泡沫铝填充薄壁结构及三明治结构力学性能的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡沫铝是一种新型工程材料,它集力学、热学、声学等特性于一身,是一种多功能、多用途材料,能够满足人们对材料的更高的要求,可以应用在国民经济的各个领域和部门,在军事上也具有广阔的应用前景。
     本文对泡沫铝层合结构的力学性能进行了实验研究和数值模拟分析。这些工作将对泡沫铝及其层合结构的应用具有积极的指导意义。
     本文首先采用ABAQUS软件建立了薄壁铝合金圆管及泡沫铝填充薄壁铝合金圆管的有限元模型,对这两种结构压缩的力学行为进行了数值模拟,与实验结果基本相符合。依据薄壁铝合金圆管及泡沫铝填充薄壁铝合金圆管的应力应变图,对两种结构的力学性能做了对比,发现填充泡沫铝后,层合圆管承受压力的能力大大提高。
     其次研究了泡沫铝填充薄壁铝合金方管准静态轴向压缩条件下的力学性能,采用ABAQUS软件建立了薄壁铝合金方管的有限元模型进行数值模拟,并且与相应的实验结果作对比,两者结果基本吻合。实验结果和数值模拟结果都表明填充泡沫铝后,层合方管承受压力的能力大大提高。
     最后研究了泡沫铝层合梁准静态三点弯曲条件下的力学性能,依旧采用ABAQUS分析软件建立泡沫铝层合梁的有限元模型进行数值模拟。结果表明:泡沫铝层合梁的载荷曲线远远高于泡沫铝和面板的载荷曲线之和,泡沫铝层合梁在保持泡沫铝轻质的同时,大大提高了其载荷极限和抗弯强度,显示出良好的层合效果。
     本文对于泡沫铝填充薄壁结构和泡沫铝层合梁结构进行了有限元数值模拟,由于涉及的参数较多,结构较复杂,建立合理的数值计算模型对于结构力学性能研究和结构优化设计有着重要的现实意义。
Aluminum and aluminum alloy foam is a kind of engineering material, which has an interesting combination of mechanical and physical properties, such as high strength and stiffness for a given weight. So it is multifunctional solid and can be used in a variety of civil industries, such as automobile, railway and component manufacturing.
     In present thesis, Experimental research on the mechanical behaviors of aluminum foam is carried out. The conclusion will make an important role in its applications.
     Firstly, finite element models of empty and fully foam-filled tubes are established and the compressing behavior of these structures is simulated with the use of ABAQUS software, and the mechanical behavior of thin-walled cylindrical aluminum alloy tube with aluminum foam filler is studied by simulating compression's experiments numerically and compare with the results of experiments'. Finally the numerical results are in good agreement with those obtained experimentally. According to thin-walled cylindrical aluminum alloy tube and thin-walled cylindrical aluminum alloy tube with aluminum foam filler's stress-strain drawings, the two structures are contrasted. The results are fully foam-filled tubes can endure more stress than the empty tubes.
     Secondly, Vertical compressing mechanical properties of thin-walled square tubes filled with aluminum foam under quasi-static loading conditions were studied in this paper. And finite element models of empty tubes was established and the compressing behavior of this structures was simulated with the use of ABAQUS software, The results indicated that fully foam-filled tubes can endure more stress than the empty tubes.
     Finally, three-point bending mechanical properties of sandwich beams with aluminum foam core were studied in this paper. And finite element model of sandwich beams with aluminum foam core was established and the three-point bending of this structure was simulated with the use of ABAQUS software. The results indicated that the load curve of sandwich beams with aluminum foam core loading in three-point bending is higher than both curve of aluminum foam and aluminum board in three point bending. The sandwich beams with aluminum foam core not only remain feature but also improve ultimate of its load and winding, so the sandwich beams with aluminum foam core is excellent for more good mechanics property.
     In this paper mechanical property of aluminum foam filled tubes and sandwich beams with aluminum foam core are simulated with the use of ABAQUS software. As a result of these structures are complex and involve a lot of parameter, establish rational mathematic models are very useful for these structures'mechanical and optimize.
引文
[1]L.J.Gibson and M.F.Ashby, Celluar Solids,Structure and Properties,2nd Edition[M]. Cambridge University press, Cambridge, UK,1997
    [2]M.F.Ashby, R.F.Mehl Medallist. The mechanical properties of cellular solids[J]. Metallurgical Transaction.1983,14A:1755.
    [3]A.C.Evans, J.W.Hutchinson, M.F.Ashby. Multifunctionlity of cellular metal system[J]. Progress in Materials Science.1999,43:171.
    [4]K.C.Rusch. Load-compression behavior of brittle foams[J]. Journal of Applied Polymer Science,1970(14):1263.
    [5]Y.Yamada, K.Shimojima, M.Mabuchi et al. Compressive deformation behavior of A1203 foam[J]. Materals Science and Engineering,2000(A277):213.
    [6]R.W.Shuttleworth, V.O.Shestopal, P.C.Goss. Open-cell flexible polyurethane foams:comparison of static and dynamic compression properties[J]. Journal of Applied Polymer Science,1985(30):333.
    [7]A Sosnik. US Patent:2434775,1948.
    [8]J.C.Elliott. US Patent:2751289,1956.
    [9]B.C.Allen. US Patent:3087807,1963.
    [10]朱震刚,金属材料泡沫研究[J],物理,1999,128(2):84.
    [11]李惠萍译,制造泡沫铝合金材料的新技术[J],轻合金,1999,11:63。
    [12]Feng Yi, Zhengang Zhu, Fangqiou Zu, et al. Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams[J]. Materials Characterization,2001,47:417.
    [13]C-J Yu et al, Metal foaming by a powder metallurgy method:Production[Z], Properties and applications,
    [14]John Banhart, Foam Metal:The Recipe[J], Europhysics News Jan./Fed.1999 pp 17-20.
    [15]Tetsuji Miyoshi et al, Alporas Aluminum foam:Production Process, Propertied and Application[J], Advanced Engineering Materials,2000,2, No.4.
    [16]Cymat Corporation, http://www.cymat.com/.
    [17]ERG Materials and aerospace Corporation http://www.ergaerospace.com/
    [18]Alulight International Company http://www.alulight.com/english/products/ panels. htm.
    [19]Davies G J, Zhen Shu. Metallic foams:their production[J], properties and applications. J Mater Sci.1983,18:1899.
    [20]Liu P S, Liang K M. Functional materials of porous metals made by P/M, electroplating and some other techniques[J]. Journal of Materials Science, 2001,36:5059.
    [21]Liu P S, Yu B, Hu A M, et al. Techniques for preparation of porous metals[J]. J Mater Sci Technol,2002,18(4):299.
    [22]刘培生,黄林国.多孔金属材料制备方法[J].功能材料,2002,33(1):5.
    [23]吴铿.泡沫冶金熔体的基础理论[J].冶金工业出版社,2000.
    [24]刘培生.多孔材料引论[M].清华大学出版社,2004.
    [25]John Banhart Manufacture, Characterization and Application of cellular metals and me tal foams[J]. Progress in Materials Science 46 (2001):559-632.
    [26]Jerry Lord and Paul Grant, National Physical Laboratory, Teddington, Middlesex, UK, Review of Industrial Survey on Metallic Foams[Z], December 2000.
    [27]Evans.A.G, Hutchinson.J.W, and Ashby.M.F, Multifunctionality of cellular metal systems[J], Progress in Materials Science, Vol.43,pp:171-221,1999.
    [28]Dr.Andrew Crowson, Material Issues in impact engineering[J],3th International Symposium on Impact Engineering, Singapore,1998.
    [29]Examination of Acousitc Absorption Characteristics of Foamed Aluminum[J], Acta Acustica, Vol.84,pp:573-576.
    [30]Dave Curran, Metal Foam, http://www.msn.cam.ac.uk/mmc/people/dave/.
    [31]J.T.Beals et al Density gradient effects on aluminum foam compression behavior[J], J.of Mater Sic.32,pp:3595-3600,1997.
    [32]Thanasis C. Triantafillon et al Constitutive Modeling of Elastic-Plastic Open-cell Foam[J],J.of Engineering Mechanics Vol.116,No.12,1990.
    [33]A.E.Simone&L.J.Gibson, The effect of cell curvature and corrugations on the stiffness and strength of metallic foam[J], Acta Mater. Vol.46, No.11, pp: 3925-3929,1998.
    [34]J.S.Huang&L.J.Gibson,Fracture toughness of brittle foams, Acta Metall[J]. Mater. Vol.39,No.7,pp:1627-1636,1991.
    [35]O.B.Olurin,et al, Deformation and Fracture of aluminum foams, Materials Science and Engineering[J],A291,pp:136-146,2000.
    [36]I.W.Hall et al, Crushing of Aluminum Closed Cell Foam:Density and Strain-Rate Effects[J], Scripta Mater.43(2000),515-521.
    [37]Y.Sugimura et al, On the Mechanical Preformance AL Alloy Foams[J], Acta Mater. Vol.45, No.12, pp:5245-5259,1997.
    [38]K.Y.G.McCullough et al, Uniaxial Stress-Strain Behavior of Aluminum Alloy Foams[J], Acta Mater. Vol.47,No.8, pp:2323-2330,1999.
    [39]A.E.Simone&L.J.Gibson, Effect of solid distribution on the stiffness and strength of the metallic foam [J]. Acta Mater. Vol.46, No.6, pp:2139-2150, 1998.
    [40]J.L.Grenested&F.Bassinet, Influence of cell wall thickness variations on elastic stiffness of close-cell cellular solids[J]. Int. J. of Mech. Sci. 42(2000):1327-1338.
    [41]John Banhart Manufacture, Characterization and Application of cellular metals and metal foams[J]. Progress in Materials Science 46(2001):559-632.
    [42]S.K.Maiti et al, Deformation and energy absorption diagrams for cellular solids[J], Acta Metall. Vol:32,No.11,pp:1963-1975,1984.
    [43]Ashraf. Bastawros&A.G.Evans, Deformation Heterogeneity in Cellular Al Alloy Advanced Engineering Materials[J]. Research News,2000,2,No.4.
    [44]M.C.Gui,et al, Deformation and Damping Behaviors of Foamed Al-Si-SiCp Composite[J], Mater. Sci.Engr,A286(2000),282-288.
    [45]T.G.Nieh et al, Effect of cell morphology on the compressive properties of open-cell aluminum foams[J], Mater. Sic.&Engr.A283(2000):105-110.
    [46]A.E.Markaki&T.W.Clyne, The effect of cell wall microstructure on the Deformation and fracture of aluminum based foams[J], Acta Mater.49(2001), 1677-1686.
    [47]Y.W.Kwon et al, Representative unit-cell models for open-cell metal foam with or without elastic filler[J], Materials Science and Engineering A343(2003): 63-70.
    [48]K.C.Chan et al, Dependency of densication properties on cell topology of metal foams[J], Scripta Materialia,48(2003):1147-1152.
    [49]Joachim L. Grenestedt Influence of cell sharp variations on elastic stiffness of closed cell cellular solids[J], Scripta Materialia,Vol.40, No.1,pp:71-77,1999.
    [50]A.G.Evans et al Multifunctional of Cellular Metal Systems[J], Progress in materials Science,43(1997),171-221.
    [51]T.MuKai et al, Experimental Study of Energy Absorption in a Close-Celled Aluminum Foam under Dynamic Loading[J]. Scripta Material, Vol.40, No.8, pp:921-927.
    [52]Fusheng Han et al, Copressive deformation and energy absorbing characteristic of foamed aluminum[J]. Metallurgical&Materials Transaction A, Vol.29A,pp:2497-2502,1998.
    [53]A.E.Markaki, Energy absorption during flexural failure of layered metal foam/ceramic composites[J], Twelfth International Conference on Composite Materials(ICCM-12)Woodhead(1999).
    [54]John Banhart, Properties and Applications of Cast Aluminum Sponges[J], ADVANCED ENGINEERING MATERIALS 2000,2,No.4.
    [55]T.Mukai, Experimental Strudy of Energy absorption in a closed-celled aluminum foam under dynamic loading[J], Scripta Materialia, Vol.40,No.8, pp:921-927,1999.
    [56]Anne-Marie Harte, et al, Sandwish panel design using aluminum alloy foam[J]. Advanced Engineering Materials,2000,2,No.4.
    [57]J.Baumeister et al, Aluminum foam for transport industry[J]. Materials & Design Vol.18.No.4/6.pp217-220,1997.
    [58]Bazle A Gama et al, Aluminum form Integral armora new dimension in armor design[J], composite structures,52(2001):381-395.
    [59]G. Sachs, Zur ableilung einer fleissbedingung[J], Z. Ver. Deut. Ing.1928,72: 734-736
    [60]T. Leffers. Deformation rate dependence of rolling texture in brass containing 5% zinc[J]. Scr. Metall.1968,2:447-452
    [61]O. B. Pedersen and T. Leffers, Constitutive Relations and Their Physical Basis[C], ed. S.I. Andersen et al., p.401, Rise National Laboratory, Roskilde. 1987.
    [62]G. I. Taylor. Plastic strain in metals[J]. J. Inst. Metals,1938,62:307-324.
    [63]H. Honeff, H. Mecking. Analysis of the deformation texture at different rolling conditions[J]. In:Nagashima, S.(Ed.), Proceedings of ICOTOM,1981,1(6): 347-355.
    [64]U. F. Kocks, H. Chandra. Slip geometry in partially constrained deformation[J]. Acta Metall.1982,30:695-709.
    [65]P. Van Houtte. On the equivalence of the relaxed Taylor theory and the Bishop Hill theory for partially constrained plastic deformation of crystals[J]. Mater. Sci.Eng.1982,55:69-77.
    [66]J. F. W. Bishop, R. Hill. A theory of the plastic distortion of a polycrystalline aggregate under combined stress[J]. Phil. Mag.1951,42:414-427.
    [67]J. D. Eshelby. Proc. R. Soc. The determination of the elastic field of an ellipsoidal inclusion and related problems[J]. Proceedings of Royal Society of London.1957.241A,376-396.
    [68]E Kroner. Berechung der elastischen konstanten des vielkristalls aus den konstanten des einkristalls[J]. Z. Phys.1958a.151,504-518.
    [69]E. Kroner. Zur plastischen verformung des vielkristalls On the plastic deformation of polycrystals Deformation plastique des polycristaux[J]. Acta Metall.1961,9(2):155-161.
    [70]Hall I W, Ebil O,Guden M. Quasi-static and dynamic crushing of empty and foam-filled tubes[J]. Journal of Materials Science,2001,36:5853-5860.
    [71]王松林,凤仪,徐屹,等.SiC-P增强泡沫铝基复合材料的制备工艺研[J].金属功能材料,2005,12(6):22—26.
    [72]息志臣,陈浩然.复合材料层合梁理论[J].复合材料学报,1994,11(2):1-6.
    [73]凤仪,郑海务,朱震刚,等.闭孔泡沫铝的电磁屏蔽性能[J].中国有色金属学报,2004,14(1):33-36.
    [74]Feng Yi, Zhu Zhen-gang. The Microstructure and Electrical Conductivity of aluminum alloy foams[J]. Materials Chemistry and Physics,2003,39(8): 815-820.
    [75]Feng Yi, Zhu Zhen-gang, Zu Fang-qiu. Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams[J]. Materials Characterization,2001,47:417-422.
    [76]Santosa S, Banhart J, Wierzbicki T. Experimental and numerical analysis of bending of foam-filled sections[J].Acta Mechanica,2001,148:199-213.
    [77]许坤,寇东鹏,王二恒,虞吉林.泡沫铝填充薄壁方形铝管的静态弯曲崩毁行为[J].固体力学学报,2005,26(3):261-266.
    [78]Zhang Chun-ji, Feng Yi, Zhang Xue-bin。Longitudinal and transverse mechanical properties and energy absorption properties of aluminum foam-filled square tubes [J]. 《Transactions of Nonferrous Metals Society of China》, accept。
    [79]Gibson L J, Ashby M F. Cellular Solids:Structure and properties. Second edition[M]. Cambridge University Press,1997.
    [80]Seitzberger M, Rammerstorfer F G, et al. Experimental studies on the quasi-static axial crushing of steel columns filled with aluminum foam[J]. International Journal of Solids and Structures,2000,37:4125-4147.
    [81]Lorna J. Gibson, Michael F. Ashby著,刘培生译.多孔固体结构与性能[M].清华大学出版社,2003.
    [82]Mikkelson L P.A numerical axisymmetric collapse analysis of viscoplastic cylindrical shells under axial compression[J]. International Journal of Solids and Structures.1999,36(5):643-668.
    [83]Tvergaad V.On the transition from a diamond to an axisymmetric mode of collapse in cylindrical shell[J].Quart J Mesh Appl Math,1960,13(1):10-15
    [84]A.K.Toksoy, M.Guden. The strengthening effect of polystyrene foam filling in aluminum thin-walled cylindrical tubes[J]. Thin-walled structures,2005,43: 333.
    [85]祝恩淳,Mandal P,Calladine C P.轴压圆柱薄壳的屈曲分析[J].土木工程学报,2001,34(3):18-22
    [86]Hansen A G,Langseth M,Hopperstad O S.Static and dynamic crushing of circular aluminum foam filler[J].International Journal of Impact Engineering, 2000,24:475-507
    [87]Elliott J C. Method of producing metal foam[P].US:2751289,1956.
    [88]Han F S. A kind of new-style physics functional material aluminum foam[J]. China and Foreign Countries Technical Information,1996,(6):3-6.)
    [89]Hidetoshi U, Sigeru A. The foaming effect of molten aluminum added calcium metal[J].J Japan Inst Light Metals,1987,37(1):42-47.
    [90]Kouji J, Sigeru A, Hidetoshi U. The development and utilization trend of metal foams[J]. Industrial Material,1987,35(14):45-46.
    [91]Masao I. The development of aluminum foams—"Alporas"[J]. Bull Japan Inst Metals,1987,26(4):311-315.
    [92]Kiyoo K. The development trend of foaming material[J].Industrial Material, 1987,35(14):51-53.
    [93]Mituru S, Hidetoshi U, Kouji I, et al. The development and utilization trend of open-cell metal foams[J].Industrial Material,1987,35(14):47-50.
    [94]Baumgartner F, Duarte I, Banhart J. Industrialization of powder compact foaming process [J]. Advanced Engineering Materials,2000,2(4):168-174.
    [95]Beals J T, Thompson M S. Density gradient effects on aluminum foam compression behavior[J]. Journal of Materials Science,1997,32:3595-3600.
    [96]Prakash O, Sang H, Embury J D. Structure and properties of Al-Sic foam[J]. Mater. Sci.Eng.1995,99(3):195-203.
    [97]吴铿,潜伟,储少军,林怡娴.制备泡沫铝时增粘过程的基础研究[J].中国有色金属学报.1998,9(8):80-85.
    [98]尚金堂,何德平.泡沫铝层合梁的三点弯曲变形[J].材料研究学报.2003,17(1):31-38.
    [99]曾苏民.我国铝加工业发展趋势[J]. 中国有色金属学报.2004,5(14):179-181.
    [100]Bratus A.S, Posvyanskii V.P. The optimum shape of a bending beams[J]. J.AppL.Maths Mechs.2000,64(6):993-1004.
    [101]Bratus A.S, Posvyanskii V.P. The optimum shape of a bending beams[J]. J.AppL.Maths Mechs.2000,64(6):993-1004.
    [102]张林,何德坪.球形孔泡沫铝合金三明治梁的三点弯曲变形[J].材料研究学报.2005,19(4):361-368.
    [103]张立勇,薛国完,程和法,许玲.通孔泡沫铝合金的动态压缩力学性能研究[J].有色金属.2004,56(4):21-24.
    [104]查海波,凤仪等,泡沫铝层合梁的弯曲性能研究[J].中国有色金属学报,2007,17(2):290-295.
    [105]刘培生,王习述.泡沫金属设计指南[M].冶金工业出版社.2006:115-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700