, 89(2): 172-176.
    52. Wang J, Xei LY, Ailan S, ed a1. Myc activates telomerase[J]. Genes Dev, 1998,12(12),1769-1774.
    53. Roger AG, Ronan C, Hongyu D. Telomerase reverse transcriptase gene is a direct target of c-myc but is not functionally equivalent in cellular transformation[J]. Oneogene,1999,18(5):1219-1226.
    54. Sangtake H, Young HW, Ung-JK, et al. In vivo and in vitro analyses of myc for differential promoter activities of the human telomerase (hTERT)gene in normal and tumor cell[J]. Biochemical and Biophysical Research Commununication, 1999,263,361-365.
    55. 王蕾,金洁. 高三尖杉酯碱对 Jurkat 细胞端粒酶活性的影响及机制研究[J]. 实用肿瘤杂志,2005,20(5): 391-394.
    56. Cong YS, Wen J, Bacchetti S. The human telomerase catalytic subun it hTERT: organization of the gene and characterization of the promoter[J]. Hum Mol Genet, 1999, 8 (1): 137-142.
    57. Kyo S, Takakura M, Taira T, et al. Spl cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene(hTERT) [J]. Nucleic Acids Res,2000,28 (3):669-677.
    58. Takauram M, Kyo S, Kanaya T, et al. Cloning of human telomerase transcriptase gene promoter and identification of proximal core promoter essential for transcriptional activation of hTERT in immortalized and cancer cells[J]. CancerRes,1999,59:551-559.
    59. Horikawa I, Cablep PL, Afshari C, et al. Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene[J]. Cancer Res,1999,59:826-830.
    60. Aidda C, Crotty PL, McGrath J, et al. Developmentally regulated expression of the novel cancer anti-apoptosis gene Survivin in human and mouse differentitation[J]. Am J Pathol,1998,152(1):43-49.
    61. Akiyama M, Yamada O, Akita S, et al. Eetopie expression of c-myc fails to overcome downregulation of telomerase activity induced by hetbimyclin A, but ectopic hTERT expression overcomes it[J]. Leukemia,2000,14(7):1260-1265.
    62. Xu D, Popov N, Hou M, et al. Switch from Myc/Max to Madl/Max binding and decrease in histone acetylation at the telomerase reverse transcriptase promoter during differentiation of HL-60 ceels[J]. Proc Natl Acad Sci USA,2001,98(7): 3826-3831.
    63. 翟荣林,王国斌,夏泽峰. c-myc靶向小干扰RNA诱导乳腺癌细胞调亡的作用[J].中华实验外科杂志,2005,22(6):698-700.
    64. 王方金,何蕴韶. 应用 siRNA 抑制 K562 细胞中 c-myc 基因的表达[J]. 解剖学研究,2005,27(1):12-18.
    65. 许杨,王益华,高纪东,等. 干扰 RNA 对 HepG2 肝癌细胞内源性 c-myc 表达的抑制作用[J]. 中华肿瘤杂志,2004,26(8):458-460.
    66. Kabilova TO, Chernolovskaya EL, Vadimirova, et al. Silencing of c-myc expression in tumor cells by siRNA[J]. Nucleosides Nucleotides Nucleic Acides,2004,23 (6-7): 867-872.
    67. Kabilova TO, Chernolovskaya EL, Vadimirova, et al. Inhibition of Human Carcinoma and Neuroblastoma Cell Proliferation by Anti-c-myc siRNA[J]. Oligonucleotides,2006,16(3):15-25.
    68. Yi-hua W, Shuang L, Guo Z, et al. Knockdown of c-myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo[J]. Breast Cancer Res,2005,7(2):220-228.
    69. 岳枫,马文丽,宋艳斌,等. RNAi技术沉默K562细胞中c-myc基因的初步研究[J]. 第一军医大学学报,2005,25(6): 647-650.
    70. 陈艳丽,刘延方,岳保红,等. c-myc小干扰RNA对HL-60细胞凋亡的影响[J]. 河南医学研究,2006,15(1):13-15.
    71. 赵小强,孙玲,刘小转,等. c-myc 特异性 siRNA 对 HL-60 细胞作用的研究[J]. Journal of Basic and Clinical Oncology,2006,19(2):90-92.
    72. Fujimoto K, Takahashi M. Telmerase activity ih human leukemic cell line is inhibited by antisense pentadecadeoxynucleotides targeted against c-myc mRNA[J]. Biochem Biophys Res Commun,1997,24(3):775-781.
    73. Weng AP, Nam Y, Wolfe MS, et a1. Growth suppression of pre-T acute lymphoblastic leukemia by inhibition of Notch signaling[J]. Mol and cell bio, 2003,23(02):655-664.
    74. Weng AP, Ferrando AA, Lee W, et a1. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia[J]. Science,2004,306(5694):269-271.
    75. Chan SM, Weng AP, Tibshirani R, et a1. Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia[J]. Blood,2007,110(1): 278-286.
    [1] Fire A,Xu S,Montgomery MK,et al. Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans [J]. Nature,1998,391 (6669): 806-811.
    [2] Tuschl T. Functional genomics: RNA sets the standard [J]. Nature,2003,421 (6920): 220-221.
    [3] Lewis DL,Hagstrom JE,Loomis AG,et a1.Efficient delivery of siRNA for inhibition of gene expression in postnatal mice [J].Nature Genetics,2002,32(1):107-108.
    [4] Sui G,Soohoo C,Affarel B,et a1.A DNA vector-based RNAi technology to suppress gene expression in mammalian cells [J].Proc Natl Acad Sci,2002,99(8):5515-5520.
    [5] Notarbartolo M,Cervelo M,Dusonchet L,et al.Resistancet to diverse apoptotic Triggers in multidrug resistant HL-60 cells and its possible relationship to the expression of P-glycoprotein,Fas and of the novel anti-apoptotis factors IAP (inhibitory of apoptosis proteins) [J].Cancer Lett,2002,180(1):91-101.
    [6] Schwarzenbach H. Expression of MDR1/ P-glycoprotein , the multidrug resistance protein MRP,and the lung-resistance protein LRP in multiple myeloma [J]. Med Oncol,2002,19(2):87-104.
    [7] Steinbach D,Sell W,Voigt A,et a1.BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia [J].Leukemia,2002,16(8):1443-1447.
    [8] Kampkotter A,Volkmann TE,de Castro SH,et al. Functional analysis of the glutathione S-transferase 3 from Onchocerca volvulus (Ov-GST-3) : a parasite GST confers increased resistance to oxidative stress in Caenorhabditis elegans [J]. J Mol Biol,2003,325(1):25-37.
    [9] Urasaki Y,Ueda T,Yoshida A,et al. Establishment of a daunorubicin-resistant cell line which shows multi-drug resistance by multifactorial mechanisms [J]. Anticancer Res,1996,16(2):709-714.
    [10] Tarke K,Jourdan M,Veyrune JL,et al. The Bcl-2 family member Bfl-1/A1 is strongly repressed in normal and malignant plasma cells but is a potent anti-apoptotic factor for myeloma cells [J]. Br J Haematol,2004,125(3):373-382.
    [11] Lakshmi G. Cell death inhibition:keeping caspase in check [J].Cell,2001,104(6):805-808.
    [12] 罗绍凯,彭爱华,戴辉,等. 环孢菌素D衍生物PSC833逆转K562/A02细胞多药耐药的研究[J]. 中华血液学杂志,2002,23(1):23-26.
    [13] Matsuo H,WakasugiM,Takanaga H,et al. Possibility of the reversal of multidrug resistance and the avoidance of side effects by liposomes modified with MRK-16,a monoclonal antibody to P-glycoprotein [J]. J Control Release,2001,77 (1-2):77-86.
    [14] Ren Y,Wei D,Liu J,et al. An antisense oligodeoxynucleotide2-doxo-rubicin conjugate: preparation and its reversal multidrug resistance of human carcinoma cell line in vitro[J]. Nucleosides Nucleotides Nucleic Acids,2004,23 (10): 1595-1607.
    [15] 李建华.川芎嗪逆转K562/ADM细胞多药耐药性的研究[J]. 现代中西医结合杂志,2001,10(15):1405-1407.
    [16] 史曦凯.人参皂甙单体Rbl对多药耐药细胞系K562/HHT的耐药逆转作用[J]. 第三军医大学学报,1999,11(21):825-827.
    [17] Wilkins C,Dishongh R,Moore SC,et al. RNA interference is an antiviral defence mechanism in Caenorhabditis elegans[J]. Nature,2005,436(7053):1044-1047.
    [18] 彭智,冯文莉,肖志坚,等. RNAi 对白血病细胞 mdr-1 基因和多药耐药表型的影响[J]. 肿瘤,2006,26(12):1074-1077
    [19] Rumpold H,Wolf AM,Gruenewald K,et al.RNAi-mediated knockdown of P-glycoprotein using a transposon-based vector system durably restores imatinib sensitivity in imatinib-resistant CML cell lines [J].Exp Hematol,2005,33(7):767-775.
    [20] 李宁,钱新华,王志远. 短干涉RNA特异性抑制K562细胞肺耐药相关蛋白基因表达的研究[J]. 南方医科大学学报,2006,26(1):1-5.
    [21] MacKeigan JP,Murphy LO,Blenis J. Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance [J]. Nat Cell Biol,2005,7(6): 591-600.
    [22] Brummelkamp TR,Bernards R,Agami R. A system for stable expression of short interfering RNAs in mammalian cells [J]. Science,2002,296(5567):550-553.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700