白光干涉法保偏光纤偏振耦合测试及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于白光干涉原理,研制成功高双折射保偏光纤分布式偏振耦合测试仪一台。该仪器用于保偏光纤偏振模式能量耦合现象的检测,可作为保偏光纤制造及使用过程中的一种有效检测手段,提高光纤偏振器件及系统的性能。
     在继承课题组原有工作的基础上,从理论、仪器化、实验和应用四个方面对偏振耦合及白光干涉技术进行深入研究。理论分析了外部扰动与保偏光纤双折射、偏振耦合间的数学关系;分析了方案本身、偏振模式、仪器客观条件等对干涉结果的影响,给出了消除干涉仪系统误差的耦合强度和耦合点位置计算方法;设计完成了仪器的光学、机械、电路、数据处理及软件系统,仪器可完成500m长保偏光纤的干涉扫描,无双折射色散下空间分辨率和耦合强度探测灵敏度分别达到6cm和-80dB。基于该仪器,开展了保偏光纤环测试等一系列应用研究。
     工作中的主要创新点:
     1.根据模式耦合理论、光弹理论及弹性力学理论,建立了外力作用下三段保偏光纤串联的偏振耦合模型,揭示了保偏光纤受扰动区双折射轴的旋转是偏振耦合的来源;建立了力场大小、方向和作用长度与偏振耦合的数学关系,并将其应用于分布式应力传感。
     2.首次阐明了保偏光纤双折射色散对偏振耦合测试的影响,从理论和实验上说明了由于双折射色散的作用,随着光纤长度的增加,白光干涉包络展宽及干涉可见度下降的规律。
     3.分析了偏振激发模式对偏振耦合测试的影响,提出了任意偏振态激发的测试方案;采用偏振调整优化,提高耦合点干涉条纹的可见度,将仪器耦合强度探测灵敏度提高10dB;提出了基于检偏器透射光的偏振调整系统,直接旋转格兰棱镜消除系统波长相关性。
     4.在分析偏振耦合测试白光干涉数据时频特性的基础上进行了其处理算法开发:小波变换去噪,时频分析耦合点自动识别,非线性回归分析干涉包络提取。
     5.基于偏振耦合测试仪,开发了保偏光纤环检测、偏振无源光器件检测、保偏光纤对轴、保偏光纤拍长测试、分布式传感、保偏光纤双折射色散检测等多种应用。
An instrument measuring the distributed polarization coupling in high birefringence polarization-maintaining fiber (PMF) is developed based on white light interferometry. The instrument is used for the detection of distributed polarization mode coupling point in PMF. It can be used as an effective testing tool in PMF manufacture and applications. The performance of optical fiber polarization devices or systems can be improved significantly.
     Based on previous work of our lab, further study has been done in the system theory, instrumentation, experiments and applications. The relationship between external perturbations and PMF’s birefringence, polarization coupling is deduced mathematically. The influence of the scheme itself, polarization modes, state of the instrument on the interference results are analyzed and a calculation method is put forward free of the system error for the obtain of coupling intensity and coupling point position. The system optics, mechanics, hardware, data processing and software had been designed and realized. When the fiber under test has no birefringence dispersion, a length of 500m PMF can been scanned with spatial resolution of 6cm and coupling intensity detection sensitivity less than–80dB. Based on the instrument, a series of applications are developed including PMF ring testing and so on.
     Major innovations of this dissertation:
     1. Based on mode coupling theory, principle of photo elastic and elasticity, a concatenation of three PMF sections is used to model the polarization coupling phenomena. It’s revealed that the rotation of the principle axes of perturbed PMF is the source of polarization modes coupling. The relationship between the coupling intensity and the amplitude, direction, and the acting length on the fiber of the force is clarified. And the phenomenon is applied in the field of distributed stress sensing.
     2. The influence of the birefringence dispersion on polarization coupling test is illustrated for the first time. The role of birefringence dispersion is clarified theoretically and experimentally. As the increasing of fiber length, the interference packet envelope is broadened and the interference contrast becomes worse.
     3. The influence of exited state of polarization (SOP) on the polarization coupling testing is analyzed, testing method with random polarization state exited has been proposed. Using optimized polarization projection angle, the interference fringe contrast can be improved, and the polarization coupling intensity testing sensitivity can be improved 10dB. A polarization adjusting mechanism is realized based on the transmission light of the analyzer, and the wavelength dependency of the polarization adjusting system is avoided by rotating the Glan prism directly.
     4. After grasping the time-frequency property of the scanning white light interference data, a group of algorithm are put forward for the detection of polarization coupling point in PMF, including wavelet de-noise, coupling point automatically recognition using time-frequency region analysis, and white light interference envelope extraction using nonlinear regression.
     5. Based on polarization coupling principle and the instrument has been developed, six applications of testing of PMF ring and polarization passive components, principle axes alignment of PMF, beat length measurement, distributed sensing, and charactering birefringence dispersion of PMF have been realized.
引文
[1] Carter G M, The need for dynamic control in high data-rate communication systems, IEEE/LEOS Summer Topi in All-Optical Networking: Existing and Emerging Architecture and Applications/Dynamic Enablers of Next-Generation Optical Communications Systems/Fast Optical Processing in Optical Transmission/VCSEL and Microcavity Lasers, 2002. 45~46
    [2] Kent B Rochford, Gordon W Day, Peter R Forman, Polarization Dependence of Response Functions in 3x3 Sagnac Optical Fiber Current Sensors, Journal of lightwave technology, 1994, 12 (8): 1504~1509
    [3] Yamamoto Y, Kimura T, Coherent optical fiber transmission systems, IEEE Journal of Quantum Electronics, 1981, 17 (6): 919~935
    [4] Kimura T, Saito S, Coherent lightwave communications-overview, IEEE International Conference on Communications, 1988. 1201~1205
    [5] Bergh R, Lefevre H, Shaw H, An overview of fiber-optic gyroscopes, Journal of Lightwave Technology, 1984, 2 (2): 91~107
    [6] Dyott R B, Bennett S M, Allen D, et al., Development and commercialization of open loop fiber gyros at KVH Industries (formerly at Andrew), 15th Optical Fiber Sensors Conference Technical Digest, 2002. 19~22
    [7] Nishihara H, Recent advancement on optical integrated circuits, IEEE Region 10 Conference on Computer and Communication Systems, 1990. 99~103
    [8] Juichi Noda, Katsunari Okamoto, Yutaka Sasaki, Polarization-maintaining fibers and their applications, Journal of Lightwave Technology, 1986, LT-4 (8): 1071~1089
    [9] 李勤,保偏光纤的研制,玻璃技术,1990,4:19~23
    [10] Scott C Rashleigh, Origins and control of polarization effects in single-mode fibers, Journal of Lightwave Technology, 1983, LT-1 (2): 312~331
    [11] 徐宏杰,何磊,秦秉坤等,高精度保偏光纤偏振测试系统的设计,光学技术,2003,29 (2):208~210
    [12] Optellios Inc., Polarization Extinction Ratio (PER) Measurement With PS2000 Optical Polarization Analyzer, 2003.
    [13] R F Stevens, Polarisation extinction ratio – measurement requirements for optical communication systems, NPL Report CETM 41, 2002.
    [14] Marcus W Shute, Charles S Brown, A study of the polarization propertyes of a rectangular polarization-maintaining fiber, Journal of lightwave technology, 1989, 7 (12): 2013~2017
    [15] Ivan P Kaminow, Polarization in Optical Fibers, IEEE Journal of Quantum Electronics, 1981, QE-17 (1): 15~22
    [16] David N Payne, Arthur J Barlow, Jens J Ramskov Hansen, Development of Low- and High-Birefringence Optical Fibers, IEEE Transactions on Microwave Theory and Techniques, 1982, MTT-30 (4): 323~334
    [17] Kun-Hsieh Tsai, Kyung-Suk Kim, T F Morse, General Solutions for Stress-Induced Polarization in Optical Fibers, Journal of Lightwave Technology, 1991, 9 (1): 7~17
    [18] Malcolm P Varnham, David N Payne, Arthur J Barlow, Analytic Solution for the Birefringence Produced by Thermal Stress in Polarization-Maintaining Optical Fibers, Journal of Lightwave Technology, 1983, LT-1 (2): 332~339
    [19] Noriyoshi Shibata, Yutaka Sasaki, Katsunari Okamoto, et al., Fabrication of Polarization-Maintaining and Absorption-Reducing Fibers, Journal of Lightwave Technology, 1983, LT-1 (1): 38~43
    [20] Yutaka Sasaki, Long-Length Low-Loss Polarization-Maintaining Fibers, Journal of Lightwave Technology, 1987, LT-5 (9): 1139~1146
    [21] Scott C Rashleigh, Michael J Marrone, Polarization Holding in Ellipitical-Core Birefringent Fibers, IEEE Transactions on Microwave Theory and Techniques, 1982, MTT-30 (10): 1503~1511
    [22] Michael J Messerly, James R Onstott, Raymond C Mikkelson, A Broad-Band Single Polarization Optical Fiber, Journal of Lightwave Technology, 1991, 9 (7): 817~820
    [23] 陈伟,李诗愈,成煜等,保偏光纤技术进展及发展趋势,光通信研究,2003,6:54~57
    [24] http://www.fujikurabj.com.cn/xmgx.asp
    [25] A Ortigosa-Blanch, J C Knight, W Wadsworth, et al., Highly birefringent photonic crystal fibers, Optics Letter, 2000, 25(9):1325–1327
    [26] Theis P Hansen, Jes Broeng, Stig E B Libori, et al., Highly Birefringent Index-Guiding Photonic Crystal Fibers, IEEE Photonics Technology Letters, 2001, 13 (6): 588~590
    [27] Hiirokazu Kubota, Satoki Kawanishi, Shigeki Koyanagi, et al., Absolutely Single Polarization Photonic Crystal Fiber, IEEE Photonics Technology Letters, 2004, 16 (1): 182~184
    [28] 娄淑琴,王智,任国斌等,折射率导模高双折射光子晶体光纤的偏振特性,电子学报,2005,33 (3): 393~396
    [29] Wojtek J Bock, High-pressure Polarimetric Sensor Using Birefringent Optical Fibers, IEEE Transactions on Instrumentation and Measurement, 1990, 39 (1): 233~237 (高灵敏度压力传感器,量程达 200Mpa)
    
    [30] Kyung Jun Han, Yong Wook Lee, Jaejoong Kwon, Simultaneous Measurement of Strain and Temperature Incorporating a Long-Period Fiber Grating Inscribed on a Polarization-Maintaining Fiber, IEEE Photonics Technology Letters, 2004, 16 (9): 2114~2116 (应力温度同时测量)
    [31] K Bohnert, P Gabus, J Nehring, et al., Temperature and Vibration Insensitive Fiber-Optic Current Sensor, Journal of Lightwave Technology, 2002, 20 (2): 267~276
    [32] Hao Dong, Qiang Wang, Hongzhi Sun, Stable 80-GHz Short Pulse Generation Using the Cascaded Polarization-Maintaining Fiber Loop Mirrors, IEEE Photonics Technology Letters, 2005, 17 (7): 1396~1398
    [33] Sato S, Wada H, Hashizume H, et al., Guided-wave directional couplers with polarisation maintaining fibre arrays, Electronics Letters, 1991, 27 (4): 303 - 304
    [34] Shinji Yamashita, Jun Nishijima, An adjustable interleave filter using stress-induced mode coupling in a polarization maintaining fiber, Optics Communications, 2004, 241: 73~77 (WDM)
    [35] Chan H L W, Chiang K S, Gardner J L, Polarimetric optical fiber sensor for ultrasonic power measurement, Proceedings of IEEE on Ultrasonics Symposium, 1988, 1: 599~602
    [36] 傅怀杰,黄秀钦,刘昆,对熊猫光纤设计制造的讨论,光纤光缆传输技术,1996,4:1~14
    [37] 申云华,吕凤英,孙建军等,偏振保持光纤的研制,半导体光电,1989,10 (1): 119~122
    [38] 江文, 法尔胜光子:保偏光纤的后起之秀, 通信世界, 2005, 19:42
    [39] 郝爱福,冯丽爽,徐宏杰等,保偏光纤偏振特性自动测试系统的研制与开发,光学技术,2004,30 (3):378~380
    [40] 梁铨廷,俞薇,保偏光纤应力的自动测量,广州师院学报,1995,2:56~62
    [41] 娄淑琴,王智,任国斌等,三种保偏光纤的偏振特性研究,铁道学报,2004,26 (6):50~54
    [42] 林哲辉,王金娥,吴字列等,保偏光纤自动化定轴方法研究,光通信技术,2005,2:52~55
    [43] Rongfeng Guan, Fulong Zhu, Zhiyin Gan, et al., Stress birefringence analysis of polarization maintaining optical fibers, Optical Fiber Technology, 2005, 11: 240~254
    [44] 李晶,王巍,采用 3x3 耦合器的开环光纤陀螺技术研究,中国惯性技术学报,2004,12 (6):65~69
    [45] 梁志军,谷云彪,李德才,干涉型光纤陀螺中的偏振光干涉,中国惯性技术学报,2004,12 (2):58~62
    [46] 姚琼,刘阳,宋章启等,光纤陀螺光源数字温度控制技术,2004,25 (2):17~18
    [47] 毛彩虹,舒晓武,刘承等,光纤陀螺仪的光学器件偏振特性测试方法研究,激光与红外,2002,32 (4):279~281
    [48] 王立辉,李绪友,谭志刚,基于 FPGA 的光纤陀螺的信号处理及时序控制,弹箭与制导学报,2004,24 (4):71~73
    [49] 张万成,张承,四极对称光纤陀螺传感线圈及复绕机的程序设计,光纤光缆传输技术,2005,2:26~27
    [50] William K Burns, Chin-Lin Chen, R P Moeller, Fiber-optic Gyroscopes with Broad-Band Sources, Journal of Lightwave Technology, 1983, LT-I (1): 98~105
    [51] William K Burns, Phase Error Bounds of Fiber Gyro with Polarization-Holding Fiber, Journal of Lightwave Technology, LT-4 (I): 8~14
    [52] Rogers A J,Polarization Optical Time Domain Reflectometry, Electronics Letters,1980,16(13):489—490
    [53] Masataka Nakazawa, Tsuneo Horiguchi, Masamitsu Tokuda, et al., Measurement and Analysis on Polarization Properties of Backward Rayleigh Scattering for Single-Mode Optical Fibers, IEEE Journal of Quantum Electronics, 1981, QE-17 (12): 2326~2334
    [54] Masataka Nakazawa, Nori Shibata, Masamitsu Tokuda, et al., Measurement of Polarization Mode Coupling along Polarization-Maintaining Single-Mode Optical Fibers, Journal of Optical Society of American A, 1984, 1 (3): 285~292
    [55] J G Ellison, A S Siddiqui, A Fully Polarimetric Optical Time-Domain Reflectometer, IEEE Photonics Technology Letters, 1998, 10 (2): 246~248
    [56] 董贤子,吴重庆,付松年等,基于 P-OTDR 分布式光纤传感中信息提取的研究,北方交通大学学报,2003,27 (6):106~110
    [57] K Takada, J Noda, K Okamoto, Measurement of Spatial Distribution of Mode Coupling in Birefringent Polarization-Maintaining Fiber with New Detection Scheme, Optics Letters, 1986, 11 (10): 680~682
    [58] P Martin, G Le Boudec, H C Lefevre, Test apparatuss of distributed polarization coupling in fiber gyro coils using white light interfereometry, Fiber Optic Gyros: 15th Anniversary Conference, SPIE, 1991, 1585: 173~179
    [59] Andre C Da Silva, Carlos F R Mateus, Measurement of polarization cross-coupling in a tension-coiled polarization-preserving fiber by optical coherence domain polarimetry, Proceedings of SBMO/IEEE MTT-S IMOC’99, 1999, 638~640
    [60] Makoto Tsubokawa, Tsunehito Higashi, Yukiyasu Negish, Mode couplings due to external forces distributed along a polarization-maintaining fiber: an evaluation, Applied Optics, 1988, 27 (1): 166~173
    [61] Makoto Tsubokawa, Tsunehito Higashi, Yutaka Sasaki, Measurement of mode couplings and extinction ratios in polarization-maintaining fibers, Journal of Lightwave Technology, 1989, 7 (1): 45~50
    [62] Makoto Tsubokawa, Nori Shibata, Shigeyuki Seikai, Evaluation of Polarization Mode Coupling Coefficient from Measurement of Polarization Mode Dispersion, Journal of Lightwave Technology, 1985, LT-3(4): 850~854
    [63] Gang Zheng, Michael Campbell, Peter Wallace, Reflectometric frequency-modulation continuous-wave distributed fiber-optic stresss sensor with forward coupled beams, Applied Optics, 1996, 35 (28): 5722~5726
    [64] Lu Haibo, Chu Xingchun, Luo Wusheng, et al., Research of the distributed fiber optic pressure sensor, SPIE, 1998, 3555: 343~347
    [65] 黄锐,吕海宝,楚兴春等,FMCW 传感测量中的半导体激光器调频特性分析,激光杂志,1998,19 (1):22~26
    [66] Shinji Yamashita, Kazuo Hotate, Distributed pressure sensor with a mode-locked fiber-ring laser, Optics Letters, 2001, 26 (9): 590~592
    [67] I Cokgor, V A Handerek, A J Rogers, Distributed optical-fiber sensor for spatial location of mode coupling by using the optical Kerr effect, Optics Letters, 1993, 18 (9): 705~707
    [68] F Parvaneh, M Farhadiroushan, V A Handerek, et al., High-resolution optical-fiber distributed temperature sensor based on the frequency-derived technique, Electronics Letters, 1996, 32 (24): 2263~2264
    [69] R Feced, S E Kanellopoulos, M Farhadiroushan, et al., Analysis of optical Kerr effect induced coupling among polarization modes in high-birefringence optical fibers, Optics Communications, 1997, 143: 268~278
    [70] Jian Zhang, Vincent A Handerek, Ilkan Cokgor, et al., Distributed sensing of polarization mode coupling in high birefringence optical fibers using intense arbitrarily polarized coherent light, Journal of Lightwave Technology, 1997, 15 (5): 794~802
    [71] Toru Okugawa, Kazuo Hotate, Synthesis of Arbitrary Shapes of Optical Coherence Function Using Pase Modulation, IEEE Photonics Technology Letters, 1996, 8 (12): 1710~1712
    [72] K Hotate, O Kamatan, Reflectometry by means of optical-coherence modulation, Electronics Letters, 1989, 25 (22): 1503~1505
    [73] Kazuo Hotate, Toru Okugawa, Optical information processing by synthesis of coherence function, Journal of Lightwave Technology, 1994, 12 (7): 1247~1255
    [74] Toru Okugawa, Kazuo Hotate, Real-Time Optical Image Processing by Synthesis of the Coherence Function Using Real-Time Holography, IEEE Photonics Technology Letters, 1996, 8 (2): 257~259
    [75] T Saida, K Hotate, Distributed Fiber-Optic Stress Sensor by Synthesis of the Optical Coherence Function, IEEE Photonics Technology Letters, 1997, 9 (4): 484~486
    [76] Kazuo Hotate, Xueliang Song, Zuyuan He, Stress-Location Measurement Along an Optical Fiber by Synthesis of Triangle-Shaped Optical Coherence Function, IEEE Photonics Technology Letters, 2001, 13 (3): 233~235
    [77] Zuyuan He, Kazuo Hotate, Distributed Fiber-Optic Stress-Location Measurement by Arbitrary Shaping of Optical Coherence Function, Journal of Lightwave Technology, 2002, 20 (9): 1715~1723
    [78] Pablo D Ruiz, Yanzhou Zhou, Jonathan M Huntley, et al., Depth-resolved whole-field displacement measurement using wavelength scanning interferometry, Journal of Optics A: Pure And Applied Optics, 2004, 6: 679~683
    [79] Akihiro Yamamoto, Ichirou Yamaguchi, Surface profilometry by wavelength scanning Fizeau interferometer, Optics & Laer Technoloy, 2000, 32: 261~266
    [80] Oguz Koysal, Duygu Onal, Serhat Ozder, et al., Thickness measurement of dielectric films by wavelength scanning method, Optics Communications, 2002, 205: 1~6
    [81] M Shlyagin, A Khomenko, D Tentori, Remote measurement of mode-coupling coefficients in briefringent fiber, Optics Letters, 1994, 19 (12): 913~915
    [82] 黄尚廉,骆飞,高双折射光纤双折射参数的精密干涉测量法,光电工程,1993,20(5):23~26
    [83] 骆飞,黄尚廉,高双折射光纤模式耦合空间分布的干涉测量法,光学学报,1993,13(11):1031~1035
    [84] 王涛,周柯江,叶炜等,光纤偏振态模式分布的干涉测量方法,光学学报,1997,17(6):737~740
    [85] 周柯江,王涛,光纤白光干涉仪的研究,激光与红外,1997,27(4):242~244
    [86] 周晓军,龚俊杰,刘永智等,白光干涉偏振模耦合分布式光纤传感器分析,光学学报,2004,24(5):605~608
    [87] 井文才,李强,唐锋等,采用双折射光纤设计分布式应力传感器,光电子·激光,2005,16(1):1~4
    [88] 殷纯永,现代干涉测量技术,天津:天津大学出版社,1999
    [89] 靳伟,廖延彪,张志鹏等,导波光学传感器:原理与技术,北京:科学出版社,1998. 120~147
    [90] Yun-Jiang Rao, David A Jackson, Recent progress in fiber optic low-coherence interferometry, Measurement Science and Technology, 1996, 7: 981~999
    [91] Max Born, Emil Wolf, 光学原理(黄乐天等译),北京:科学出版社,1981. 711~719
    [92] J W Goodman,统计光学(秦克诚等译),北京:科学出版社,1992. 150~155
    [93] Y J Rao, D A Jackson, Improved synthesised source for white light interferometry, Electronics Letters, 1994, 30 (17): 1440~1441
    [94] Qi Wang, Y N Ning, K T V Grattan, et al., Enhancement of the relative visibility of the central fringe in the output of a white light interferometric system with a synthetic source, Optics & Laser Technology; 1997, 29 (8): 489~494
    [95] D N Wang, Y N Ning, K T V Grattan, et al., Three-Wavelength Combination Source for White-Light Interferometry, IEEE PHOTONICS TECHNOLOGY LETTERS, 1993, 5 (11): 1350~1352
    [96] L Yuan, A simple way for improving the identification of the central fringe in a fiber-optic white-light interferometer, Optics & Laser Technology, 1997, 29 (7): 365~369
    [97] D N Wang, Y N Ning, K T V Grattan, et al., Optimized multiwavelength combination sources for interferometric use, Applied Optics, 1994, 33 (31): 7326~7333
    [98] Raymond H Marshall, Ya Nong Ning, Xiangqian Jiang, A Novel Electronically Scanned White-Light Interferometer Using a Mach-Zehnder Approach, Journal of Lightwave Technology, 1996, 14 (3): 397~402
    [99] S Chen, A W Falmer, K T V Grattan, Study of electronically-scanned optical-fiber white-light Fizeau interferometer, Electronics Letters, 1991, 27 (12): 1032~1034
    [100] Josemir C Santos, Andre L Cortes, A new electro-optical method for recovering white light interferometric signals, IEEE Proceedings of SBMO/IEEE MTT-S IMOC'99, 1999: 149~152
    [101] Somervell A R D, Cheung D C L, Barnes T H, A heterodyne interferometer operating in white light, Conference on Lasers and Electro-Optics Europe, 2003. 506
    [102] D N Wang, Y N Ning, A W Palmer, et al., An alternative to white light interferometric sensing, Journal of Lightwave Technology, 1995, 13 (5): 961~966
    [103] Sen Han, Trisha Browne, Characterizing Optically Packaged MEMS & MOEMS Devices Using Optical Profiling Techniques, Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005, 13~16
    [104] Taplin S R, Podoleanu A G, Webb D J, et al., A novel application of white light sensing to dynamic oil film measurement, IEE Colloquium on Progress in Fibre Optic Sensors and Their Applications, 1995. 12/1~12/5
    [105] J C Santos, K Hidaka, A L CBrtes, et al., Improved Optical Sensor for High Voltage Measurement Using White Light Interferometry, IEEE Proceedings of SBMO/IEEE MTT-S, 2003: 615~619
    [106] P MERRITT, R P TATAM, D A JACKSON, Interferometric Chromatic Dispersion Measurements on Short Lengths of Monomode Optical Fiber, Journal of Lightwave Technology, 1989, 7 (4): 703~716
    [107] Minho Song, Byoungho Lee, An effective optical evaluation technique using low-coherence interferometry, Optics & Lasers Engineering, 1997, 27: 441~449
    [108] Wojtek J Bock, Waclaw Urbanczyk, Coherence Multiplexing of Fiber-Optic Pressure and Temperature Sensors Based on Highly Birefringent Fibers, IEEE Transactions on Instrumentation and Measurement, 2000, 49 (2): 392~397
    [109] Libo Yuan, Limin Zhou, 1×N star coupler as a distributed fiber-optic strain sensor in a white-light interfereometer, Applied Optics, 1998, 37 (19): 4168~4172
    [110] Yang Zhao, Farhad Ansari, Quasi-distributed white light fiber optic strain sensor, Optics Communications, 2001, 196: 133~137
    [111] Bhatia V, Murphy K A, Claus R O, et al., Two-mode strain and temperature sensors employing white light interferometry, Proceedings. IEEE, Lasers and Electro-Optics Society Annual Meeting, 1994. 255~256
    [112] V Bhatia, M B Sen, K A Murphy, et al., Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements, Electronics Letters, 1996, 32 (3): 247~248
    [113] 满小明,保偏光纤分布式寄生偏振耦合测试仪的研究:[硕士学位论文],天津:天津大学,2003
    [114] 张聪跃,光纤寄生偏振耦合白光干涉仪光学系统设计:[硕士学位论文],天津:天津大学,2004
    [115] 李海峰,基于白光干涉的保偏光纤偏振耦合检测的研究:[博士学位论文],天津:天津大学,2004
    [116] 李强,分布式寄生偏振耦合测试仪(DPCA)的数据采集与信号处理:[硕士学位论文],天津:天津大学,2005
    [117] Hermann A Haus, Weiping Huang, Coupled-mode theory, Proceedings of the IEEE, 1991, 79 (10): 1505~1518
    [118] Jun-Ichi Sakai, Tatsuya Kimura, Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations, IEEE Journal of Quantum Electronics, 1981, QE-17 (6): 1041~1051
    [119] Amnon Yariv, Coupled-mode theory for guided-wave optics, IEEE Journal of Quantum Electronics, 1973, QE-9 (9): 919~933
    [120] Jun-Ichi Sakai, Tatsuya Kimura, Polarization behavior in multiply perturbed single-mode fibers, IEEE Journal of Quantum Electronics, 1982, QE-18 (1): 59~65
    [121] Katsunari Okamoto, Yutaka Sataka, Noriyoshi Shibata, Mode coupling effects in stress-applied single polarization fibers, IEEE Journal of Quantum Electronics, 1982, QE-18 (11): 1890~1899
    [122] T H Chua, Chin-Lin Chen, Fiber polarimetric stress sensors, Applied Optics, 1989, 28 (15): 3158~3165
    [123] 吴家龙,弹性力学,北京:高等教育出版社,2001
    [124] A Yariv, P Yeh, 晶体中的光波(于荣金,金锋等译),北京:科学出版社,1991. 279~289
    [125] 彭高华,王国丽,弹性力学基础,北京:石油工业出版社,1993. 61~62
    [126] 廖延彪,偏振光学,北京:科学出版社,2003. 130~131
    [127] Feng Tang, Wen-cai Jing, Yi-mo Zhang, et al., “Influence of polarization extinction ratio on measurement of distributed polarization coupling,” in 3rd International Symposium on instrumentation Science and Technology, 2, pp. 1251-1255, 2004.
    [128] Feng Tang, Wencai Jing, Yimo Zhang, et al. Measurement of distributed mode coupling in high birefringence polarization-maintaining fiber with random polarization modes exited, ICO20, 2005,8 (0403-014)
    [129] Wencai Jing, Yimo Zhang, Ge Zhou, Hongxia Zhang, Zhaohui Li, and XiaomingMan, Rotation angle optimization of the polarization eigenmodes for detection of weak mode coupling in birefringent waveguides, Optics Express, 2002, 10 (18): 972~977
    [130] Chung E Lee, Henry F Taylor, Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source, Journal of Lightwave Technology, 1991, 9(1):129~134
    [131] A S Gerges, F Farahi, T P Newson, et al., Fiber-optic interferometric sensor utilising low coherence length source: resolution enhancement, Electronics Letters, 1988, 24 (8): 472~474
    [132] http://www.coeri.com/shop.asp?c_id=14&s_id=28
    [133] Y kashima, M Kobayashi, H TakaNo, High output power GaInAsP/InP superluminescent diode at 1.3m, Electronics Letters, 1988, 24 (24): 1507~1508
    [134] Ch Holtmann, P A Besse, H Melchior, High power superluminescent diodes for 1.3m wavelengths, Electronics Letters, 1996, 32 (18): 1705~1706
    [135] W K Burns, R P Moeller, A Dandridge, Excess noise in fiber gyroscope sources, IEEE Photonics Technology Letters, 2 (8): 606~608
    [136] 韦文生,张春熹,马静等,超辐射激光二极管的研究与应用,激光与红外,2003,33(6):409~411
    [137] I N Duling, R P Moeller, William K Bums, et al., Output Characteristics of Diode Pumped Fiber ASE Sources, IEEE Journal of Quantum Electronics, 27 (4): 995~1003
    [138] Eric A Swanson, Stephen R Chinn, Craig W Hodgson, et al., Spectrally shaped rare-earth-doped fiber ASE sources for use in optical coherencetomography, CLEO'96, 1996, 211
    [139] 苏春丽,萧天棚,何耀基等,单模保偏光纤起偏器,光纤与电缆及其应用技术,1997,4:16~19
    [140] 龚岩栋,陈根祥,简水生,偏振控制器的研究和现状,光纤与电缆及其应用技术,1995,3:15~20
    [141] 满小明,张以谟,周革等,光纤寄生偏振耦合测试仪偏振态的调整,光电子·激光,2002,13(10):1022~1025
    [142] Burr-Brown corporation, DDC101: 20-Bit analog-to-digital converter, 1998
    [143] Scott Hauck, The roles of FPGA’s in reprogramable systems, Proceedings of the IEEE, 1998, 86 (4): 615~638
    [144] Rainer Amann, UTZ G Baitinger, Optimal state chains and state codes in finite state machines, IEEE Transactions on Computer Aided Design, 1989, 8(2): 153~170
    [145] 栾铭,高明伦,工业控制芯片中状态机的描述方法,Proceedings of the 3nd World Congress on Intelligent Control and Automation, 2000,1458~1462
    [146] Wang T H, Edsall T, Practical FSM analysis for Verilog, International Verilog HDL Conference and VHDL International Users Forum, 1998, 52~58
    [147] Madiha Sabry Rizk, Dario Romare, Kenneth T V, et al., Adaptive filtering of white-light interferometry fringe patterns, IEEE Transactions on Instrumentation and Measurement, 1998, 47 (3): 782~788
    [148] Rolf-Jurgen Recknagel, Gunther Notni, Analysis of white light interfereograms using wavelet methods, Optics Communications, 1998, 148: 122~128
    [149] Patrick Sandoz, Wavelet transform as a processing tool in white-light interferometry, Optics Letters, 1997, 22 (14): 1065~1067
    [150] Q Wang, Y N Ning, K T V Grattan, et al., A curve fitting signal processing scheme for a white-light interferometric system with a synthetic source, Optics & Laser Technology, 1997, 29 (7): 371~376
    [151] Kieran G Larkin, Efficient nonlinear algorithm for envelop detection in white light interferometry, Journal of Optical Society of America A, 1996, 13 (4): 832~843
    [152] Ingrid Daubechies,Ten Lectures on Wavelet (李建平,杨万年译),北京:国防工业出版社,2004
    [153] Graps A, An introduction to wavelets, IEEE Computational Science and Engineering, 1995, 2 (2): 50~61
    [154] Mallat S G, A theory for multiresolution signal decomposition: the wavelet representation,IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 37 (12): 2091 ~ 2110
    [155] Dai-fei Guo, Wei-hong Zhu, Zhen-ming Gao, et al., A Study of Wavelet Thresholding Denoising, Proceedings of ICSP2000, 2000, 329~332
    [156] Sylvain Sardy, Paul Tseng, and Andrew Bruce, Robust Wavelet Denoising, IEEE Transactions on Signal Processing, 2001, 49 (6): 1146~1152
    [157] 张阳德,董可,任力锋,偏最小二乘法+神经网络用于大肠癌组织自体荧光的模式识别,中国医学工程,2004,12(4):52~56
    [158] Anil K Jain, Robert P W Duin, Jianchang Mao, Statistical Pattern Recognition: A Review, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (1): 5~37
    [159] Douglas L Jones, Thomas W Parkst, A Resolution Comparison of Several Time-Frequency Representations, International Conference on Acoustics, Speech, and Signal Processing, 1989: 2222~2225
    [160] 华琳,阎岩,刘学宗,非线性回归分析在研究药代动力学资料中的应用,数理医药学杂志,2005,18(3):276~278
    [161] Myke Predko, PC 接口技术内幕(陈逸译),北京:中国电力出版社,2002
    [162] http://www.mathworks.com/
    [163] Alan D Kersey, A review of recent developments in fiber optic sensor technology, Optical Fiber Technology, 1996, 2: 291~317
    [164] 吕海宝,黄锐,楚兴春,分布式光纤传感技术,光学仪器,1997,19(3):11~17
    [165] Martin P Gold, Design of a Long-Range Single-Mode OTDR, Journal of Lightwave Technology, 1985, LT-3 (1): 39~46
    [166] Kazuro Kikuchi, Taka0 Naito, Takanori Okoshi, Measurement of Raman Scattering in Single-Mode Optical Fiber by Optical Time-Domain Reflectometry, IEEE Journal of Quantum Electronics, 1988, 24 (10): 1973~1975
    [167] Toshio Kurashima, Tsuneo Horiguchi, Hiroshige Ohnot, et al., Strain and Temperature Characteristics of Brillouin Spectra in Optical Fibers for Distributed Sensing Techniques, 24th European Conference on Optical Communication, 1998, 149~150
    [168] Alan D Kersey, Michael A Davis, Heather J Patrick, et al., Fiber Grating Sensors, Journal of Lightwave Technology, 1997, 15 (8): 1442~1463
    [169] 舒学文,张新亮,施伟等,基于光纤光栅的分布式传感器,光纤与光缆及其应用技术,1997:33~38
    [170] 骆飞,毛磊,薛青,一种高双折射光纤力敏传感器的研究,光仪技术,2000,16(1):27~31
    [171] Kazuo Hotate, Sean Ong Soon Leng, Transversal force sensor using polarization-maintaining fiber independent of direction of applied force: Proposal and experiment, 15th Optical Fiber Sensors Conference Technical Digest, 2002, 1:363~366
    [172] Shiping Chen, B T Meggitt, Andrew William Palmer, et al., An intrinsic optical-fiber position sensor with schemes for temperature compensation and resolution enhancement, Journal of Lightwave Technology, 15(2): 261~266
    [173] 于尊涌,唐棣芳,保偏光纤双折射的测量,光纤与电缆及其应用技术,1992,1:28~33
    [174] K Okamoto, T Hosaka, Polarization-dependent chromatic dispersion in briefringent optical fibers, Optics Letters, 1987, 12(4): 290~292
    [175] Katsunari Okamoto, Takao Edahiro, Nori Shibata, Polarization properties of single-polarization fibers, Optics Letters, 1982, 7(1): 569~571
    [176] http://www.vacuum.net.cn/products/dispproductdetail.asp?productid=735
    [177] Katsunari Okamoto, Malcolm P Varnham, David N Payne, Polarization-maintaining optical fibers with low dispersion over a wide spectral range, Applied Optics, 1983, 22(15): 2370~2373
    [178] Hoang Yan Lin, Jyhpyng Wang, Experimental study of the geom.etric group-delay dispersion in graded-index media, Applied Optics, 1996, 35(15): 2610~2613
    [179] Pavel Pavlicek, Jan Soubusta, Measurement of the influence of dispersion on white-light interferometry, Applied Optics, 2004, 43(4): 766~770
    [180] Nori Shibata, Makoto Tsubokawa, Takashi Nakashima et al., Temporal coherence properties of a dispersively propagating beam in a fiber-optic interferometer, J. Opt. Soc. Am. A, 1987, 4(3): 494~497
    [181] Manfred W Kemmler, Hanns J Buschelberger, White light interferometry for testing FOG components, Proceedings of SPIE, 1991, 1585: 357~364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700