AFLP标记对日本鳗鲡与中华绒螯蟹种群遗传结构的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遗传变异的大小及群体遗传结构与一个物种的进化潜力和抵御不良环境的能力密切相关。种群遗传多样性水平、形成机制及时空分布格局的研究,可揭示物种的进化历史,保护并可持续地利用该物种。
     采用AFLP分子标记技术对东海两个鳗鲡居群(苗种来源于闽江流域的成鳗和长江口捕获的玻璃鳗)共56个个体的遗传多样性水平及居群的遗传结构进行了研究。6对选择性扩增引物共检测到363个位点,其中闽江流域、长江口居群多态位点数分别为228、269,来自闽江流域成鳗群低于来自长江口的玻璃鳗居群(相应的多态位点频率分别为62.81%、74.10%)。与此相应的Nei's基因多样性系数0.2781、0.3077,Shannon's信息指数分别为0.4092、0.4493,多态信息指数0.2444、0.2791。分析结果表明:与其它鱼类相比,我国东海这两个鳗鲡居群具有较丰富的遗传变异。两居群的遗传相似度约为0.814,遗传距离为0.2103。根据个体间Nei's遗传距离矩阵对两居群内个体进行UPGMA聚类分析构建遗传聚类图,结果明显分为两支,表明了它们之间显著的群体分化,这与传统的随机交配理论推测的结果有一定的差距。本实验是应用AFLP技术首次对中国东海日本鳗鲡居群遗传结构状况的研究,对其多态性情况进行了初步分析,并根据得到的生态和遗传的信息对此结果做出解释。
     对分别来自于长江口外海进行生殖洄游和镇江丹徒进行索饵洄游的两类中华绒螯蟹群体54个个体进行AFLP遗传分析。5对选择性引物共扩增270个位点,其中多态位点数分别为235(长江近海)、231(镇江丹徒)相应多态位点频率分别为(87.03%、85.56%)两群体遗传结构相差不大。通过有效等位基因数(1.5765、1.6214)、Nei's基因多样性(0.3341、0.3523)、Shannon's信息指数(0.4937、0.5148)(前者为长江近海,后者为镇江丹徒)表明镇江丹徒群体比长江外海遗传多样性水平稍高。两中华绒螯蟹群体遗传指数如此接近说明虽然生长环境不同且两群体有一定的地理距离,但由于其洄游特性使同一水系的群体间有基因交流的机会使得群体间的遗传分化水平不显著。说明目前自然环境下生活的长江蟹生存条件受人为捕捞、污染等人为原因所造成的影响已较小,较好的维持了蟹苗时的遗传结构状况。
     本研究利用AFLP技术首次对中国东海日本鳗鲡、长江水系中华绒螯蟹的种群遗传结构进行分析,对其目前的种群遗传状况进行评价,有助于人们更清楚的认识和了解现阶段以上物种的生物资源状况,为管理部门提供采取解决方案的依据。在推测和掌握物种群体内遗传变异水平、种群间的遗传分化状况研究提供参考资料。
Genetic variation's size and community's genetic structure are closely related with a species' evolution potential and resistance poor surroundings' ability.The population genetic diversity levels,the forming mechanism and the space and time distribution pattern research,may reveal the species' evolution history,to analyze its evolution potential and future destiny provides the important material,will protect and uses the humanity livelihood genetic resources sustainable,saving approaches the species which will exterminate,protecting the threatened species.
     AFLP analysis was conducted on the two populations of Anguilla japonica from Chinese East Sea(the adult eels whose seeds came from Minjiang River and the glass eels from the Changjiang River).In order to investigate the genetic diversity and the genetic structure of the populations,56 individuals were assessed.Using 6 selective amplify primers,363 discernible DNA fragments loci were distinguished.Of these 228 were polymorphic loci(Minjiang drainage),while 269 were polymorphic loci (Changjiang drainage).The adult eel population was lower than the glass eel population(polymorphic frequencies were 62.81%、74.10%.Nei's index of phenotypic diversity were 0.2781、0.3077,Shannon index showed 0.4092、0.4493, the heterozygosity were 0.2444、0.2791).The combined results of the analysis of population genetic structure and community investigation suggested:compared with other fishes,the two East Sea eel populations had abundant genetic variation,which indicated that high levels of genetic variation existed in the natural populations of Chinese Anguilla japonica.Genetic similarity of the two populations was 0.814, genetic distance was 0.2103.According to Nei's genetic distance matrix,and the individuals of the two populations UPGMA genetic clusters were constructed.It showed that there was a high level of genetic differentiation between the two populations,which were discrepant with panmixia theory.This is the first genetic structure research on Anguilla japonica of Chinese East Sea,and it exhibit primary analysis on their diversity.Based on the ecological and genetic information available results,some explains were brought forward.
     The biochemical genetics in two populations of Eriocheir sinensis collected from Changjiang river's offshore were analyzed by AFLP(amplified fragments length polymorphism).One population was in the spawning migration and from Zhenjiang Dantu,the other was in feeding migration.54 individuals were assessed using 5 selective amplify primers,270 discernible DNA fragments loci were produced.Of these 235 were polymorphic loci(Changjiang river's offshore),while 269 were polymorphic loci(Zhenjiang Dantu).The result shows that the two populations genetic viability are similar.The mean effective number of alleles in loci(1.5765、1.6214).Nei's index of phenotypic diversity were 0.3523、0.3341,Shannon index 0.5148、0.4937 suggest the genetic differentiation in Zhenjiang is a litter higher than the Changing River's offshore population.The numerical results are so approximate to each other that it is hard to identification.Although the two populations are spread a certain distance,the character of migration make the same water system's population have a chance of gene communication.So the polarizations between the two populations are not so obviously.All these results shows that under the present natural environments eriocheir sinensis suffering fishing operation,pollution and other human factorshave become little influence that is to say they maintain the original genetic structures.
     This research using the AFLP technology to the Chinese East China Sea Anguilla japonica,the Changjiang River system eriocheir sinensis' population genetic structure carries on the analysis for the first time,and appraises their present biological resources condition.So it is helpful to clearly understand the present stage of the above species living resources condition,and provide basis of solution for the management department.Extrapolating and grasping the speciesin and between populations' genetic variation provide reference to the research of populations' differentiation.
引文
1.堵南山.中华绒螯蟹在北美洲.水产科技情报,2002,30(4):151-152
    2.堵南山.中华绒螯蟹在欧洲.水产科技情报,2003,30(1):7-9
    3.季维智,宿兵.遗传多样性研究的原理与方法.浙江科学技术出版社.1999:2
    4.李康民.中华绒螯蟹在美国.科学养鱼,2002,17(6):17
    5.李传友,伏健民,金德敏,翁曼丽,王斌.AFLP分析中多态性扩增产物的回收、克隆及鉴定.遗传,1998,20(4):1-4
    6.李莉,郭希明.利用RAPD和AFLP标记初步构建太平洋牡蛎的遗传连锁图谱.海洋 与湖沼,2003,34(5):541-551
    7.李凌,宋文芹,毛英伟,孙德岭.用cDNA-AFLP银染技术研究与花椰菜花色相关的基因.南开大学学报(自然版),2000,33(4):33-36
    8.李思发,邹曙明.中国大陆沿海六水系绒鳌蟹中华绒鳌蟹和日本绒鳌蟹群体亲缘关系指纹标记.水产学报,1999,23(4):325-330
    9.刘必谦,董闻琦,王亚军,朱世华,吴望星.岱衢族大黄鱼种质的AFLP分析.水生生物学报,2005,219(4):413-416
    10.倪勇,伍汉霖.江苏鱼类志.中国农业出版社,2006:257
    11.潘洁,包振民,赵洋,胡晓丽,万俊芬,李桢.栉孔扇贝不同地理群体的遗传多样性分析.高技术通讯,2002,12(12):78-82
    12.邱涛,陆仁.四种沼虾的SRFA指纹研究.中国水产科学,1999,6(1):1-4
    13.施立明.遗传多样性及其保护.生物科学信息,1990,2(4):158-161
    14.孙易,宋文芹,钟贻诚,等.用RAPD和AFLP的方法对中国卤虫(Artemia)种及亲缘关系的研究.遗传学报,2000,27(3):210-218
    15.万春玲,谭远德.AFL P的一种改进方法.南京师范大学学报(自然版),1999,22(2):88-96
    16.万俊芬,包振民,汪小龙,张全启,王如才.亲本数目对鲍养殖群体AFLP标记位点及其遗传结构的影响.水产学报,2004,28(2):127-132
    17.王志勇,王艺磊,林利民,等.福建官井大黄鱼AFLP指纹多态性的研究.中国水产科学,2002,9(3):198-201
    18.王斌.中国海洋生物多样性的保护和管理对策.生物多样性,1999,7(4):347-350
    19.翁跃进.AFLP--一种DNA分子标记新技术.遗传,1996,18(6):29-31
    20.徐德昆,林乐峰.不同水系河蟹幼蟹的养成效果分析.水产养殖,1997(1):26-28
    21.杨玲,郑炳松,毛传澡,易可可,张卫萍,吴运荣,吴平,陶勤南.利用cDNA-AFL P 技术分析早作促进水稻种子根伸长过程中的基因表达.植物生理与分子生物学学报,2003,29(1):65-70
    22.杨锐,刘必谦,骆其君,王亚军,周湘池,戴继勋.利用扩增片段长度多态性(AFLP)研究坛紫菜的遗传变异.高技术通讯,2002,1:83-86
    23.尹佟明,黄敏仁.AFLP分子标记及其在植物育种的应用.生物工程进展,1997,17(1):6-11
    24.岳志芹,王伟继,孔杰,戴继勋,王清印.AFLP分子标记构建中国对虾遗传连锁图谱的初步研究.高技术通讯,2004,5:88-93
    25.张小平,Linds.用AFLP技术研究花生根瘤菌的遗传多样性.微生物学报.1999,39(6):483-488
    26.周奕华,陈正华.分子标记在植物学中的应用及前景.武汉植物学研究,1999,17(1):75-86
    27.朱伟铨,王义权.AFLP分子标记技术及其在动物学研究中的应用.动物学杂志,2003,38(2):101-107
    28.郑成木.植物分子标记原理.湖南科学技术出版社,2003:324-325
    29.毕庶万,陈去,毕建强,等.绒螯蟹形态生态特征和放养措施.水利渔业,1998,(4):33-34
    30.刘凯,段金荣,徐东坡,张敏莹,施炜.长江口中华绒螯蟹亲体捕捞量现状及波动原因.湖泊科学,2007,19(2):212-217
    31.吕永春.长江水系和其它水系中华绒螯蟹的区别.中国水产科学,1998(2):23
    32.徐兴川.关于中华绒螯蟹品质保持问题的探讨.水产科技情报,1991,18(1):17-19.
    33.徐兴川,朱振东.长江和瓯江水系蟹种湖泊放养的技术效果.淡水渔业,1992(2):25-29
    34.徐兴川,复新民,黎志强,等.湖泊放养长江、瓯江水系蟹种的技术效果的探讨.现代渔业信息,1993,8(3):20-23
    35.徐德昆,林乐峰.不同水系河蟹幼蟹的养成效果分析.水产养殖,1997(1):26-27
    36.杨培银.中华绒螯蟹种群差异研究进展.水产养殖,2000(5):22-23
    37.赵荣兴,夏连军(译).日本鳗鲡鳗苗资源变动之谜.现代渔业信息,2005,20(8):11-14
    38.占家智,羊茜.长江水系和辽河水系河蟹养殖的比较研究.科学养鱼,1998(12):31-32
    39.赵乃刚,堵南山,包祥生,等.中华绒螯蟹的人工繁殖与增养殖.安徽科学技术出版社,1988.75-77
    40.Agresti,Seki,May,et al.Breeding new strains of tilapia:Development of an artifical center of origin and linkage map based on AFLP and microsatellite loci.Aquacul ture,2000,18(5):43-56
    41.Boivin,Deu,Rami,et al.Towards a saturated sorghum map using RFLP and AFLP markers.Theory Apply Genet,1999.98:320-328
    42. Boore and Brown, Big trees from little genomes: mitochondrial gene order as a ph y-logenetic tool, Genet. 1998(8): 668-674
    43. Breyne, Rombaut, Van Gysel, et al. AFLP analysis of genetic diversity within and between A rapid opsis thaliana ecotypes. Mol.Gen.Genet. 1999,261: 627-634
    44. Bachem, van der Hoeven, de Bruijn, Vreugdenhil, Zabeau, Visser. Visualization of differential gene expression using a novel method of RNA fingerprinting bas-ed of AFLP: analysis of gene expression during potato tuber development. Plant, 1996,9 (5): 745-753
    45. Caro, laurenson. Ecological and genetic factors in conservation: A cautionary tale. Science, 1994,263: 485-486
    46. Cho,, Blair, Panaud, and McCouch. Cloning and mapping of variety specific rice genomic DNA sequences amplified fragment length polymorphisms (AFLP) from silver stained polyacrylamide gels. Genome, 1996, 39: 373-378
    47. Coimbra, Maria, Kobayashi, et al. A genetic linkage map oft he J apanese floun-der. Paralichthys oliaceus. Aquaculture, 2003,220: 203-218
    48. Congiu, Dupanloup, Patarnello, et al. Identification of interspecific hybrids by amplif y-ed fragment length polymorphism: The case of sturgeon. Molecular Ecology, 2000, 10: 2355-2359
    49. Feral. How useful are the genetic markers in attempts to understand and manage m a-rine biodiversity. Journal of Experimental Marine Biology and Ecology, 2002,268: 121-145
    50. Felip, Martinez, Piferrer, Carrillo, and Zanuy. AFLP analysis confirms exclusive mat ernal genomic contribution of meiogynogenetic Sea Bass (Dicent rarchus labrax L.). Marine Biotechnology, 2000,2 (3): 301-306
    51. LiGang, QiShen, XuZhenxiong. Morphometricand biochemical genetic variation of the mitten crab Eiiocheir, insouthern China.Aquaculture, 1993,111; 103-115
    52. Habu, Fukada, Hisatomi,et al. Amplified restriction fragment length polymorphism based mRNA fingerprinting using a single restriction enzyme that recognizes a 42bp sequence. Biochemical and Biophysical Research communications. 1997,234: 516-521
    53. Hindar, Ryman and Utter. Genetic effects of cultured fish on natural fish populations. Fish. Aquat. Sci. 1991,48: 945-957
    54. Huang, Bachem, Jacobsen, et al. Molecular analysis of differentially expressed genes during post harvest deterioration in cassava (Manihot esculenta Crantz) tuberous roots. Euphytica, 2001,120:85-93
    55. Jian. Variation in inter-simple-sequence repeat(ISSR) in mangrove and non-mangrove populations of Heritoiera littoralis from China and Australia, 2004,79: 75-86
    56. Kocher, Lee, Sobolewsha, Penman, and McAndrew. Genetic linkage map of a cichlid fish, the Tilapia (Oreochromis niloticus). Genetics, 1998,148: 1225-1 232
    57. Kle in P E, Kle in R R, Cartinhour, et al. A high-throughput AFLP—based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res, 2000,10(6): 789-807
    58. Krauss. Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers [M]. Molecular Ecology, 2000, 9: 1241-1245
    59. Kusumo, Druehl. Genetic structure variability of kelp alaria marginata over space and time. Journal of Phycology, 2000,36: 39-40
    60. Li, Keren, Emanuela, Sigrid.,et al. 2004 Genetic mapping of t he kuruma prawn Penaeus japonicus using AFLP markers. Aquaculture, 219: 143-156
    61. Li, Xiang, Liu, Zhang, Dong, Zhang, Construction of AFLP-based genetic linkage map for Zhikongs callop,Chlamys farreri Joneset Preston and maping of sex linked markers. Aquaculture, 2005,245: 63-73
    62. Lindner, Seeb, Habicht, Knudsen, Kretschmer, Reedy, Spruell, and Allendorf. Gene-centromere mapping of 312 loci in pink salmon by half-tetrad analysis. Genome, 2000,43: 1-43
    63. Liu, Nichols, Li, et al. Inheritance and usefulness of AFLP markers in channel catfish, blue catfish, and their F1, F2, and backcross hybrids . Molecular and General Genetics, 1998,258:260-268
    64. Lu, Sosinski, Reighard, et al. Construction of agenetic linkage map and identification of AFLP markers for resistance to rootknot nematodes in peach rootstocks .Genome, 1998,41: 199-207
    65. Mechanda, Baum, Johnson,and Arnason. Sequence assessment of co-migrating AFLP (TM) bands in Echinacea-implications for comparative biological studies. Genome. 2004, 47: 15-25
    66. Moore, Whan, Davis, Byrne, Hetzel, Preston. The development and application of genetic markers for the Kuruma prawn Penaeusjaponicas. Aquaculture, 1999,173: 19-32
    67. Qin, Overmars, Groenink, Schot, Bakker, et al. An efficient cDNA-AFLP Based Strategy for the identification of putative pat hogenicity factors from the potato cyst nematode Globodera rostochiensis. Molecular Plant Microbe Interactions, 2000,13: 830-836
    68. Rubinstein, Lee, Luo, Henion, and Halpern. Genes dependent on Zebrafish Cyclops function identified by AFLP differential gene expression screen. Genesis, 2000 26: 86-97
    69. Saliba—Colombani, Causse, Gervais, et al. Eficiency of RFLP, RAPD and AFLP markers for the construction of an intraspecific map of the tomato genome, genome, 2000,43(1): 29-40
    70. Vos, Hodgers. Bleeker, Reijans, vaildeIce, Hornes, Frijters, Pot, Kuiper, Zabeau A F L P,a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, (23): 4107-4 414
    71. Waples. Pacificsalmon, Oncorhynchus and the definition of "species"under the Endang -ered Species Act,Mar.fish.Rev. 1991a, (53): 11-22
    72. Waples. Genetic interactions between hatchery and wild Salmonids: lessons from the pacific Northwest, Can J.Fish.Aqua,sci, 1991b, 48(Suppl.1): 124-133
    73. Wu. Genetic diversity among and within Populations of Oryza granulata from Yunnan of China revealed by RAPD and ISSR markers: implications for conservation of the endangered species. Plant Science, 2004, 167: 35-42
    74. Shi Wang, Zhenmin Bao, Jie Pan, Lingling Zhang, Bing Yao, Aibin Zhan, Ke Bi, Quanqi Zhang. AFLP linkage map of an intraspecific corss in Chlamys farreri. Shellfish Research. 2004,23 (49): 1-49
    75. Wang Lingling, Song Linsheng, Guo, Ximing, et al. A preliminary genetic map of Zhikong scallop (Chlamys farreri Joneset Preston 1904). Aquaculture Research 2005 (36): 643-653
    76. Waugh, Bonar, Baird, et al. Homology of AFLP products in three mapping populations of barley.Mol GenGenet,1997,255:311-321
    77.Wilson,Li,Whan,et al.Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism.Aquacature,2002,204:297-309
    78.Wong,Forbes,Smith.Characterization of AFLP markers in damselflies:prevalence of codominant markers and implications for population genetic applications.Genome,2001,44:677-684
    79.Young,Wheeler,Coryell.A detailed linkage map of rainbow trout produced using doubled haploids.Genetics,1998,148:839-850
    80.Zabue,Vos.Selective restriction fragment amp lication:a general method for DNA finger printing[P].European patent app lication number,1993-07:92402629
    81.Wilsona,Whanb,Lehnertb,John Benzie,et al.Kenway and Benzie.Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length.Aquacature,2002,204(3-4):297-309
    1.Aniolas,Dalius,Adomas,Linas.Investigation of genetic variability in the European eel (Anguilla anguilla)in Lithuania using microsatellite DNA markers.Acta Zoologica Lituanica,2007,17(2):1392-1657
    2.Avise,Helfman,Saunders,Hales.Mitochondrial DNA differentiation in North Atlantic eels:population genetic consequences of an unusual life history pattern.Proc.Natl Acad.Sci.,1986,83:4350-4354
    3.Chan,Chan,Lee et al.Genetic variability of the Japanese eel Anguilla japonica(Temminck &Schlegel)related to latitude.Ecol.Freshwater Fish.1997:45-49
    4.Cheng,Tzeng.Timing of metarnorphosis and estuarine arrival across the dispersal range of the Japanes eel Anguilla japonica.Mar.Ecol.Prog.,1996,131:87-96.
    5.Comparini,Rodino.Electrophoretic evidence for two species of Anguilla leptocephali in Sargasso Sea.Nature,1980,287:435-437
    6.Dannewitz,Maes,Torbjorn,et al.,Panmixia in the European eel:a matter of time.Proc.R.Soc.Lond.,2005,272:1129-1137
    7. Ishikawa, Aoyama, Tsukamoto, Nishida. Population structure of the Japanese eel Anguilla japonica as examined by mitochondrial DNA sequencing Fisheries Science, 2001,67(2): 246-253
    8. Mank, Avise. Microsatellite Variation and Differentiation in North Atlantic Eels. Journal of Heredity, 2003,94(4): 310-314
    9. Chang, Han, Tzeng. Population structure of the Japanese eel Anguilla japonica as examined by mitochondrial DNA sequencing. Fish. Sci., 2003, 67: 246-253
    10. Chang, Han, Tzeng. Population Genetic Structure among Intra-Annual Arrival Waves of the Japanese Eel Anguilla japonica in Northern Taiwan. Zoological Studies, 2007,46(5): 583-590
    11. Katoh, Kobayashi. Aquaculture and Genetic Structure in the Japanese Eel Anguilla japonica. Proceedings of the Thirtieth U. S. Japan Meeting on Aquaculture. UJNR Technical Report, 2001 (30): 87-92
    12. Lintas, Hirano, Archer. Genetic variation of the European eel (Anguilla anguilla). Mol. Mar. Biol. Biotec, 1998, 7: 263-269
    13. Lynch. The similarity index and DNA fingerprinting. Molecular Biological Evolution. 1990,7(5): 478-484
    14. Maes, Volckaert. Clinal genetic variation and isolation by distance in the European eel Anguilla anguilla. Biological Journal of the Linnean Society, 2002,77 (4): 509-521
    15. Maes, Pujolar, Hellemans, Volckaert. Evidence for isolation by time in the European eel (Anguilla anguilla). Molecular Ecology, 2006,15(8): 2095-2107
    16. McDermott and McDonald, Ann. Rev. Phytopathol. 1993,31: 353-373
    17. Tseng, Lee. Historical Decline in the Japanese Eel Anguilla japonica in Northern Taiwan Inferred from Temporal Genetic Variations. Zool. Stud, 2003,42(4): 556-563
    18. Nei. Genetic distance between populations. American naturalist, 1972,106: 283-292
    19. Nei. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978,89: 583-590
    20. Ringuet, Muto, Raymakers. Eels: Their Harvest and Trade in Europe and Asia. Traffic Bulletin. 2002,9 (2):22-27
    21. Rohlf. NTSYS-pc, Numerical Taxonomy and Multi-variate Analysis System, Version 2.1. Exeter Software, Setauket, New York, 2000
    22. Sang, Chang, Chen, Hui. Population structure of the Japanese eel, Anguilla japonica. Molecular Biology and Evolution, 1994,11: 250-260
    23. Slatkin. Gene flow and the geographic structure of natural populations. Science, 1987,236: 787-792
    24. Kalinowski. Do polymorphic loci require large sample sizes to estimate genetic distances? Heredity, 2005,94: 33-36
    25. Tsukamoto. Discovery of spawning area for the Japanese eel. Nature, 1992,356: 789-791
    26. Tsukamoto, Nakai, Tesch. Do all freshwater eels migrate? Nature, 1983,96: 635-636
    27 Tsukamoto, Lee, Mochioka. Synchronized spawning of Anguilla japonica inferred from daily otolith increments in leptocephali. Ichthyol. Res., 1998, 45: 187-193
    28. Tsukamoto, Arai. Facultative catadromy of the eel Anguilla japonica between freshwater and Seawater habitats. Marine Ecology Progress Series, 2001,220: 265-276
    29. Tsukamoto. Oceanic biology: Spawning of eels near a seamount. Nature, 2006,439: 929
    30. Tzeng. Relationship between growth rate and age at recruitment of Anguilla japonica elvers in a Taiwan estuary as inferred from otolith growth increments. Mar.Biol. 1990,107: 75-81
    31. Tzeng, Wang, Wickstrom, Reizenstein. Occurrence of the semi-catadromous European eel Anguilla anguilla in the Baltic Sea. Mar. Biol., 2000b, 137, 93-98
    32. Tzeng, Chen, Kao, Tzeng, Lee. Polymorphisms of GA/GT microsatellite loci from Anguilla japonica. Mar. Biotech. 2001a,3: 275-280
    33. Tzeng, Lee, Tzeng. Genetic variation of the Japanese eel Anguilla japonica based on microsatellite DNA. Taiwan Fish Research. 2001b, 9: 137-147
    34. Tzeng, Ziizika, Hsiao, Yamada, Oka. Identification and growth rates comparison of divergent migratory contingents of Japanese eel (Anguilla japonica). Aquaculture, 2003,216: 77-86
    35. Tzeng, Tzeng, Lee. Historical Decline in the Japanese Eel (A. japonica) in Northern Taiwan Inferred from Temporal Genetic Variations. Zoological studies, 2003,42 (4): 556-563
    36. Tzeng. Modern Research on the Natural Life History, History of the Japanese Eel Anguilla japonica. Journal of the Fisheries Society of Taiwan. 2004,31 (2): 73-84
    37. Tzeng, Lee. Population genetic structure of the Japanese eel Anguilla japonica in the northwest Pacific Ocean: evidence of non-panmixtic populations. Mar. Ecol. Prog. Ser. 2006,308:221-230
    38.Vos,Hogers,Bleeker,et al.AFLP:a new technique for DNA fingerprinting.Nucleic Acids Research,1995,23(21):4407-4414
    39.Widen,Svensson.Conservation of genetic variation in plants:the importance of population size and gene flow.In:Ecological Principles of Nature Conservation:Application in the Temperate and Boreal Environments.New York,1992,113-116
    40.Wirth,Bernatchez.Genetic Evidence Against Panmixia in the European Eel.Nature,2001,409:1037-1040
    41.Wight.Sewall Evolution and the Genetics of Populations,4:Variability Within and Among Natural Populations.The University of Chicago Press,1978:590
    42.Qu,Nagae,Adachi,Yamauchi.Changes in serum thyroid hormone levels and thyroid gland activity of artificial maturing female Japanese eel(Anguilla japonica).Acta Oceanologica Sinica,2003,22(1):111-122
    43.Yahyaoui,Bruslé,Pasteur.Etude du polymorphism biochimique de deux populations naturelles(Maroc Atlantique et Rousillon)de civelles et anguillettes d'Anguilla anguillal.et de-deux échantillons d'élevages.IFREMER Actes de Colloques,1983,1:373-390
    44.Yeh,Yang,Boyle.POPGENE Version 1.31,Microsoft Window-based Freeware for Population Genetic Analysis.University of Alberta and Centre for International Forestry Research,1999
    45.Zabeau,Vos.Selective restriction fragment application:A general method for DNA fingerprinting.European patent application number:92402629.7,Publication number EP0534858,1993
    46.龚小玲,李思发,王成辉.长江口日本鳗鲡群体遗传多样性RAPD初步分析.上海水产大学学报,2007,16(3):202-206
    47.韩志强,高天翔,王志勇,庄志猛,苏天凤.黄姑鱼群体遗传多样性的AFLP分析 水产学报,2006,30(5):640-645
    48.梁俊,李道季,卢莉琼.日本鳗鲡和欧洲鳗鲡的微卫星差异,海洋与湖沼2003,34(4):414-420
    49.柳凌,郭峰,洁明.鲁大椿.日本鳗鲡排卵的人工诱导.中国水产科学,2005,12(1):49-55
    50.季士治,王伟继,雷霁霖,孔杰.大菱鲆AFLP分析体系的建立.海洋水产研究2007,28(1):6-12
    51.宋君,宋昭彬,岳碧松,郑文静.长江合江江段岩原鲤种群遗传多样性的AFLP分析.四川动物,2005,24(4):495-499
    52.王伟继,岳志芹,孔杰,王清印.AFLP分子标记技术的发展及其在海洋生物中的应用.海洋水产研究,2005,26(1):80-85
    53.王志勇,王艺磊,林利民,洪慧馨,张雅芝,邱淑贞,罔本信明.利用AFLP指纹技术研究中国沿海真鲷群体的遗传变异和趋异.水产学报,2001,25(4):289-294
    54.王志勇,王艺磊,林利民,邱淑贞,罔本信明.福建官井洋大黄鱼AFLP指纹多态性的研究.中国水产科学,2002,9(3):198-202
    55.杨弘,王希道,吴婷婷,夏德全.用RAPD技术研究3种鳗鱼的种质鉴定.中国水产科学,2002,19(3):269-272
    56.张利红,张为民.雄烯二酮和甲基睾酮诱导雌性日本鳗鲡性发育的反馈调节作用.水产学报,2000,24(5):407-411
    57.郑成木.植物分子标记原理.湖南科学技术出版社,2003,324-325
    58.张全启,徐晓斐,齐洁,王兴莲,包振民.牙鲆野生群体与养殖群体的遗传多样性分析.中国海洋大学学报,2004,34(5):816-820
    59.张俊彬,黄良民.紫红笛鲷遗传多样性的AFLP分析.热带海洋学报,2004,23(5):50-55.
    60.张国范,张福绥.贝类遗传多样性及其永续利用.海洋科学,1993,5:17-21
    61.赵荣兴,夏连军(译).日本鳗鲡鳗苗资源变动之谜.现代渔业信息,2005,20(8):11-14
    62.曾万年.日本鳗自然生活史研究的进展.台湾水产学会会刊,2004,31(2)
    1.堵南山.中华绒鳌蟹的洄游.水产科技通报,2004,31(2):56-57
    2.谷孝鸿,赵福顺.长江中华绒螯蟹的资源与养殖现状及其种质保护.湖泊科学,2001,13(3):267-271
    3.李晨虹,李思发.中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系的形态判别分析.水产学报,1999,23(4):337-342
    4.李思发,邹曙明.中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系:RAPD指纹标记.水产学报,1999,23(4):325-330
    5.李思发,王成辉,赵乃刚.湖泊放养长江水系中华绒螯性成熟规律研究.水生生物学报2001,25(4):251-257
    6.高天翔,任一平,张秀梅,等.日本绒鳌蟹线粒体DNA 16S rDNA序列研究.青岛海洋大学学报,2000,30(3):482-486
    7.高天翔,张秀梅.中华绒螫蟹和日本绒螫蟹线粒体12S rRNA基因序列比较研究.青岛海洋大学学报,2000,30(1):43-47
    8.高天翔,张秀梅,渡边精一,等.七种方蟹科蟹类的遗传关系.水生生物学报,2000,24(6):622-629
    9.高天翔,张秀梅,渡边精一.中华绒螫蟹与日本绒螯蟹线粒体DNA 12S rRNA序列 的比较.水产学报,2000,24(5):412-416
    10.高志千,周开亚.中华绒螯蟹遗传变异的RAPD分析.生物多样性,1998,6(3):186-190
    11.马春艳,陈亚瞿,张凤英.中国太湖和荷兰的中华绒螫蟹随机扩增多态性DNA分析.海洋渔业,2005,27(04):276-280
    12.邱涛,陆仁后,项超美,等.RAPD方法对中华绒螯蟹长江、辽河、瓯江群体的遗传多样性研究.淡水渔业,1997,27(5):1-4
    13.邱涛,陆仁后,项超美,等.用RAPD技术识别中华绒螯蟹性别差异.水产学报1998,22(2):175-177
    14.乔新美,曹维孝,邹世平.长江、瓯江中华绒螯蟹几种同工酶的比较分析.淡水渔业,1994,24(4):10-13
    15.孙红英,周开亚,龚美蓉,等.中华绒螯蟹线粒体CO Ⅱ基因全序列测定.南京师范大学学报(自然科学版),2001,24(4):88-92
    16.孙红英,周开亚,陈健健,等.中国大陆绒螯蟹线粒体16S rDNA序列变异与分子鉴定标记.自然科学进展,2002,12(5):485-490
    17.孙红英,周开亚,等.从线粒体16S rDNA部分序列探讨厚蟹属的系统学位置.南京师范大学学报,2002,25(1):15-19
    18.孙红英,王光跃,张代臻,周开亚.中华绒螯蟹和合浦绒螯蟹两地理亚种的线粒体DNA 序列变异.动物学报,2005,51(5):862-866
    19.王丹,于伟君.辽河长江两水系中华绒鳌蟹酯酶和乳酸脱氢酶的同工酶比较研究.辽宁大学学报(自然科学版),1995,22(4):79-81
    20.王进科,周刚,曹文明,等.中华绒螯蟹DNA指纹图谱的初步研究.水产养殖,2000,(5):24-27
    21.谢浩,陆仁后,项超美,等.利用RAPD技术对三种绒螯蟹亲缘关系的研究.水生生物学 报,1999,23(2):120-125
    22.许加武,李思发.长江口中华绒螯蟹与其它几种同科蟹的同工酶比较.水产科技情报,1996,23(4):159-163
    23.赵妹华,张胜利,温恩涛,等.中华绒螯蟹RAPD扩增条件及个体间遗传差异.水产科学1998,17(5):3-6
    24.周开亚,高志千.RAPD标记鉴别中华绒螯蟹种群初步研究.应用与环境生物学报,1999,5(2):176-180
    25.张凤英,马凌波.长江、辽河、瓯江三水系中华绒螯蟹mt12SrDNA片断序列的比较.海洋渔业,2004,26(2):147-151
    26.张代臻,唐伯平,孙红英.中华绒螯蟹线粒体ND5基因序列变异分析.生物学杂志,2007,24(4):21-23
    27.张洁,陈立侨,周忠良,等.中华绒螯蟹同工酶发育遗传学研究Ⅰ.长江中华绒螯蟹不同组织同工酶的特异性分析.华东师范大学学报(自然科学版)(动物学专辑)1996:38-42
    28.张菁,陆仁后.中华绒螯蟹微卫星单片引物扩增产物的初步分析.中国水产科学,2002,9(1):5-9
    29.赵乃刚.长江河蟹种质资源混杂对养蟹业的影响.内陆水产,1998,23(5):2-4
    30.张列士,朱传龙,杨杰,等.长江口中华绒螯蟹及蟹苗资源变动的研究.上海水产研究所研究报告,1989(3):110-113
    31.赵金良,李思发.中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系:生化遗传差异分析.水产学报,1999,23(4):331-336
    32.郑曙明,吴青.中华绒螯蟹同工酶的研究.水生生物学报,1994,18(2):183-185
    33.Avise.Molecular Markers,Natural History and Evolution.Chapman and Hall,New York.1994
    34.Altukhov.The reproduction and development of the arctic cod.Boreogadus saida,in the White Sea.Journal of Ichthyology,1981,19:93 -101
    35.Gollasch.Current Status on the increasing abundance of the Chinese mitten crab Eriocheir sinensis H.Milne Edwards,1854 in German rivers.Proceedings of the First Annual Meeting on the Chinese mitten crab in California.1999,23
    36.Gollasch,Minchin,Rosenthal,Voigt:Exotics Across the Ocean.Case histories on introduced species: their general biology, distribution, range expansion and impact. 1999: 55-60
    37. Hanfling, Carvalho, Brand. A coloni2ation history of the Chinese mitten crab revealed by mtDNA sequences. Mar. Ecol. Prog. Ser, 2001,238: 307-310
    38. Hanfling, Weetman. Characterization of microsatellite loci for the Chinese mitten crab, Eriocheir sinensis. Molcular Ecology - Notes, 2003(3): 15-17
    39. Herborg, Weetman, Oosterhout, Hanfling. Genetic population structure and contemporary dispersal patterns of a recent European invader, the Chinese mitten crab, Eriocheir sinensis. Molecular Ecology, 2007,16: 231-242
    40. Hillis. Approaches for assessing phylogenetic accuracy. System Biology, 1995,44: 3-16
    41. Hills, Huelsenbeck, Cunningham. Application and accuracy of molecular phylogenies. Science, 1994,264:671-677
    42. Ovenden. Mitochondrial DNA and marine stock assessment: a review. Mar. Freshwater. Res. 1990,41,835-853
    44. Zhu, Shi, Le. Isolation and characterization of polymorphic microsatellites from Chinese mitten crab, Eriocheir sinensis Molecular Ecology Notes, 2006,6: 838-839
    45. Jinliang Zhaoa, Murphy, Sifa Li Relationships of mitten crabs (Eriocheir) from inland rivers of China inferred from cytochrome oxidase subunit I sequences. Biochemical Systematics and Ecology, 2002, 30(10): 931-941
    46. Rudnick, Deborah et al.. Patterns and processes of biological invasion: The Chinese mitten crab in San Francisco Bay. Basic Appl. Ecol, 2003,4: 249-262
    47. Zhang Tanglin, Li Zhongjie, Cui Yibo. Survival, growth, sex ratio, and maturity of the Chinese mitten crab (Eriocheir sinensis) reared in a Chinese pond. Journal of Freshwater Ecology, 2001,16:633-640
    1 戴爱云.绒鳌蟹属亚种分化的研究.生物学重点实验室论文集第一集.北京:(十足目,短尾派).系统进化动中国科学技术出版社,1991,61-71
    2 李晨虹,李思发.中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系:形态判别.水产学报,1999,23(4):337-342
    3 李思发,王成辉,赵乃刚.湖泊放养长江水系中华绒螯性成熟规律研究.水生生物学报,2001,25(4):251-257
    4 李勇,李思发,王成辉,等.三水系中华绒螯蟹形态判别程序的建立和使用.水产学报,2001,25(2):120-126
    5 刘凯,段金荣,徐东坡,张敏莹,施炜纲.长江口中华绒螯蟹亲体捕捞量现状及波动原因.湖泊科学,2007,19(2):212-217
    6 王成辉,李思发,李晨虹,等.池塘放养中华绒螯蟹长江种群与辽河种群性早熟出现规律和差异的观察与分析.湖泊科学,2001,13(1):57-62
    7 徐兴川.关于中华绒鳌蟹品质保持问题的探讨.水产科技情报,1991,18(1):17-19
    8 许加武,李思发.长江口中华绒鳌蟹与其它几种同科蟹的同工酶比较.水产科技情报,1996,23(4):159-162
    9 许加武,任明荣,李思发.长江、辽河、瓯江水系中华绒鳌蟹种群的形态判别.水产学报,1997,21(3):269-274
    10 张列士,瞿纪军,汪东冬.长江、瓯江、辽河水系河蟹种群生态和形态特征及蟹种质量鉴别.水产科技情报,2000,27(5):200-205
    11 Begg,Bruno.The common dab as definitive host for the Pennellid copepods Lernaeocera branchialis and Haemobaphes cyclopterina.Journal of Fish Biology.1999,55(3):655-657

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700