荧光探针的合成及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以罗丹明B为原料设计合成了一系列的烷基罗丹明B酯衍生物。优化得到了适宜的工艺条件。以SOCl2为酰基化试剂,罗丹明B与醇的摩尔比为1:10,反应温度70°C,反应时间7h,罗丹明B酯衍生物的收率可达80%以上。荧光性能分析结果表明,烷基罗丹明B酯的烷基结构对其荧光强度、最大吸收和发射波长影响不大。甲基罗丹明B酯最大吸收和发射波长不受浓度的影响,荧光强度随浓度增加而增加;随着溶剂极性的增加,其最大吸收、发射波长红移,而荧光强度降低;随着激发光照射时间的增长,其最大吸收和发射波长无变化,但荧光强度明显降低,且在极性溶剂中降幅大于其在非极性溶剂中。
     合成了硝基罗丹明B、氨基罗丹明B及卤代罗单明B。硝基罗丹明B与罗丹明B相比荧光强度减弱,最大吸收和发射波长红移。氨基罗丹明B与罗丹明B相比,荧光强度增强,最大吸收和发射波长红移。随着溶剂极性的增加,硝基罗丹明B和氨基罗丹明B的最大吸收和发射波长略向红移,而荧光强度降低。单卤代后罗丹明B与罗丹明B相比,荧光强度增大,最大吸收和发射波长红移,其荧光强度的顺序为I     建立了长链羧酸荧光素酯合成工艺路线,合成了一系列荧光素酯。对系列荧光素酯水解性能的研究表明,碳链越长的羧酸荧光素酯其自然水解就越难发生,稳定性能就越好。随着荧光素酯中羧基碳链的增长,脂酶检测的灵敏度有了进一步提高。筛选得到了研究脂酶的理想荧光探针二(十二酸)荧光素酯,用其可以检测0.1微克/毫升的脂酶的活性。
     以氨基罗丹明B和氨基荧光素为原料,采用草酰氯单乙酯作为连接剂,合成了具有双发色基团的新化合物RH-F。该物质在紫外可见吸收光谱上出现两个吸收峰,分别接近于氨基荧光素及氨基罗丹明B。将甲基罗丹明B酯和RHB-F分别应用于测定DNA浓度,优化了分析条件,建立了共振光散射法测定痕量DNA的测定方法。
A series of alkyl rhodamine B esters were designed and synthesized from rhodamine B. The synthetic process was optimized and established. Thus, SOCl2 was used as the acylating agent, Rh B to alcohol=1:10(mole ratio), reaction temperature 70℃and reaction time 7h, the product yields are over 80%. The fluorescence analytical results indicated that the alkyl structures of Rh B esters hardly affected their fluorescence behaviors . The maximum absorption(λex) and emission wavelengths (λem) of methylrhodamine B esters are not affected by its concentration while the fluorescence intensity enhances as the concentration increases. Theλex andλem generate red shift with the enhancing of the solvent polarity while the fluorescence intensity weakens. Theλex andλem do not change with increasing of the irradiation time, but the fluorescent intensity obviously decreased. The rate of fluorescent intensity to reduce in polar solvent is larger than in apolar solvent.
     Amino-Rh B, nitro-Rh B and Halogenated Rh B derivatives were synthesized. The fluorescence intensity of nitro-Rh B was lower than that of Rh B while theλex andλem were larger. The fluorescence intensity,λex andλem of amino -Rh B were stronger than those of Rh B, respectively. Theλex andλem of amino-Rh B or nitro-Rh B shifted towards the red light with increasing the solvent polarity while the fluorescence intensity decreased. The fluorescence intensity of halogenated Rh B derivatives were larger than that of RhB in a sequence of I     A new route for synthesis of lipophilic fluorescein esters from acyl halide and fluorescein was established and a series of long chain fluorescein carboxylic acid esters were synthesized. The hydrolysis experiments of fluorescein esters indicated that the longer carbon chain was, the harder the natural hydrolysis was, leading to a better stability. As the carbon chain of acid is longer, the sensitivity of lipoidase detection is more improved. Using fluorescein dilaurate as the substrate, the activity of lipoidase at 0.1mg/ml was detected with an accuracy of 98.5%.
     A novel dichromophoric fluorescence compound (RH-F) containing the groups of Rh B and fluorescein was synthesized from ethyl oxalyl monochloride as the conjuncter. RH-F showes two maximal absorption wavelengths corresponding to amino-fluorescein and amino-Rh B. Methyl Rh B ester and RH-F were used to determine DNA concentration, respectively. The analytical conditions were optimizedand the resonance light scattering technique of determining trace amount of ctDNA was established.
引文
[1]王占铃,李建中,钢铁中微量铝的荧光测定,分析化学,1991,19(3):306~308
    [2]邹肇娥,王化远,唐远清, 荧光探针的应用,华西药学杂志, 1991,6(4):223~228
    [3] Willem E C,Fleuren G J,Cees J.,Cornelisse Software compensation improves the analysis of heterogeneous tumor samples stained for multiparameter DNA flow cytometry,Journal of Immunological Methods,2002,260:97~107.
    [4] Chapman G V.Instrumentation for flow cytometry,J. Immunological Methods,2000,243:3~12
    [5]刘晓峰,高顺起,杜国华, 荧光探针定量聚合酶链反应检测乙型肝炎病毒DNA的临床应用,现代中西医结合杂志,2005,14(5):648~649
    [6]Drobyshev A,Mologins N ,Shik V,et al.,Sequence analysis by hybridization with obligonucleotide microchip;identification of thalassemia mutation.Gene,1997,188;45-52
    [7] Li Linshu, Wang Ruifen, Yang Yansheng, Li Ruanying. Acta Scientiarum Naturalium Universitatis Sunyatseni, 中山大学学报(自然科学版)), 1991, 30(2): 12~18
    [8] Zhuang Huirong , Feng Shangcai , Ping Mei, Physical Chemistry Detect – Chemistry .(理化检验-化学手册 ), 2001, 37(3): 143~145
    [9] F. López Arbeloa, I., Urrecha Aguirresacona. I. López Arbeloa, Chem. Phys., 1989, 130: 371
    [10]R. Menzel, E. Thiel., Intersystem crossing rate constants of rhodamine dyes: influence of the amino-group substitution.Chem. Phys. Lett., 1998, 291(1~2): 237~243
    [11] D.A. Hinckley, P.G. Seybold, D.P. Borris, Solvatochromism and thermochromism of rhodamine solutions, Spectrochim. Acta Part A: Molecular Spectroscopy, 1986, 42(6): 747~754
    [12] D.A. Hinckley, P.G. Seybold.A spectroscopic/thermodynamic study of the rhodamine B lactone zwitterion equilibrium. Spectrochim. Acta Part A: Molecular Spectroscopy, 1988, 44(10): 1053~1059.
    [13] I. López Arbeloa, K.K. Rohatgi-Mukherjee. Solvent effects on the photophysics of the molecular forms of rhodamine B. Internal conversion mechanism.Chem. Phys. Lett., 1986, 129(6): 607~614.
    [14] M.M. Wong, Z.A. Schelly. Solvent-jump relaxation kinetics of the association of rhodamine type laser dyes, J. Phys. Chem., 1974, 78(19): 1891.
    [15] I. López Arbeloa, P. Ruiz Ojeda. Dimeric states of rhodamine B, Chem. Phys. Lett., 1982, 87(6): 556~560.
    [16] Klonis N, Clayton AH, Voss EW Jr, et al. Spectral properties of fluorescein in solvent-water mixtures: applications as a probe of hydrogen bonding environments in biological systems, Photochem. Photobiol., 1998, 67:500~515.
    [17]Jose J.B. Ferreira, Silvia M.B. Costa. J. Molecular. Structure, 2001, 565/566: 35~38
    [18]Zhang Huashan, Wang Hong, Zhao Yuanyuan, Molecule Probe and Detect Reagent, Beijing:Science Press, 2002
    [19] Authony P. Guzikowski, John J. Maleway, Christina T. Shipp Rod C S., Synthesis of a macrocyclic rhodamine 110 enzyme substrate as an intracellular probe for caspase 3 activity, Tetrahedron. Lett., 2000, 41(24): 4733~4735
    [20] Jaromir Plasek, Karel Sigler, Slow fluorescent indicators of membrane potential: a survey of different approaches to probe response analysis, J. Photochem. Photobiol. B: Biol., 1996, 33(2): 101~124
    [21] Louis Gaboury, Luv Viueneuve, Richard Giasson, Tiechao Li, Ajay K. Gupta, Novel rhodamine derivatives for photodynamic therapy of cancer and in vitro purging of the leukemials, US, 5556992,1996-09-17
    [22] Louis Gaboury, Luv Viueneuve, Richard Giasson, Tiechao Li, Ajay K. Gupta, Rhodamine derivatives for photodynamic therapy of cancer and in vitro purging of the leukemials, US, 5773460, 1998-06-30
    [23]P Pal, H Zeng, G Durocher, et al., Spectroscopic and Photophysical properties of some new rhodamine derivatives in cationic, anionic and neutral micelles, J. Photochem. Photobiol, A: chem. 1996, 98: 65~72
    [24] P Pal, H Zeng,G. Durocher, et al., Phototoxicity of some bromine-substituted rhodamine, dyes: synthesis, photophysical properties and application as, photosensitizers, Photochem. Photobiol. 1996, 63: 161~172
    [25]A Costela, I Garcia-Moreno, J M Figuera, et al., Solid-state dye lasers based on polymers incorporating covalently bonded modified rhodamine 6G, Appl. Phys. Lett., 1996, 68: 593~595
    [26]A Costela, I Garcia-Moreno, J M Figuera, et al., Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers., J. Appl. Phys., 1996, 80(6):3167-3173
    [27] T Lopez Arbeloa, F Lopez Arbeloa, I Lopez Arbeloa, et. al., Photophysical and lasing properties of a new ester derivative of rhodamine 6G, J. Luminescencem, 1997, 75(4): 309~317
    [28]William J Ward, Jeffrey R Cramm, Peter E Reed, et al., Derivatized Rhodamine Dye and its Copolymers., U.S. Patent, 5 808 103, 2001-09-15
    [29]A C Ribou, J Vigo, J M Sslmon, Synthesis and characterization of (1′-pyrene butyl)-2-rhodamine ester: a new probe for oxygen measurement in the mitochondria of living cells, J. Photochem. Photobiol. A: chem., 2002, 151: 49~55
    [30]Anne Cecile Ribou, Jean Vigo, Elli Kohen, et al., Microfluorometric study of oxygen dependence of (1′-pyrene butyl)-2-rhodamine ester probe in mitochondria of living cells, J. Photochem. Photobiol. B: boil. 2003, 70: 107~115
    [31]Keller P M,Person S,Snipes W., A fluorescence enhancement assay of cell fusion. J Cell Sci., 1977, 28: 167~177
    [32]Sne?ana Miljani’c, Zvjezdana Cimerman, Leo Frkanec, et. al. Lipophilic derivative of rhodamine 19: characterization and spectroscopic properties. Analytica. Chimica. Acta., 2002, 468: 13~25
    [33]Xiao Feng Yang,Xiang Qun Guo, Yi Bing Zhao, Development of a novel rhodamine-type fluorescent probe to determine peroxynitite, Talanta, 2002, 57: 883~890
    [34] Maciej Adamczyk, Jonathan Grote, Synthesis of probes with broad pH range fluorescence, Bioorganic Medcinal Chem. Lett., 2003, 13: 2327~2330
    [35] Udo Mayer, Andreas Oberlinner, Basic rhodamine dyes, U.S. Patent, 4935059, 1990-06-19
    [36] Udo Mayer, Andreas Oberlinner. Rhodamine dyes, U.S. Patent, 4 647 675, 1987-03-03
    [37] Udo Mayer, Andreas Oberlinner, U.S. Patent, 5140053, 1995
    [38] Arden Jacob Jutta, Karl Heinz, Hamers Schneider Monika, et al., Carboxamide-substituted dyes for analytical applications, EP, 576059 , 2005-09-21
    [39] Rajeev Khare, S.R., Daulatabad. A non-mixing technique for enhancement of the tuning range of rhodamine 6G using rhodamine B, Optics. Las. Tech., 2004, 36: 27~30
    [40] N.O.Mchedlov-Petrossyan, S.A.Shapovalov, S I Egorova, et al., A new application of rhodamine 200B(sulfo rhodamine B),Dyes.Pigments, 1995,28(1):7~18
    [41]Morliere P, Mangel W F, Santus R, et al., Interaction of tetrapyrrolic rings with rhodamine 110 and 123 and with rhodamine 110 derivatives bearing a peptidie side chai, Biochem. Biophys. Res Commun, 1987,146(1):107~113
    [42]Leytus SP, Melhao LL, Mangel WF., Rhodamine-based compounds as fluorogenic substrates for serine proteinases, J.Biochem., 1983, 209: 299~307
    [43]Leytus SP, Melhao LL, Mangel WF., New class of sensitive and selective fluorogenic substrates for serine proteinases, Amino acid and dipeptide derivatives of rhodamine, B J.iochem., 1983, 215: 253~260
    [44] Walter. F. Mangcl, Stephen Leytus, L. Lee Melhado,Rhodamine derivatives as fluorogenic substrates for proteinases, U.S. Patent, 4557862, 1985
    [45] Jixiang Liu, Mahesh Bhalgat, Cailan Zhang, et al., Fluorescent molecular probes V: A sensitive caspase-3 substrate for fluorometric assays., Bioorg. Med. Chem. Lett., 1999, 9(22): 3231
    [46] Sui Xiongcai, Han-Zhong Zhang, John Guastella, et al., Design and synthesis of rhodamine 110 derivative and caspase-3 substrate for enzyme and cell-based fluorescent assay, Biolorg. Medi. Chem. Lett., 2001, 11: 39~42
    [47] Anthony P, Guzikowski, John J, et al., Synthesis of a macrocyclic rhodamine 110 enzyme substrate as a intracellular probe for caspase 3 activity, Tetrahedron Lett., 2000, 41: 4733~4735 [48 Claudine Scala-Valero, Denis Doizi, Gerald Guilaumet. Synthesis of isomers of rhodamine 575 and rhodamine 6G as new laser dyes,Tetrahedrons. Lett., 1999, 40(26): 4803~4806
    [49] Drexhage K H, Martin G, Laser Focus., What's ahead in laser dyes, 1973, 9(3): 35~39
    [50] Panchuk-Voloshina N, Haugland Rosaria P, Haugland R P, Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates, J Histochem & Cytochem., 1999,47(9): 1179~1188
    [51] Herrmann R, Josel H P, Drexhage K H, et al., Pentacyclic compounds and their use as absorption or fluorescent dyes,US, 5750409, 1998
    [52] Hammond P R, Preparation of certain m-aminophenols and the use thereof for preparation of laser dyes ,US, 4622400, 1986
    [53] Liu J X, Diwu Z J, Haugland R P, et al Derivatives of 1,2-dihydro-7-hydroxyquinolines containing fused rings,. WO, 0212195, 2002
    [54] Liu J X, Diwu Z J, Haugland R P, et al., Rational design and synthesis of a novel class of highly fluorescent rhodamine dyes that have strong absorption at long wavelengths, Tetrahedron Lett., 2003, 44(23): 4355~4359
    [55]Zhenjun Diwu, Jixaing Liu, Kyle Gee. Derivatives of 1,2-dihydro-7-hydroxyquinolines containing fused rings. U S , 2004/0147747 A1,2004
    [56] Rupert Herrmann, Josel Hans-Petert, Karl-Heinz Drexhage, et. al., US, Patent, 5750409, 1998-05-12
    [57] Joe Y. L. Lam, Scott C. Benson, Steven M Menchen, Extended rhodamine compounds useful as fluorescent labels,US,6248884 B1, 2001-06-19
    [58] B John Bergot, Vergine Chkerian, Charles R. Connell, et. al., Spectrally resolvable rhodamine dyes for nucleic acid sequence determination, US, 5366860, 1994-11-22
    [59] Fei Mao, Wai-Lee Leung, Richard P. Haugland, Sulfonated xanthene derivatives, US,6130101, 2000-10-10
    [60] Hans-Peter Josel, Rupert Herrmann, Dieter Heindl, et. al., Rhodamine derivatives and the use thereof,US, 6184379 B1, 2001-02-06
    [61] Richard P Haugland, Victoria L Singer, Stephen T Yue, Xanthene dyes and their application as luminescence quenching compounds, US, 6399392 B1, 2002-06-04
    [62] J L Dela, G J Blanchard, The influence of chromophore structure on intermolecular interactions, A study of selected rhodamines in polar protic and aprotic solvents, J. Phys. Chem., 2002, 106: 10718~10724
    [63] 施锋,李宏洋,彭孝军,生物分析用近红外荧光染料研究进展.精细化工, 2003, 20(5): 267~272
    [64]Wojciech Szalecki, Richard P. Haugland, US,6562632 B1, 2003-03-13
    [65] Kyle R Gee, Sun W C, Haugland R P, et al., Novel derivatization of protein thiols with fluorinated fluoresceins ,Tetrahedron Lett., 1996, 37(44): 7905~7908
    [66] Josel H P, Herrmann R, Drexhage K H, Rhodamine derivatives and the use thereof, US, 6184379, 2001
    [67] Linda G Lee, Benson S C, Rosenblum B B, 4, 7-Dichlororhodamine dye, US, 5847162, 1998
    [68]Arden-Jacob Jutta, Drexhage Karl-Heinz, et. al., WO, Patent, 2004/055117 A2, 2004
    [69]Ronald H Chiarello, Wing Liu, Kathy E Yokabata. US, 6750357 B1,2004-06-15
    [70] Rajeev Khare, S.R. Daulatabad, A non-mixing technique for enhancement of the tuning range of rhodamine 6G using rhodamine B, Optics. Las. Tech., 2004, 36: 27~30
    [71] Xavier Fernandez-Busquets, Max M. Burger, Use of rhodamine B isothiocyanate to detect proteoglycan core proteins in polyacrylamide gels, Anal. Biolchem.,1995, 227: 394~396
    [72] Swerdlow H, Zhong J Z, Da Yong Chen et Al, Three DNA sequencing methods using capillary gel electrophoresis and laser-induced fluorescence, Anal. Chem., 1991, 63(24): 2835~2841
    [73] Hirano T, Kikuchi K, Urano Y, Higuchi T, Nagano T. Improvement and Biological Applications of Fluorescent Probes for Zinc, ZnAFs , J. Am. Chem. Soc., 2002, 124(23): 6555~6562
    [74]Natalya Ramzaeva, Helmut Rosemeyer, Peter Leonard et al., Oligonucleotides Functionalized by Fluorescein and Rhodamine Dyes: Michael Addition of Methyl Acrylate to 2'-Deoxypseudouridine Helvetia Chimica Acta, 2000, 83(6): 1108~1126
    [75] Tian H., The influence on the triplet state in antenna rhodamine dyes of intramolecular energy transfer and charge transfer, J. Photochem Photobiol A Chem., 1995, 91: 125~130
    [76]Tian H, He Y, Chang C P, Synthesis and spectral properties of novel laser copolymers based on modified rhodamine 6G and 1,8-naphthalimide, J. Mate Chem., 2000,10(9):2049~2055
    [77] Drexhage K H, Arden J, Deltau G, Fluorescence and lasing properties of rhodamine dyes, J. Lumi, 1991, 48&49(1): 352~358
    [78] Tian H, Tang Y F, Chen K C, Bichromophoric rhodamine dyes and their fluorescence properties , Dyes Pigm., 1994,26(3): 159~165
    [79] Tian H, Su J H, Chen K C, et al., The Fluorencence spectra and lifetime of novel bichromophoric dyes ,Photographic Science & Photochem., 1996, 14(4): 355~359
    [80] Dimitri Pevenage, Vander Auweraer M, Frans C De Schryver, Intramolecular photo-induced electron transfer between pyrene and a xanthene dye, Chem.Phys Lett.,2000,319(5-6): 512~520
    [81] Huglin D, Seiffert W, Zimmermann H W, Time-resolved microfluorometric study of the binding sites of lipophilic cationic pyrene probes in mitochondria of living HeLa cells, J. Photochem Photobiol B: Biology., 1995, 31(3):145~158
    [82] Ribou A C, Vigo J, Salmon J M, Microfluorometric study of oxygen dependence of (1"-pyrene butyl)-2-rhodamine ester probe in mitochondria of living cells, J .Photochem Photobiol A Chem., 2002,151(1-3): 49~55.
    [83] Guilbault G. G. In Practical Fluorescence. Marcel Dekker Inc: NewYork, 1990, Chapter1.
    [84]Haugland R P. Handbook of Fluorescent Probes and Research Products. 9th ed., Eugene: Molecular Probes Inc, 2002: 830~833.
    [85] Sioback R, Nygern J, Kubista M. Absorption and Fluorescence Properties of Fluorescein .Spect. Act. A., 1995, 51:17~21.
    [86] Song L, Hennink E J, Young T, Tanke H J., Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J, 1995, 68(6):2588~2600.
    [87] Song L, Varma C A G. O, Verhoeven J W, Tanke H. Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy. Biophys. J., 1996, 70(6):2959~2968.
    [88] Orndorff W R, Hemmer A. Fluorescein and Some of its Derivatives, J. Am. Chem. Soc., 1927,49(5):1272~1280.
    [89] Gansan A K, Ratman B., J. Mal. Bid., 1964, 10: 337~341.
    [90] 何凤英,王流芳,李丙瑞,王奇光, 荧光素二苯甲酰酯的晶体结构与水解性质的研究, 化学学报,1993,51(2):119~124.
    [91] Desmarais S, Govindarais S, Ramachandran C, Zamboni R, Abdullah K, Huang Z., FASEB J., 1995, 9: A1347.
    [92] 欧阳直熏,陈德华,袁希召, 荧光素和苯磺酰氯间反应机理研究,有机化学,1998,18(5):465~468.
    [93] 王流芳,刘海新,张玉祥,任艳平, 几种荧光素衍生物的合成及其生物荧光活性的研究, 发光学报,1987,8(4):317~322.
    [94] 张素峰,5-羧基荧光素及荧光素衍生物的合成研究:[硕士学位论文],天津;天津大学,2002
    [95] Jacobsen C N, Rasmussen J, Jakobsen M. Viability staining and flow cytometric detection of Listeria monocytogenes, J. Microbiol. Method., 1997, 28:35~39.
    [96] Lyons A B, Dividedwe stand: tracking cell proliferation with carboxyfluorescein diacetate succinimidyl ester. Immunol. Cell. Biol., 1999, 77:509~515.
    [97] Daniel H, Warwick L G., Paul T M, Stuart H, Christopher P S. J. Microbiol. Method., 2003, 52:379~388.
    [98] Rotman B, Zderic J A, Edelstein M., Fluorogenic substrates for β-D-galactosidases and phosphatases derived from fluorescein (3, 6-dihydroxyfluoran) and its monomethyl ether, Proc. Natl. Acad. Sci. USA, 1963, 50:1~6.
    [99] Scheigetz J, Roy B., Synthesis of fluorescein phosphorotriesters using photolabile protecting groups, Synth. Commun., 2000, 30(8):1437~1445.
    [100] Wang Q, Scheigetz J, Roy B, Ramachandran C, Gresser M J., Novel caged fluorescein diphosphates as photoactivatable substrates for protein tyrosine phosphatases, Biochim. Biophys. Acta., 2002, 1601:19~28.
    [101] Tatiana O Z, Aleksey V R, Birrell G. B, Griffith O H, John F W K., Synthesis of Fluorogenic Substrates for Continuous Assay of Phosphatidylinositol-Specific Phospholipase C, Bioconjugate Chem, 2001, 12(2):307~313.
    [102] Adamczyk M, Chen Y Y, Grote J. O-(fluoresceinylmethyl)hydroxylamine (OFMHA): a reagent for the preparation of fluorescent O-(fluoresceinylmethyl)oxime (FMO)-steroid conjugates. Steroids, 1999, 64:283~290.
    [103] Banks P R, Paquette D M. Comparison of Three Common Amine Reactive Fluorescent Probes Used for Conjugation to Biomolecules by Capillary Zone Electrophoresis, Bioconjugate Chem., 1995, 6(4):447~458.
    [104] Jiao G S, Han J W, Burgess K. Syntheses of Regioisomerically Pure 5- or 6-Halogenated Fluoresceins, J. Org. Chem., 2003, 68:8264~8267.
    [105] Tung C H, Bredow S, Mahmood U, Weissleder R., Preparation of a Cathepsin D Sensitive Near-Infrared Fluorescence Probe for Imaging, Bioconjugate Chem, 1999, 10:892~896.
    [106] Dettin M, Scarinic C, Zanotto C, Cabrelle A, de Rossi A, di Bello C. J. Pept. Res., 1998, 51:110~115.
    [107] Christopher T O, Susanne C, Eric F, Hakon L, Ulf J N., Efficient and Expedient Two-StepPyranose-Retaining Fluorescein Conjugation of Complex Reducing Oligosaccharides: Galectin Oligosaccharide Specificity Studies in a Fluorescence Polarization Assay, Bioconjugate Chem, 2003, 14(6):1289~1297.
    [108] Breeuwer P, Drocourt J L, Rombouts F M, Abee T., A Novel Method for Continuous Determination of the Intracellular pH in Bacteria with the Internally Conjugated Fluorescent Probe 5 (and 6-)-Carboxyfluorescein Succinimidyl Este, Appl. Environ. Microbiol, 1996, 62(1):178~183.
    [109] Khanna P L, Ullman E F. Eur. Patent, 0050684A1, 1982.
    [110]Matthew H L, Tim G. C, Ronald M C., Improved Synthetic Procedures for 4,7,2',7'-Tetrachloro- and 4',5'-Dichloro-2',7'-dimethoxy-5(and 6)-carboxyfluoresceins. Org. Process. Res. Dev., 2001, 5(1): 45~49.
    [111] Phillip G M. Grayslake,Ⅲ.5(6)-Methyl substituted fluorescein devivatives,US, 5352803, 1994-10-04.
    [112] Shipchandler M T. 4′-[Aminomethyl]fluorescein and its N-alkyl derivatives: Useful reagents in immunodiagnostic techniques. Analyt. Biochem., 1987, 162(1): 89~101.
    [113] Phillip G M., Preparation of 5- and 6-(aminomethyl) fluorescein, Bioconjugate Chem, 1992, 3(5):430~431.
    [114] Rotman Avner, Israel Rehovot. Derivatives of fluorescein, US, 4609740, 1986-09-02.
    [115] Bragg P D, Hou C., Subunit composition, function, and spatial arrangement in the Ca2+- and Mg2+-activated adenosine triphosphatases of Escherichia coli and Salmonella typhimurium, Arch. Biochem. Biophys., 1975, 167(1): 311~316.
    [116] Lomants A J, Fairbanks, Chemical probes of extended biological structures: Synthesis and properties of the cleavable protein cross-linking reagent G, J.Mol. Biol., 1976, 104(1): 243~254.
    [117] Wang H, Li J, Liu X, Yang T X, Zhang H S., N-Hydroxysuccinimidyl Fluorescein-O-acetate as a Fluorescent Derivatizing Reagent for Catecholamines in Liquid Chromatography, Analyt. Biochem., 2000, 281:15~20.
    [118]Wang H, Li J, Liu X, Zhang H S, N-hydroxysuccinimidyl fluorescein-O-acetate as a highly fluorescent derivatizing reagent for aliphatic amines in liquid chromatography, Anal. Chim. Acta., 2000, 423:77~83.
    [119] 梁淑彩,王红,张治民,张华山, N-取代马来酰亚胺巯基荧光探针的研究进展, 化学通报,2001, 64(8):478~482.
    [120] Shen C Y, Hu M F, Luo Q H, Shen M C., Trans. Met. Chem., 1995, 20:634~635.
    [121] Udemfriend S.Zaltaman P.,Nephelometfic determination of micro amounts of nucleic acids with nephelometry,Anal Biochem,1962,3(2):49.
    [122]Pastemack R. f.,Collings p.j.. Giannett A.Gibbs E.J.Porphin assemblies on DNA as studied by resonance ]ight scatting technigue, J.chem..soc.,1993,I15:5393~5399
    [123] 谭琰,蔡昌群,陈小明等,铬天青 S 共振散射法测定脱氧核糖核酸,分析化学计算,2005,14(1):32~34
    [124]王永生,肖锡林,李贵荣等,吡啰红 Y 共振散射法测定纳克级核酸,南华大学学报(自然科学版),2004,9.18(3):12~17
    [125]苏界殊,陈小明,罗和安等,三甲基品红与脱氧核糖核酸作用的共振光散射光谱的研究,分析测试学报,2005, 24(1):60~63
    [126]Liu Ying,MA Chun-qi, Li Ke-an et al,Simple and sensitive assay for nucleic acids by use of Rayleig light scattering technique with rhodamineB, Anal.Chim.Acta., 1999,379:39~44
    [127]俞英,黄发德,核酸与丁基罗丹明 B 体系的共振散射光谱,分析化学,2002,30(10):1234~1236
    [128]吴会灵,李文友,何锡文,梁宏,罗丹明 6G 与核酸作用的共振光散光谱及其分析应用,分析科学学报,2002,18(2):94~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700