镁基合金氢化反应的物理化学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢的储运是氢能得以推广应用的关键环节,由于镁基储氢合金的容量高,资源丰富以及价格低廉而备受世界各国关注。但目前它仍存在吸放氢温度高、氢化反应速度慢、多数合金需要活化或热处理等问题。能够满足实际需要的是在低温下可快速吸放大量氢气、循环寿命长的储氢合金。围绕此目的,本文总共研究了五个体系17种镁基储氢合金在不同温度和氢气压下氢化反应的物理化学性质。
     首先采用正交实验设计方法优化了氢化燃烧法(Hydriding Combustion Synthesis,HCS)制备Mg-La-Ni三元系储氢合金的工艺,同时用HCS一段保温法制备出Mg2Ni、Mg-Ag-Ni和Mg-Al-Ni储氢合金。此外,优化了机械合金化方法(Mechanical Alloying,MA)制备Mg-8at.%LaNi_(0.5)、Mg-6at.%LaNi及Mg-Mm(NiCoMnAl)_5复合材料的工艺,并用MA合成了Mg_2Ni和Mg_(1.9)Al_(0.1)Ni合金。值得注意的是Mg-LaNi_x系列新型复合合金是目前最具潜力的储氢材料之一。
     应用近代分析方法(等温定容法、常温和高温XRD、DSC、TG、SEM和TEM等),研究了上述17种镁基储氢合金吸放氢过程的热力学和动力学性质、物相结构、形貌组织以及它们之间的相互关系。考察了Mg_(2-x)M_xNi(M=Ag,Al;x=0,0.05,0.1,0.2,0.5)合金的储氢性能,并发现适量的Ag(x<0.2)和Al(x≤0.1)取代Mg后,合金仍为六方晶系,但合金的吸放氢平台压升高,吸放氢温度降低,吸放氢速率加快。当添加组元过量后(x≥0.2),改变了Mg_2Ni的晶体结构,出现非储氢相,导致合金储氢容量降低。若以等量Ag和Al取代Mg,在553K和等压下,Mg_(1.9)Ag_(0.1)Ni和Mg1.9Al0.1Ni合金的储氢量分别为3.32和2.79w[H],说明添加Ag对储氢量的影响小于添加Al对储氢量的影响。对比HCS和MA制备的Mg_(2-x)Al_xNi(x=0,0.1)合金氢化性质,MA制备的合金氢化反应物理化学性质优于前者。
     系统地研究了用HCS和MA合成的Mg-8at.%LaNi0.5、Mg-6at.%LaNi和Mg-4at.%LaNi1.5系列合金氢化反应的物理化学性质,优化的合金组分为Mg-8at.%LaNi0.5。在3.0MPaH2和553K下,Mg-8at.%LaNi0.5(HCS)合金在15min内可吸氢4.80w[H],在相同的时间内,0.0133MPaH2下放氢4.50w[H]。同样压力下,MA合成的Mg-8at.%LaNi0.5合金在423~573K,10min之内吸氢量达到3.86~6.29 w[H];同样的时间和温度,0.0133MPaH2下放氢量为3.14~6.18 w[H]。显然,MA制备的Mg-8at.%LaNi0.5合金氢化性能好于HCS制备的合金,它不需要活化过程,吸放氢容量高,氢化反应速率快,是最具希望的储氢合金之一。XRD和TEM的分析结果表明:在MA制备Mg-8at.%LaNi_(0.5)合金的过程中,形成的纳米晶可以增大氢原子的溶解度和氢原子的扩散速率,使得合金的实际吸氢量(MgH_x,x>2)可以超过通常粒度下的理论极限。此外,合金粉中物相LaH_3和Mg_2Ni的催化作用有利于改善合金氢化反应的动力学性质。
     热力学性质是用以分析储氢合金氢化反应进行方向、限度和最大产出率的重要依据,尽管近年来实验技术有了突飞猛进的发展,但要想完全依靠实验去获取这许多数据是不现实的。尤其对于多元体系更是如此,它根本不可能完全通过实验解决。最为可行的办法就是在有限的实验基础上从理论上去估算。目前对多元镁基储氢合金氢化物热力学性质的理论计算模型很少,并存在参数不全、误差大和计算复杂等缺陷。对此,本文利用逐步回归分析法和微观结构参数法首次建立了预报Mg_(2-x)M_xNi_(1-y)Ml_y多元系合金氢化反应热效应△H~0和储氢量C的半经验数学模型:
     该模型考察了微观结构参数之间的交互作用,很好地阐释了Mg_(2-x)M_xNi_(1-y)Ml_y合金组元的微观结构参数与合金氢化反应宏观性能之间的内在联系。指出了影响镁基储氢合金热力学性质和储氢量的主要因素,它们是:合金的电负性差△X~2、电子浓度(e/a)2/3、电子密度△n~(2/3)、电荷-半径比Z/R和温度T等,这都是一些容易获得的参数。当合金的电负性差△X_2减小,电子浓度(e/a)~(2/3)和温度T升高时,合金吸氢平台压升高,氢化物形成焓变的负值减小。而当合金的电负性差△X_2和温度T增高,电子浓度(e/a)~(2/3)和电荷-半径比Z/R减小时,合金的吸氢量增加。采用此模型预报Mg_(2-x)M_xNi_(1-y)Ml_y多元系合金的氢化物生成焓和吸氢量时,合金氢化物生成焓变的绝对误差一般小于±5 kJ/mol,合金理论吸氢量和实验值的最大绝对误差为±0.3w[H],理论计算值和实验值符合得很好。吸放氢过程的动力学是对储氢材料研究的重点,长期以来它一直落后于实验研究。
     目前有两种方法:一是半经验模型法,它通过实验数据与各种模型的数学表达式相比较来确定反应的动力学机构类型,这种方法的缺点是只能描述单一曲线,无法将温度,压力诸因数同时考虑在内,因而它只是一种单因素的数值拟合而不是一种具有物理意义的模型;另一种是解微分方程组的方法。它动用了复杂的数值计算,还无法进行理论上的分析和讨论。以至迄今为止,很多实验工作者尚无法采用,而仍以实验点的逐点描述给出动力学机制的结果。针对此种情况,本研究工作还提出了一种全新的处理方法。从简化假设入手,推导了一个新的模型,它是一个简单的解析表达式,将体系的吸放氢百分数表达为时间、温度、压力和粒子半径的显函数:
     本模型不但简化了计算,而且还可以从理论上对各种物理参数如温度、压力和粉末粒度等因素的影响进行理论上的讨论。我们还引进了一个“特征时间”的新概念,它将在储氢材料的研究中发挥重要的作用。通过与实验结果的对比,本模型能十分精确地描述我们的实验结果,并预报了在不同温度和压力下一些新的结果。将它用到其他作者的实验中也得到很好的结果。
Hydrogen storage and transportation is a key issue in the application of hydrogen energy. The Mg-based alloys as hydrogen storage material are attractive for researchers in the world because of its high capacity, abundant resource and low cost. However, their practical application has been limited due to its high working temperature, relatively poor hydriding/dehydriding (H/D) kinetics and some special requirement in activation and heating treatment. In order to obtain some proper hydrogen storage materials with a large amount of hydrogen capacity and fast absorbing and desorbing rate at a low temperature environment, various attempts have been made in our lab to overcome these difficulties mentioned above.
     In my thesis, the physicochemical characteristics in H/D reaction for seventeen kinds of alloys in five systems were carefully investigated by means of several neoteric experimental analytical instruments including isovolumetric method, pressure-composition isotherm (PCI), X-ray diffraction (XRD), differential scanning calorimeter (DSC), thermogravimetric analysis (TG), scanning electron microscopy (SEM) and transmission electron microscope (TEM). Firstly, the method of orthogonal test designing has been used to optimize the technique of hydriding combustion synthesis (HCS) for Mg-La-Ni ternary alloys, then the Mg2Ni, Mg-Ag-Ni and Mg-Al-Ni systems were prepared by using the technique of keeping temperature constant in one-step. Besides, Mg-La-Ni ternary alloys and Mg-Mm(NiCoMnAl)5 composite were also obtained by the optimized mechanical alloying method (MA) and the Mg2Ni and Mg1.9Al0.1Ni alloys were produced by the same way either. In the present communication, our attention was paid to the thermodynamics, kinetics, structure and morphology for clarifying the relationships between these characteristics. It is worth mentioning that the new Mg-LaNix composite is one of the most promising hydrogen storage materials recently.
     Comparing the characteristics of hydrogenation of Mg2Ni and those of Mg2-xMxNi(M=Ag,Al;x=0.05,0.1,0.2,0.5)alloys, it can be seen that after the suitable substitution of Ag(x<0.2) or Al(≤0.1) for Mg in Mg2Ni alloy, the equilibrium plateaus of the alloys increase, the temperature of hydrogen absorption and desorption decreases, the H/D rates become faster but the structure is still hexagonal. But excessive additive in Mg2Ni (x>0.2) will result in the change of the structure and the decrease of the hydrogen storage capacity due to the non-absorbing phase. The same amount of silver or aluminum was added to substitute Mg in Mg2Ni prepared by HCS, e.g. Mg1.9Ag0.1Ni and Mg1.9Al0.1Ni, they can absorb 3.32 and 2.79 w[H] at 553K and 3MPaH2. Compared with their H/D properties, it can be concluded that the properties of the alloy prepared by MA is better than that by HCS.
     A serial of Mg-8at.%LaNi0.5, Mg-6at.%LaNi and Mg-4at.%LaNi1.5 alloys prepared by MA or HCS were investigated and it is found that the mechanically alloyed Mg-8at.%LaNi0.5 composite material is the best one among the five systems in my research, that can absorb 3.86~6.29 w[H] under 3MPa hydrogen pressure and desorb 3.14~6.18 w[H] under 0.0133 MPa in 10 minutes above 423K without any activation. However, the same constituent alloy obtained by HCS can only reach the amount of 4.80 w[H] under the 3MPaH2 and desorb 4.50 w[H] under the 0.0133MPa in 15 minutes at 553K. The difference of the H/D characteristics between Mg-8at.%LaNi0.5 prepared by HCS and MA can be explained through the results obtained from XRD and TEM. The presence of the nanocrystalline produced in the mechanical alloying process is beneficial to the solubility of hydrogen atom in alloy and the diffusion of hydrogen atom through hydrides that results in the increase of the real hydrogen storage capacity being larger than the theoretic values, e.g. MgHx(x>2). Moreover, the multiphase structure(nano-/amorphous) and a catalytic effect of LaH3 and Mg2Ni formed in the ball-milling process can also accelerate the H/D rate for the composite material of mechanically alloyed Mg-8at.%LaNi0.5.
     Thermodynamic properties are the most important parameters for predicting the direction, limitation and maximal output ratio of H/D reactions. Although a great progress of the experimental techniques have been made, it is still impossible to obtain all relevant thermodynamic data in this field only relying on the experimental method, especially for the multicomponent systems. The unique feasible solution is that, calculating thermodynamic properties with theoretical model based on some limited experimental data. At present there are a few models used to calculate the thermodynamic properties for Mg-based multicomponent systems, however, these models possess many defects such as difficult to collect the value for parameters, very complicated expression and introducing large errors. In my thesis, based on the method of stepwise regression and considering the parameters of microcosmic atomic structure, a new semi empirical mathematical model has been established for predicting the heat of formation(?H0) and the amount of hydrogen absorbed(C) of multicomponent Mg2-xMxNi1-yMly alloys for the first time,they are,
     The proposed models have investigated the interaction of the individual microcosmic parameters and revealed the inner relationship between the macroscopic properties of hydrogenation and the microcosmic parameters of structure for Mg2-xMxNi1-yMly alloys, which indicates that the most important factors affecting the thermodynamic properties of Mg-based alloys should be the difference among electronegatives of constituent elements ?X2、the electron concentration (e/a)2/3、the electron density ?n2/3、the ratio of the number of valance electron to the radius of metallic atom Z/R as well as temperature. These models have successfully been applied to predict the enthalpy of formation of hydrides and the hydrogen content for Mg2-xMxNi1-yMly alloy with the maximum absolute error of±5kJ/mol and±0.3 w[H], respectively.
     The kinetics of hydrogen absorption/desorption (A/D) is one of key points in the field of hydrogen storage materials, in which the theoretical study is far behind the experiment research. At present there are two major methods to describe the kinetic behavior for hydrogenation, namely, semiempirical models and the method of solving a group of differential equations. The former one is using a series of mathematic formula to fit experimental data, from which to select the best one. This method is actually a kind of data fitting and cannot give a clear physical meaning for many parameters. Though the latter one is a kind of rigorous solution, that is too complicated only relying on numerical calculation and difficult to perform a theoretical analysis for the practical system. As a result, most of experimental researchers couldn’t follow it and prefer to do a point-by-point data description rather than doing this kind of complicated calculation.
     In my thesis, a new model has been proposed after introducing an approximation assumption for the mechanism of absorption/desorption of hydrogen. This new formulae is an analytic solution expressing the reacted fractionξas a function of time t, temperature T and particle size R0.
     Since it is an explicit function that is easy to use and perform a theoretical analysis. Besides, a new physical conception, namely, the“characteristic absorption/desorption time of reacted fraction of hydrogen”has been introduced to the derivation of this new model, which not only simplifies the expression of formulae but also offers some significant physical meanings that will be useful for future theoretical discussion. The application of this new model to the Mg-based hydrogen storage alloy shows that this new model works very well. When this model is used to other systems offered by other authors, a good agreement has also been obtained.
引文
[1] Proceedings of the 1997 US DEO hydrogen Program Review.Orinda, CA: Business Technology Books.
    [2] Beck R L.Investigation of hydriding characteristics of intermetallic compounds.DRI, 1962, (2):2059~2063.
    [3] Buschow K H J,Miedema A R.Hydrogen absorption in rare earth intermetallic compounds hydrides for energy storage.Eds., Oxford: Pergamon.1978, 235~249.
    [4] Willims J J G.Metal hydride electrodes, stability of LaNi5-related compounds.Philips J Res, 1984, 39 (1):1~5.
    [5] Reilly J J,Wiswall R H.The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4.Inorganic Chem., 1968, (7): 2254~2256.
    [6] Chen J,Sakai T,Kitamura N,et al.A high pressure observation of the Mg2NiH4-H system.J. Alloys Comp.,2000, (307): L1~L5.
    [7] Osumi Y,Suzuki H,Kato A,et al.Hydrogen absorption-desorption characteristics of mischmetal-nickel alloys, Hydrogen Energy Progress, Proc. 3rd World Hydrogen Energy Conf., IAHE, 1980,(2):865~878.
    [8] 赵爽.稀土系氢材料的结构与性能:学位论文.北京:北京科技大学,1999.
    [9] 靳红梅.稀土-镍合金成分的优化及其性能的研究:学位论文.北京:北京有色金属研究总院,1997.
    [10] 靳红梅,李国勋,张昭良等.La1-xNdx(NiCoMnAl)5 储氢合金性能研究.中国稀土学报,1998,16(1):22~25.
    [11] 靳红梅,李国勋,周传华等.La1-x-y-zCexPryNdzB5 电极材料组成的优化与设计.中国稀土学报,1998,16(4):348~352.
    [12] 李传健,王新林,吴建民等.工艺对 MI(NiCoMnTi)5 储氢合金性能的影响.电池,1997,27(5):209~212.
    [13] 康龙,罗永春.LaNi5-xAlx储氢合金的研究.稀土,1997,18(2):6~9.
    [14] Gamo T,Moriwaki Y.Proc. 3rd World Hydrogen Energy Conference, 1980, (4): 2127~2133.
    [15] Van Essen,Buschow R M,Buschow K H.Composition and hydrogen absorption of C14 type Zr-Mn compounds.Mat. Res. Bull.1980, (15):1149~1155.
    [16] Pourarian F,Fujii H,Wallace W E,et al.Stability and magnetism of hydrides of nonstoichiometric ZrMn2.J. Phys. Chem.,1981, (85):3105~3111.
    [17] Komazaki Y,Uchida M,Suda S,et al.Equilibrium properties of Ti-Zr-Fe-Mn hydrides,J. Less-Common Met.,1983,(89):269~274.
    [18] Gamo T,Moriwaki Y,Yamashita T,et al.Method of a hydrogen storage alloy and product,U.S. Patent 4144103, 1979.
    [19] Gamo T,Moriwaki Y,Yamashita T,et al.Hydrogen storage material,U.S. Patent 4153484, 1979.
    [20] Reilly J J,Sandrock G D ,Hydrogen storage in metal hydrides.Scientific American, 1980, 242 (2):118~129.
    [21] Sinkler W,A laves phase-body-centered cubic structural relationship determined using high voltage electron microscopy.Acta Mater.,1996, 44(4):1623~1636.
    [22] Nakamura Y,Oikawa K,Kamiyama T,et al.Crystal structure of two hydrides formed from a Ti-V-Mn BCC solid solution alloy studied by time-of-flight neutron powder diffraction — a NaCl structure and a CaF2 structure.J. Alloys Comp.,2001, (316): 284~289.
    [23] Au M,Wu J,Wang Q.The hydrogen storage properties and the mechanism of the hydriding process of some multi-component magnesium-base hydrogen storage alloys.Int. J. Hydrogen Energy,1995, (20):141~150.
    [24] Ivanov E,Konstanchuk I,Stepanov A.Magnesium mechanical alloys for hydrogen storage.J. Less-Common Met.,1987, (131): 25~29.
    [25] 大角太章著,吴永宽,苗艳秋译.金属氢化物的性质与应用,北京:化学工业出版社,1990.
    [26] Ong M S,Li Y,Blackwood D J,et al.Effect of heat treatment on the corrosion behaviour of amorphous Mg-18at% Ni alloy.J. Alloys Comp.,1998, (279): 252~258.
    [27] Verbetsky V N,Klyamkin S N.Interaction of magnesium alloys with hydrogen,Proc. 7th World Hydrogen Energy Conf.,International Association of Hydrogen Energy,1988,(2): 1319~1341.
    [28] Gingl F,Tvon K,Vogt T,et al.Synthesis and crystal structure of tetragonal LnMg2H7 (Ln=La, Ce) two Laves phase hydride derivatives having ordered hydrogen distribution.J. Alloys Comp.,1997, (253-254): 313~317.
    [29] Semenenko K N,Verbetsky V N,Kochukov A V.Hydrogen interaction with Mg-La alloys.Reports of the Academy of Sciences USSR,1981, 258 (2):362~366.(in Russian)
    [30] Bououdina M,Guo Z X.Comparative study of mechanical alloying of (Mg+Al) and (Mg+Al+Ni) mixtures for hydrogen storage.J. Alloys Comp.,2002, (336) : 222~231.
    [31] Kadir K,Sakai T,Uehara I.Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0.65Ca0.35)(Mg1.32Ca0.68)Ni9 of the AB2C9 type structure.J. Alloys Comp.,2000,(302):112~117.
    [32] Darriet B,Soubeyroux J L,Pezat M.Structural and hydrogen diffusion study in the Mg2Ni-H2 system.J. Less-Common Met.,1984, (103): 153~162.
    [33] Ono S,Hayakawa H,Suzuki A,et al.Structure analysis of the metal sublattice of the low temperature form of Mg2NiH4,J. Less-Common Met.,1982, (88): 63~71.
    [34] Hayakawa H,Ishido Y,Nomura K,et al.Phase transformation among three polymorphs of Mg2NiH4,J. Less-Common Met.,1984, (103): 277~283.
    [35] Ono S,Ishido Y,Imanari K,et al.Phase transformation and thermal expansion of Mg-Ni alloy in a hydrogen atmosphere.J. Less-common Met.,1982, (88):57~61
    [36] Yajima S,Kayano H.Hydrogen sorption La2Mg17,J. Less-common Met.,1977, (55): 139~141.
    [37] Osumi Y.Absorption-desorption characteristics of hydrogen for mischmetal based alloys Chemical Industry Supplement, 1986, (30):11~22.
    [38] Spassov T,K?ster U.Hydrogenation of amorphous and nanocrystalline Mg-based alloys.J. Alloys Comp.,1999, (287):243~250.
    [39] 王秀丽,涂江平,张孝彬等.掺 Cr 纳米晶 Mg2Ni 合金的气态储氢性能.中国有色金属学报,2002,12(5):907~977.
    [40] 袁华堂,李秋荻,王一箐等.新型镁基合金的合成及电化学性能的研究 .高等学校化学学报,2002, (23):517~520.
    [41] Gao R G,Tu J P,Wang X L,et al.The absorption and desorption properties of nanocrystalline Mg2Ni0.75Cr0.25 alloy containing TiO2 nanoparticles.J. Alloys Comp.,2003,(356~357):649~653.
    [42] Liu Y,Zhang X.Effect of lanthanum additions on electrode properties of Mg2Ni.J. Alloys Comp.,1998, (267):231~234.
    [43] Liu W,Wu H,Lie Y,et al.Effects of substitution of other elements for nickel inmechanically alloyed Mg50Ni50 amorphous alloys used for nickel-metal hydride batteries.J. Alloys Comp.,1997, (261):289~294.
    [44] Iwakura C , Hazui S , Inoue H . Effect of temperature on electrochemical characteristics of Mg2Ni alloy.Electrochem. Acta,1996, (41):471~472.
    [45] Gennari F C,Urretavizcaya G,Gamboa J J,et al.New Mg-based alloy obtained by mechanical alloying in the Mg–Ni–Ge system.J. Alloys Comp.,2003, (354): 187~192.
    [46] Kuji T,Nakayama S,Hanzawa N,et al.Synthesis of nano-structured b.c.c. Mg–Tm–V (Tm=Ni, Co, Cu) alloys and their hydrogen solubility.J. Alloys Comp.,2003, (356~357) :456~460.
    [47] Bobet J-L,Akiba E,Nakamura Y,et al.Study of Mg-M (M = Co, Ni and Fe) mixture elaborated by reactive mechanical alloying-hydrogen sorption properties.Int. J. Hydrogen Energy,2000, (25): 987~996.
    [48] 袁华堂,宋赫男,李秋荻等.Mg1-xTixNi(0    [49] 李谦,林勤,蒋利军等.银和铝对 Mg2Ni 合金储氢性能的影响.中国有色金属学报,2003,(8):864~870.
    [50] Chen J,Yao P,Bradhurst D H,et al.Mg2Ni-based hydrogen storage alloys for metal hydride electrodes.J. Alloys Comp.,1999,(293~295):675~679.
    [51] Liang G,Huot J,Boily S,et al.Hydrogen storage properties of nanocrystalline Mg1.9Ti0.1Ni made by mechanical alloying.J. Alloys Comp.,1999,(282): 286~290.
    [52] Darnaudery J P,Darriet B,Pezay M.The Mg2Ni0.75M0.25 alloys (M=3d element): their application to hydrogen storage et al.Int. J. Hydrogen Energy,1983,(8):705~708.
    [53] Zhang Y,Yang H,Yuan H,et al.Dehydriding properties of ternary Mg2Ni1-xZrx hydrides synthesized by ball milling and annealing.J. Alloys Comp.,1998,(269): 278~283.
    [54] Lee H Y,Goo N H,Jeong W T,et al.The surface state of nanocrystalline and amorphous Mg2Ni alloys prepared by mechanical alloying.J. Alloys Comp.,2000,(313): 258~262.
    [55] Nohara S,Hamasaki K,Zhang S G,et al.Electrochemical characteristics of an amorphous Mg0.9V0.1Ni alloy prepared by mechanical alloying . J. Alloys Comp. ,1998,(280) :104~106.
    [56] Li Q,Lin Q,Jiang L,et al.Properties of hydrogen storage alloy Mg2-xAgx Ni (x=0.05, 0.1, 0.5) by hydriding combustion synthesis.J. Alloys Comp.,2003, (359): 128~132.
    [57] Li Q,Lin Q,Jiang L,et al.Absorption and desorption kinetics of hydrogen storage alloy Mg1.9Al0.1Ni by hydriding combustion synthesis.《冶金研究》,冶金工业出版社,2003,278~285.
    [58] Orimo S,Züttel A,Ikeda K.Hydriding properties of the MgNi-based systems.J. Alloys Comp.,1999,(293~295):437~442.
    [59] 杨化滨.三元 Mg2Ni0.75M0.25 合金体系的性能研究.学位论文.天津:南开大学, 1998.
    [60] Tsushio Y , Enoki H , Akiba E . Energy distribution of hydrogen site for MgNi0.86Ml0.03 (Ml=Cr, Fe, Co, Mn) alloys desorbing hydrogen at low temperature.J. Alloys Comp.,1999,(285): 298~301.
    [61] Selvam P,Viswanathan B,Swamy C S,et al.Studies on the thermal characteristics of hydrides of Mg, Mg2Ni, Mg2Cu and Mg2Ni1-xMx(M=Fe, Co, Cu or Zn; 0    [62] Terashita N , Takahashi M , Kobayashi K , et al . Synthesis and hydriding/dehydriding properties of amorphous Mg2Ni1.9M0.1 alloys mechanically alloyed from Mg2Ni0.9M0.1 (M=none, Ni, Ca, La, Y, Al, Si, Cu and Mn) and Ni powder.J. Alloys Comp.,1999,(293~295):541~545.
    [63] Woo J H,Jung C B,Lee J,et al.Electrochemical characteristics of nanocrystalline ZrCr2 and Mg2Ni type metal hydrides prepared by mechanical alloying.J. Alloys Comp., 1999,(293~295):556~563.
    [64] Tsushio Y,Akiba E.Hydrogen desorption properties of the quaternary alloy system Mg2-X M 1- X Ni1-Y M2Y.J. Alloys Comp.,1998,(267):246~251.
    [65] Biris A,Lupu D,Indrea E,et al.Effects of Aluminum Additions on the Hydrogenation of Mg2Ni.Proc. Third Int. Congress on Hydrogen and Materials, Paris, Paper D13,1982,383~387
    [66] Hirata T,Matsumoto T,Amano M,et al.Dehydriding reaction kinetics in the improved intermetallic Mg2Ni-H system.J. Less-common Met.,1983,(89):85~91.
    [67] Gasiorowski A,Iwasieczko W,Skoryna D,et al.Hydriding properties of nanocrystalline Mg2-xMxNi alloys synthesized by mechanical alloying (M = Mn, Al) .J. Alloys Comp.,2004, (364): 283~288.
    [68] Sato T,Blomqvist H, Noréus D.Attempts to improve Mg2Ni hydrogen storage by aluminium addition.J. Alloys Comp.,2003, (356~357): 494~496.
    [69] Wang L,Tang Y,Wang Y,et al.The hydrogenation properties of Mg1.8Ag0.2Ni alloy.J. Alloys Comp.,2002,(336):297~300.
    [70] 李谦,林勤,蒋利军等.氢化燃烧法合成 La1.5Ni0.5Mg17 的工艺优化.中国稀土学报,2003,21(6):652~656.
    [71] Khrussanova M,Terzieva M,Peshev P.Multiphase alloys La2-xCaxMg17 for hydrogen storage.J. Less-Common Met.,1986,(125 ):117~125
    [72] Cai G M,Chen C P,Chen Y,et al.Hydriding–dehydriding properties of crystalline and amorphous La1.8Ca0.2Mg16Ni alloy.Int. J. Hydrogen Energy, 2003, (28): 509~513.
    [73] Darriet B,Pezat M, Hbika A,et al.Application of magnesium rich rare-earth alloys to hydrogen storage.Int. J. Hydrogen Energy, 1980,(5):173~178
    [74] Khrussanova M,Pezat M,Darriet B,et al.Storage hydrogen alloys La2Mg17 and La2Mg16Ni.J. Less-common Met.,1982, (86):153~160
    [75] Slattery D K.The hydriding-dehydriding characteristics of La2Mg17.Int. J. Hydrogen Energy, 1995, 20(12):971~973.
    [76] Dutta K,Mandal P,Ramakrishna K,et al.The synthesis and hydrogenation behavior of some new composite storage materials: Mg-xwt% FeTi(Mn) and La2Mg17-xwt.%LaNi5. Int. J. Hydrogen Energy, 1994,19(3):253~257.
    [77] Dutta K , Sivastava O N . Investigation on synthesis , characterization and hydrogenation behavior of the La2Mg17 intermetallic.Int. J. Hydrogen Energy,1999,(15, 5): 341~344.
    [78] Sun D,Gingl F,Nakamura Y,et al.In situ X-ray diffraction study of hydrogen-induced phase decomposition in LaMg12 and La2Mg17.J. Alloys Comp.,2002,(333):103~108.
    [79] Oesterreicher H,Bittner H.Hydrogen formation in La1-xMgxNi2.J. Less-Common Met.,1980, (73):339~344.
    [80] Yin J,Yamada T,Yoshinari O,et al.Improvement of Hydrogen Storage Properties of Mg-Ni Alloys by Rare-Earth Addition.Materials Trans.,2001,42(4): 712~716.
    [81] Spassov T,Rangelova V,Neykov N.Nanocrystallization and hydrogen storage in rapidly solidified Mg-Ni-RE alloys.J. Alloys Comp.,2002,(334): 219~223.
    [82] Kadir K,Sakai T,Uehara I.Synthesis and structure determination of new series of hydrogen storage alloys;RMg2Ni9(R=La, Ce, Pr, Nd, Sm and Gd ) built from MgNi2 Laves-type layers alternating with AB5 layers.J. Alloys Comp.,1997, (257):115~121.
    [83] Spassov T.K?ster U.Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy.J. Alloys Comp.,1998,(267):279~286.
    [84] Yin J,Tanaka K.Hydriding-Dehydriding Properties of Mg-Rich Mg-Ni-Nd alloys with Refined Microstructures.Materials Trans.,2002,43(7):1732~1736.
    [85] Yin J , Tanaka K , Tanaka N . Hydrogen-storage properties and structure characterization of melt-spun and annealed Mg-Ni-Nd alloy, Materials Trans.,2002, 43(3): 417~420.
    [86] Kubaschewski O,Alcock C B,邱竹贤,梁英教,李席孟等译.冶金热化学,北京:冶金工业出版社,1985.
    [87] 徐光宪.量子化学基本原理和从头算法,北京:北京科技出版社,1985.
    [88] Pauling L,卢嘉锡等译.化学键的本质,上海:上海科技出版社,1981.
    [89] Miedema A R.The electronegativity parameter for transition metals: heat of formation and change transfer in alloys.J. Less-Common Met.,1973,(32):117-125.
    [90] Miedema A R,Boom Rand Deboer F R J.On the heat of formation of solid alloys.J. Less-Common Met.,1975, (41): 283~298.
    [91] 张耀,孙俊才,季世军等.Mg-Ni 非晶合金吸氢形成焓随 Ni 含量的变化及其对自放电的影响.中国有色金属学报,2000,(10):882~886.
    [92] 欧阳义芳,张邦维,廖树帜等.稀土镁合金热力学性质研究.稀有金属材料与工程,1995,24(6):32~37.
    [93] 路贵民,刘学山,蒋冬梅等.Al-Mg 合金热力学性质的计算,中国有色金属学报,1999,9(2):381~384.
    [94] Goncalves A P,Almeida M.Extended Miedema model: Predicting the formation enthalpies of intermetallic phase with more than two elements . Physica B, 1996,(228):289~294.
    [95] Zhang B,Lesser W A.Formation energy of ternary alloy systems calculated by an extend Miedema model.Physica B, 2002, (315):123~132.
    [96] Griessen R,Driessen A.Search for new metal-hydrogen system.Phy. Rev. B, 1984,(30):4372~4378.
    [97] Pasturel A,Colint C C,Allibert C.Thermodynamic study of the LaNi5-xCu system.J. Less-Common Met.,1984,(96):93~96.
    [98] Pasturel A,Colint C C,Percheron-Guegan A.Thermodynamic properties of LaNi4M compounds and their related hydrides.J. Less-Common Met.,1982,(84):30~36.
    [99] Griessen R,Driessen A.Heat solution and lattice-expansion and trapping energies of hydrogen in transition metal.Phy. Rev. B, 1988,(38):3690~3697.
    [100] Shilov A L,Kost M E,Kuznetsov N T.Heat of formation of hydrides of intemetallic compounds: quantitative predictions.J. Less-Common Met.,1987, (128):1~9.
    [101] 鄢晓华,唐为华,乔芝郁等.三元合金生成热的一种计算方法.中国稀土学报,1994,12(3):218~221.
    [102] 陈红梅,钟夏平,欧阳义芳.Mg-Ni-Y 三元合金形成非晶的成分范围.中国稀土学报,2003,21(5):568~571.
    [103] 朱大建.合金氢化反应焓与熵计算模型和新型贮氢材料的开发研究:学位论文.北京:北京科技大学,2001.
    [104] 季世军,许彬,厉志红等.Mg-Ni 非晶合金形成范围热力学计算.大连海事大学学报,1999,25(3):71~74.
    [105] 宋凯,季世军,孙俊才.Mg-Ni 非晶合金形成范围热力学预测,金属热处理,2001,(5):21~22.
    [106] Fang S,Zhou Z,Zhang J,et al.Two mathematical models for the hydrogen storage properties of AB2 type alloys.J. Alloys Comp.,1999, (293~295): 10~13.
    [107] Zhao S,Lin Q,Chen N,et al.Calculation and prediction for the hydriding properties of LaNi5-xMx alloys.J. Alloys Comp.,1999, (287): 57~61.
    [108] Bouten P C P,Miedema A R.On the heats of formation of the binary hydrides of transition metals.J. Less-Common Met.,1980, (71):147~151.
    [109] Josephy Y,Ron M.Kinetic measurements of LaNi5Hx and MmNi4.15Ni0.85Hx with constant pressure differentials.J. Less-Common Met.,1989, (147):227~238.
    [110] Bershadsky E,Josephy Y,Ron M.Investigation of kinetics and structural changes in TiFe0.8Ni0.2 after prolonged cycling.J. Less-Common Met.,1991, (172~174):1036~1043.
    [111] Suda S,Kobayashi N,Yoshia K.Reaction kinetics of metal hydrides and their mixtures.J. Less-Common Met.,1988(73):119~125.
    [112] Rudman P S.Hydriding and dehydriding kinetics.J. Less-Common Met.,1983,(89):93~110.
    [113] MeLi F,Zuttel A,Schlapbach L.Electrochemical and surface properties of iron-containing AB5-type alloys.J. Alloys Comp.,1995,(231):639~644.
    [114] Flanagan T E.Kinetics of hydrogen absorption and desorption. In A.F. Andresen and A. J. Mainland (eds.), Proc. Int. Symp. On Hydrides for Energy storage, Geilo, August 14-19, 1977, Pergamor, Oxford, 1978:139~150.
    [115] Stioui M,Grayevsky A,Resnik A,et al.Macroscopic and microscopic kinetics of hydrogen in magnesium-rich compounds.J. Less-Common Met.,1986, (123):9~24.
    [116] Gerasimov K B,Goldberg E L,Ivanov E Y.On the kinetic model of magnesium hydriding.J. Less-Common Met.,1987.(131):99~107.
    [117] Han J S,Pezat M,Lee J Y.A study of the decomposition of magnesium hydride by thermal analysis.J. Less-Common Met.,1987,(130):395~402.
    [118] Friedlmeier G,Groll M.Experimental analysis and modeling of the hydriding kinetics of Ni-doped and pure Mg.J. Alloys Comp.,1997, (253~254):550~555.
    [119] Fernández J F,Sánchez C R.Rate determining in the absorption and desorption of hydrogen by magnesium.J. Alloys Comp.,2002,(340): 189~198.
    [120] Song M Y,Ahn H J,Park H R.A study of the hydriding and dehydriding kinetics of a mixture of 2Mg and Co.Int. J. Hydrogen Energy, 1991, (16):223~229.
    [121] Song M Y.Improvement in hydrogen storage characteristics of magnesium by mechanical alloying with nickel.J. Mater. Sci.,1995, (30):1343~1351.
    [122] Berlous L E A,Aguado R P,Hall P J,et al.Dehydriding kinetics of a Mg-9.5wt% V sample studied by high pressure differential scanning calorimetry.J. Alloys Comp.,2003,(356~357):584~587.
    [123] Li Q,Chou K C,Lin Q,et al.Hydriding kinetics of the LaNiMg17 –H system prepared by hydriding combustion synthesis.J. Alloys Comp.,In press.
    [124] Song M Y,Pezat M,Darriet B,et al.A hydriding kinetics model of the Mg2Ni-H2 system.J. Mater. Sci.,1986, (21):346~354.
    [125] Zaluski L,Zaluska A,Strom-Olsen J O.Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying.J. Alloys Comp.,1995, (217): 245~249.
    [126] Mutschele T,Kirchheim R.Segeragetion and diffusion of hydrogen in grain boundaries of palladium.Scr. Met.,1987, (21):135 ~141.
    [127] Orimo S,Fujii H.Hydriding properties of the Mg2Ni-H system synthesized by reactive mechanical grinding.J. Alloys Comp.,1996, (232): L16~L19.
    [128] Orimo S,Fujii H, Ikdea K,et al.Notable hydriding properties of a nanostructured composite material of the Mg2Ni-H system synthesized by reactive mechanical grinding.Acta Mater.,1997, 45(1): 331~334.
    [129] Hayashi S,Orimo S,Fujii H,et al.H NMR and magnetization measurements of a nanostructured composite material of the Mg2Ni-H system synthesized by reactive mechanical grinding.J. Alloys Comp.,1997,(256): 145~149.
    [130] Song M Y.A study on the dehydriding kinetics in the Mg2Ni-Ni(<5wt.%)-H2 system.J. Less-Common Met.,1990, 157: 155~166.
    [131] Stucki F.Hydriding and dehydriding kinetics of Mg2Ni above and below the structural phase transition.Int. J. Hydrogen Energy, 1983,(8):49~51.
    [132] Mattsoff S,Noreus D.Hydriding kinetics of Mg2Ni at low temperatures where intrinsic processes dominate the reaction rates.Int. J. Hydrogen Energy, 1987, (12):333~335.
    [133] Song M Y,Park H R.Hydriding kinetics of Mg2Ni below the polymorphic transformation temperature of Mg2NiH4.Int. J. Hydrogen Energy, 1995, (20): 805~809.
    [134] Han J S,Lee J Y.A study of the hydriding kinetics of Mg2Ni at the near isothermal condition, Int. J. Hydrogen Energy, 1987, (12):417~424.
    [135] Akiba E,Nomura K,Ono S,et al.Kinetics of the reaction between Mg-Ni alloys and H2.Int. J. Hydrogen Energy, 1982, (7):787~791.
    [136] Han J S,Lee J Y.A study of the dehydriding kinetics of Mg2Ni intermetallic compound.J. Less-Common Met.,1987,(128): 155~165.
    [137] Han J S,Lee J Y. A study of the hydriding kinetics of Mg2Ni.J. Less-Common Met.,1987, (131): 109~116.
    [138] Song M Y,Darriet B,Pezat M,et al.Dehydriding kinetics of a mechanically alloyed mixture with composition Mg2Ni.Int. J. Hydrogen Energy, 1987, (12):27~30.
    [139] Jung W B,Nahm K S, Lee W Y.The reaction kinetics of hydrogen storage in Mg2Ni.Int. J. Hydrogen Energy, 1990, (15):641~648.
    [140] Akiyama T,Tazaki T A,Takahashi R,et al.Kinetics of hydrogen absorption and desorption of magnesium nickel alloys. Intermetallics, 1996, (4):659~662.
    [141] Martin M,Gommel C,Borkhart C,et al.Absorption and desorption kinetics ofhydrogen storage alloys.J. Alloys Comp.,1996, (238):193~201.
    [142] Mintz M H.Mixed mechanisms controlling hydrogen-metal reactions under steady state conditions: the diffusion-interface mechanism.J. Alloys Comp.,1991,(176):77~87.
    [143] Mintz M H,Zeiri Y.Hydriding kinetics of powders.J. Alloys Comp.,1994,(216): 159~175.
    [144] Cohen D,Zeiri Y,Mintz M H.Model calculations for hydriding nucleation on oxide-coated metallic surface: surface- and diffusion-related parameters.J. Alloys Comp, 1992,(184): 11~23.
    [145] Asakuma Y,Miyanchi S,Yamamoto,et al.Numerical analysis of absorbing and desorbing mechanism for the metal hydride by homogenization method.Int. J. Hydrogen Energy, 2003,(28): 529~536.
    [146] Ron M.The normalized pressure dependence method for the evaluation of kinetic rates of metal hydride formation /decomposition.J. Alloys Comp.,1999,(283): 178~191.
    [147] Lin Q,Chen N,Ye W,et al.Kinetics of Hydrogen Absorption in Hydrogen Storage Alloy.J. Univ of Sci and Tech Beijing, 1997,4(2): 34~37.
    [148] Li Q,Lin Q,Jiang L J,et al.Characteristics of hydrogen storage alloy Mg2Ni produced by hydriding combustion synthesis.J. Mater. Sci. Technol.,2004,20(2):1~4.
    [149] Bloch J,Mintz M H.Kinetics and mechanisms of metal hydrides formation ? a review.J. Alloys Comp.,1997, (253~254):529~541.
    [150] Bloch J.The kinetics of a moving metal hydride layer.J. Alloys Comp.,2000, (312):135~153.
    [151] Zaluska A,Zaluska L,Strom-Olsen J O.Synergy of sorption in ball-milled hydrides of Mg and Mg2Ni.J. Alloys Comp.,1999,(289):197~206.
    [152] Raman S S S,Davidson D J,Srivastava O N.On the synthesis, characterization and hydrogenation behaviour of Mg-based composite materials Mg-x wt.% CFMmNi5 prepared through mechanical alloying.J. Alloys Comp.,1999, (292):202~211.
    [153] Huot J,Liang G,Boily S,et al.Structure study and hydrogen sorption kinetics of ball-milled magnesium hydride.J. Alloys Comp.,1999,(293~295):495~500.
    [154] 王 凤 娥 . 贮 氢 合 金 常 见 表 面 处 理 技 术 的 研 究 和 进 展 . 稀 有 金 属 ,2000,(24,5):383~387.
    [155] Cracco D,Percheron-Guegan A.Morphology and hydrogen absorption properties of an AB2 type alloy ball milled with Mg2Ni.J. Alloys Comp.,1998,(268):248~255.
    [156] Reule H,Hirscher M,Weibhardt A,et al.Hydrogen desorption properties of mechanically alloed MgH2 composite material.J. Alloys Comp.,2000,(305):246~252.
    [157] Bouarcha S,Dodelet J P,Guay D,et al.Study of the activation process of Mg-based hydrogen storage materials modified by graphite and other carbonaceous compounds.J. Mater. Res.,2001,(16,10):2893~2905.
    [158] Liang G,Huot J,Boily S,et al.Hydrogen desorption kinetics of a mechanically milled MgH2+5at.%V nanocomposite.J. Alloys Comp.,2000,(305):239~245.
    [159] Gross K J,Spatz P,Zuttel A,et al.Mg composite for hydrogen storage: The dependence of hydriding properties on composition.J. Alloys Comp.,1997,(261): 276~280.
    [160] Khrussanova M,Bobet J L,Terzieva M,et al.Hydrogen storage characteristics of magnesium mechanically alloyed with YNi5-xAlx (x=0, 1 and 3) intermetallics.J. Alloys Comp.,2000,(307): 283 ~289.
    [161] Khrussanova M,Grigorova E,Mitov I,et al.Hydrogen sorption properties of an Mg-Ti-V-Fe nanocomposite obtained by mechanical alloying.J. Alloys Comp.,2001, (327):230~234.
    [162] Liang G,Huot J,Boily S,et al.Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite.J. Alloys Comp.,1999, (291):295~299.
    [163] Shang C X,Mououdina M,Guo Z X.Structural stability of mechanically alloyed (Mg+10Nb) and (MgH2+10Nb) powder mixtures.J. Alloys Comp.,2003, (349):217~223.
    [164] 张允什, 陈声昌, 袁华堂等.氢化合物 Mg2Ni0.75Pd0.25 的合成及吸放氢性能的研究.南开大学学报(自然科学版) , 1991, (1) : 93 ~ 98.
    [165] Zaluska A, Zaluski L, Strom-Olsen J O.Nanocrystalline magnesium for hydrogen storage.J. Alloys Comp.,1999, (288): 217~ 225.
    [166] Huot J,Pelletier J F,Lurio L B,et al.Investigation of dehydrogenation mechanism of MgH2 –Nb nanocomposites.J. Alloys Comp., 2003,(348): 319~324.
    [167] Zaluski L,Zaluska A,Tessier P,et al.Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi.J. Alloys Comp.,1995, (217) : 295 ~ 300.
    [168] Liang G,Huot J,Boily S,et al. Hydrogen storage in mechanically milled Mg-LaNi5 and MgH2-LaNi5 composite.J. Alloys Comp.,2000, (297): 261 ~ 265.
    [169] Liang G X , Wang E , Fang S S . Hydrogen absorption and desorptioncharacteristics of mechanically milled Mg-35% FeTi1.2 powders.J. Alloys Comp., 1995, (223): 111 ~ 114.
    [170] 张允什.氢材料研究进展.全国第二届氢材料基础与应用学术研讨会会议论文集.北京:1992,1~4.
    [171] Zhu M,Gao Y,Che X Z,et al.Hydriding kinetics of nano-phase composite hydrogen storage alloys prepared by mechanical alloying of Mg and MmNi5-x(CoAlMn)x. J. Alloys Comp.,2002, (330~333):708~713.
    [172] Dutta K,Srivastava O N.Synthesis and hydrogen storage characteristics of the composite alloy La2Mg17-xwt% MmNi4.5Al0.5.Int. J. Hydrogen Energy,1993, 18(5): 397~403.
    [173] Wang P,Zhang H F,Ding B Z,et al.Structural and hydriding properties of composite Mg-ZrFe1.4Cr0.6.Acta Mater.,2001,(49:921~926.
    [174] Zhou Y,Erickson C,Hj?rvarsson B.Hydride formation Mg-ZrFe1.4Cr0.6 composite material.J. Alloys Comp.,1994, (209):117~124
    [175] 李谦,蒋利军,林勤等.Mg-50 wt.%Mm (NiCoMnAl)5 复合合金的储氢性能.稀有金属合金与工程,2003,(11):939~941.
    [176] Peshev P , Khrussanova M , Chakarov D , et al .Surface composition of Mg2TiO2 mixture for hydrogen storage prepared by different method.Mat Res Bull, 1989, (24): 207 ~212.
    [177] Khrussanova M,Terzieva M,Eshev P,et al.Hydriding of mechanical alloying mixtures of Mg and MnO2 and NiO.Mat Res Bull, 1991, (26): 1291~ 1298.
    [178] 于振兴.纳米晶镁基合金复合材料性能研究:学位论文.哈尔滨:哈尔滨工业大学,2001.
    [179] Oelerich W,Klassen T,Bormann R.Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based material.J. Alloys Comp.,2001, (315): 237 ~242.
    [180] Liang G,Huot J,Boily S,et al.Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm( Tm = Ti ,V , Mn, Fe and Ni) system.J. Alloys Comp.,1999, (292): 247 ~ 252.
    [181] 王尔德,于振兴,刘祖岩.镁基合金发明专利,CN00131504.8.2000.
    [182] Yu Z X,Liu Z Y,Wang E D.Hydrogen storage properties of the Mg-Ni-CrCl3 nanocomposite.J. Alloys Comp.,2002, (333): 207~214.
    [183] 田荣璋.金属热处理,北京:冶金工业出版社,1984.
    [184] Liu F J,Suda S.Hydriding behavior of F-treated Mg2Ni at moderate conditions.J. Alloys Comp.,1996,(232) :21~217.
    [185] 曾跃武,李志章.机械合金化和熔炼法制备的 Cu-15Ni-8Sn 合金的 Spinodal 分解.中国有色金属学报,2001,11(6):1059~1063.
    [186] 张静娴,王朋,陈文新等.高分子网络凝胶法制备 AB5 型多元贮氢合金.暨南大学学报(自然科学版),2003,24(1):42~45.
    [187] Hong T W,Kim Y J.Fabrication and evaluation of hydriding/dehydriding behaviors of Mg-10 wt.% Ni alloys by rotation-cylinder method.J. Alloys Comp.,2002,(333): L1~L6.
    [188] 孙笠.第六届全国非晶态材料与物理学术讨论会会议文集,北京,1986.
    [189] Bobet J L,Chevalier B,Song MY,et al.Hydrogen sorption of Mg-based mixtures elaborated by reactive mechanical grinding.J. Alloys Comp.,2002,(336):292 ~296.
    [190] Akiyama T,Isogai H,Yagi J.Hydriding combustion synthesis for the production of hydrogen storage alloy.J. Alloys Comp.,1997, (252):L1~L4.
    [191] Benjiamin J S . Dispersion strengthened super alloys by mechanical alloying.Metallurgical Trans.,1970,(10):2943~2951.
    [192] Li L,Akiyama T,Kabutomori T,et al.Hydriding and dehydriding behavior of the product in hydriding combustion synthesis of Mg2NiH4 . J. Alloys Comp. , 1999, (287):98~103.
    [193] Li L,Akiyama T,Kabutomori T,et al.Effects of Hydrogen Pressure and Cooling Rate on the Hydriding Combustion Synthesis of Mg2NiH4 Studied by Thermogravimetry and X-ray Diffraction.Materials Trans. JIM,1999 ,40(10): 1079~ 1083.
    [194] Ohtsuji T,Akyama T,Yagi J.Hydriding Combustion Synthesis Mechanism of Mg-X(X=Fe,Co) Hydrogen Storage Alloy.日本金属学会誌,2000, 64(8): 651~655.
    [195] Ohtsuji T,Akiyama T,Yagi J.Hydriding Combustion Synthesis of Mg2FeH6 and Mg2CoH5.日本金属学会誌,2000, 64(8):656~661.
    [196] 殷声主编.燃烧合成.北京:冶金工业出版社,1999.
    [197] Isogai H , Akiyama T , Yagi J . Combustion Synthesis of Mg2Ni and Mg2NiH4.Japan Inst. Metals (日本金属学会誌), 1996, 60(3):338~344.
    [198] Thaddeus,Massalski B.Binary alloy phase diagrams second edition.Materials Park, Ohio: ASM, 1990.
    [199] Yuan H,Yang H,Zhou Z.Pressure-composition isotherms of the Mg2Ni0.75Fe0.25-Mg system synthesized by replacement-diffusion method.J. Alloys Comp.,1997,(260): 256~259.
    [200] Villars P , Prince A , Okamoto H . Handbook of ternary alloy phase diagrams.Materials Park, Ohio: ASM, 1995.
    [201] Orimo S,Ikeda K,Fujii H,et al.Structural and hydriding properties of (Mg1-xAlx)Ni-H(D) with amorphous or CsCl-type cubic structure (x=0~0.5) .Acta Mater.,1998,46(13):4519~4525.
    [202] 中国现场统计研究会三次设计组.正交法和三次设计,北京:科学出版社,1985.
    [203] 辛益军 主编,方差分析与实验设计.北京:中国财政经济出版社,2002.
    [204] Method of determining the hydriding rate in hydrogen absorption alloys,H 7202-1993,JIS,(in Japanese)
    [205] 李文超主编.冶金与合金物理化学.北京:冶金工业出版社,2001.
    [206] Goodell P D,Rudman P S.Hydriding and dehydriding rates of the LaNi5-H system.J. Less-Common Met.,1983, (89):117~125.
    [207] Tessier P,Akiba E.Decomposition of nickel-doped magnesium hydride prepared by reactive mechanical alloying.J. Alloys Comp.,2000,(302):215~217.
    [208] Lee J Y,Byun S M,Park C N,et al.A study of the hydriding kinetics of TiFe and its alloys.J. Less-Common Met.,1982, (83):149~164.
    [209] Kim S R,Lee J Y.The effect of thermal cycling on the hydriding rate of MmNi4.5Al0.5.J. Less-Common Met.,1990, (161):37~47.
    [210] Osovizky A,Bloch J,Mintz M H,et al.Kinetics of hydride formation in massive LaNi5 samples.J. Alloys Comp.,1996,(245):168~178.
    [211] 杨陪强,机械合金化 MgNiCu 合金储氢性能的研究,博士学位论文,哈尔滨:哈尔滨工业大学,1996,(7): 42~43.
    [212] Cennari F C,Castro F J,Urretavizcaya G.Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying.J. Alloys Comp.,2001,(321): 46~53.
    [213] Zeng K,Klassen T,Oelerich W,et al.Thermodynamic analysis of the hydriding process of Mg-Ni alloys.J. Alloys Comp.,1999, (283): 213~224.
    [214] 陈长聘,耿伟贤,陈昀等.Ti-Zr-M (M = Cr, V 或 Cr 与 V) 合金的储氢性能和晶体结构.稀有金属材料与工程,2001,30(1):31~34.
    [215] Kadir K,Tanaka H,Sakai T,et al.Hydrogen behavior in the La-Mg-Cu system, J. Alloys Comp.1999, (289):66~70.
    [216] Werner P –E , Eriksson L , Westdahl M . TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries.J. Appl. Crystallogr.,1985,(18):367~370.
    [217] Li L,Akiyama T,Yagi J.Activity and capacity of hydrogen storage alloy Mg2NiH4 produced by hydriding combustion synthesis.J. Alloys Comp.,2001, (316):118~123.
    [218] 肖纪美,朱逢吾.合金能量学.上海:上海科技出版社,1999.
    [219] Hirata T .The rietveled analysis for the structure of Mg2Ni alloy.J. Phys. F.981,(11):521~529.
    [220] Fang K M,Lin Z,Fang K,et al.Revealing microstructure of fine particles by TEM.China Particuology, 2003,(1):88~90.
    [221] Gross K J,Spatz P,Zuttel A,et al.Mechanically milled Mg composites for hydrogen storage The transition to a steady state composition.J. Alloys and Comp.,1996,(240):206~213.
    [222] Vigeholm B,Kjoller J,Larsen B,et al.Formation and decomposition of magnesium hydride.J. Less-common Met.,1983,(89):135~144.
    [223] Yamaguchi K , Kim D Y , Ohtuka M . Heat content and heat formation measurements of RNi5-x alloys (R= La, Co, Pr, Cr, Nd) and heat balance in a reduction diffusion process.J. Alloys Comp.,1995, (221): 161~168.
    [224] 欧阳义芳,金展鹏.贵金属-Al 二元合金形成焓的 EAM 计算. 金属学报,1999, 35(5):541~543.
    [225] 陈念贻. 键参数函数及其应用. 北京:科学出版社,1976.
    [226] 姚允斌.物理化学手册.上海:上海科技出版社,1985.
    [227] 王致勇.无机化学原理.北京:清华大学出版社,1983.
    [228] Han J S,Lee J Y.The effect of thermal cycling on the hydrogenation characteristics of the Mg2Ni intermetallic compound.J. Less-Common Met.,1987,(133): 201~208.
    [229] Post M L,Murray J J.Mg2Ni Hydriding: in situ heat conduction calorimeter of the phase transition near 510 K.J. Less-Common Met.,1987, (134) :15~26.
    [230] Akiba E,Nomura K,Ono S,et al.Pressure-composition isotherms of Mg-Ni-H2 alloys.J. Less-common Met.,1982, ( 83): L43~L46.
    [231] Kumar Singh Arvind,Kumar Singh Ajay,Srivastava O N.On the synthesis of the Mg2Ni alloy by mechanical alloying.J. Alloys Comp.,1995, (227):63~68.
    [232] Saita I,Li L,Saito K,et al.Pressure-Composition-Temperature Properties of Hydriding Combustion-Synthesized Mg2NiH4 . Materials Transactions, 2002,43(5):1100 ~1104.
    [233] Saita I,Li L,Saito K,et al.Hydriding combustion synthesis of Mg2NiH4.J. Alloys Comp.,2003, (356~357): 490~493
    [234] Bouaricha S,Dodelet J P,Guay D,et al.Effect of carbon-containing compounds on the hydriding behavior of nanocrystalline Mg2Ni.J. Alloys Comp.,2000,(307):226 ~233.
    [235] Aizawa T,Kuji T,Nakano H.Synthesis of Mg2Ni alloy by mechanical alloying.J. Alloys Comp.,1999, (291): 248~253.
    [236] Dehouche Z,DjaoZandry R,Goyette J,et al.Thermal cyclic charge and discharge of nanocrystalline Mg2Ni alloy.J. Alloys Comp.,1999, (288):312~318.
    [237] Zaluski L,Zaluska A,Str?m-Olsen J O.Nanocrystalline metal hydrides.J. Alloys Comp.,1997, (253~254) :70~79.
    [238] Kuji T,Nakano H,Aizawa T.Hydrogen absorption and electrochemical properties of Mg2-1Ni (x=0-0.5) alloys prepared by bulk mechanical alloying.J. Alloys Comp.,2002, (330~336) :590~596.
    [239] Lutz H M,Pous O De.Determination of the Hydrogen Absorption Characteristics of Metallic Materials by Thermogravimetric Methods.Proc. Second International Congress on Hydrogen in Metals,Paris, Paper 1F5, 1977, 1~8.
    [240] Guthrie S E,Thomas G J.Properties of Mg2NiH4 at 450-570 K.Hydrogen in Semiconductors and Metals, Eds., Materials Research Society Symp. Proc., 1998, (513): 93~98.
    [241] Song M Y,Park H R.Pressure-composition isotherms in the Mg2Ni-H2 system.J. Alloys Comp.,1998, (270):164~167.
    [242] Sun D,Enoki H,Gingl F,et al.New approach for synthesizing Mg-based alloys.J. Alloys Comp.,1999,(285): 279~283.
    [243] Darnaudery J P,Pezay M,Darriet B.Influence de la substitution du cuivre au nickel dans Mg2Ni sue le storage de l’hydrogen.J. Less-common Met.,1983, (92): 199~205
    [244] Yang H,Yuan H,Ji J,et al.Characteristics of Mg2Ni0.75M0.25 (M=Ti, Cr, Mn, Fe, Co, Ni, Cu and Zn) alloys after surface treatment.J. Alloys Comp.,2002,(330~332): 640~644.
    [245] Spassov T,Solsona P,Bliznakov S,et al.Synthesis and hydrogen sorption properties of nanocrystalline Mg 1.9M0.1Ni (M=Ti, Zr, V) obtained by mechanical alloying.J. Alloys Comp.,2003, (356~357): 639~643.
    [246] Yuan H T,Cao R,Wang L B,et al.Characteristic of a new Mg-Ni hydrogen storage system: Mg2-xNi1-yTixMny (0    [247] Lupu D,Biris A,Indrea E.Hydrogen Absorption in Beryllium Substituted Mg2Ni.Int. J. Hydrogen Energy, 1982,(7):783~785.
    [248] Miyamoto M,Yamaji K,Nakata Y.Reaction Kinetics of LaNi5.J. Less-Common Met.,1983,(89):111~115.
    [249] Benham M J,Ross P K.Experimental determination of absorption isotherms by computer-controlled gravimetric analysis.Physi Chem Neue Folge, 1989,(163):25~29.
    [250] Nomura K,Akida E,Ono S.Kinetics of the reaction between the Mg2Ni and hydrogen.Int. J. Hydrogen Energy, 1981,6(3):295~302.
    [251] 康龙,罗永春.贮氢合金热力学测试装置及测试方法的研究.甘肃工业大学校报,1995,21(1):1~5.
    [252] Douglass D L , Anderson A F , Maeland A J . Hydrides for energy storage.Pergamon, Oxford, 1978.
    [253] 韩其勇 主编. 冶金过程动力学. 冶金工业出版社. 1973 年 11 月第一版.
    [254] 梁英教 主编. 物理化学. 冶金工业出版社. 1973 年 11 月第一版.
    [255] Terzieva M,Khrussanova M,Peshev P.Hydriding and dehydriding characteristics of Mg-LaNi5 composite materials prepared by mechanical alloying.J. alloys Comp.,1998, ( 267):235~239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700