基于MODFLOW的大同县地下水资源可开采量评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水资源是大同县城市和农村居民生活饮用水以及工业、农业供水的重要取水水源,是实现大同县经济社会可持续发展的重要支撑和保障。大同县地下水开采的目标层为潜水含水层,因此该含水层的水资源量和水质状况等是当地政府及人民所关注的焦点问题。针对这些问题,在充分收集大同县相关资料及前人研究成果的基础上,本文利用水均衡理论及数值模拟方法对大同县地下水资源进行了评价。
     根据大同县的地形地貌条件、地质及水文地质条件,确定以冲洪积平原区及火山丘陵区作为本次评价区域;采用水均衡理论分析计算,确定评价区域内地下水资源总量为7453.40万m3。
     以大同县2008年地下水水质监测分析资料为基础,采用单项组分评价、综合组分评价以及比标系数法对大同县的地下水质量环境进行评价。结果显示大同县地下水质量基本为Ⅳ类水,个别地区甚至出现V类水。地下水超标项目主要为pH值、氟化物及细菌个数。通过生活饮用水卫生评价,显示大同县除永胜村和聚乐村符合标准外,其余各地地下水均不适合作为饮用水。
     针对模拟区的地形地貌条件、地质及水文地质条件建立水文地质概念模型。确定模拟的主要含水层位并对模拟层进行概化。根据含水层富水性特征对模拟区进行参数分区。对含水层的边界条件及初始条件以及模型的源汇项进行概化,并利用已有长观孔资料对数值模型进行识别和验证,结果表明,所建立的地下水数值模拟模型基本符合实际,较好的反映了地下水流的特征,可以进行地下水位预测计算。
     计算模拟区内的降雨入渗补给量、河道入渗补给量、地表水渗入补给量、侧向补给量等主要补给项和潜水蒸发量、侧向径流量、泉水排泄量等主要排泄项,并结合现状条件下的人工开采量对模拟区潜水含水层的水均衡状况进行分析。结果表明,含水层储存量变化为正均衡。
     运用所建立的数值模型,以2015年为预测年份,模拟预测开采量分别为3360万m3/a(2008年开采量下)、5245万m3/a(地下水可开采量)在25%、50%和75%降雨保证率下的地下水位变化趋势。在模拟结果的基础上,对比分析两种不同开采方案下地下水位变化情况,确定出大同县地下水资源可开采量为5245万m3/a。
The groundwater resources play an important role in water supply for industry, agriculture, urban and rural residents living and drinking in Datong County. The sustainable utilization of groundwater resources has related to the sustainable development of society and economy can be realized in Datong County. Groundwater exploitation of Datong County mainly focuses on phreatic aquifer near the surface ground. So the water quality and quantitly of the aquifer become the focus question that the local government and public pay close attention to. To solve these problems, this paper evaluates the groundwater resources according to water balance and numerical simulation theory, based on fully collecting relative data and former study.
     According to geographic and geomorphic conditions, geology and hydrogeology conditions, the blunt flood plain and volcanic hilly areas are determined for evaluation region. Using the water balance theory, it evaluated the groundwater resources is totally74.534million per year in evaluation region.
     Based on groundwater quality monitoring data of Datong County in2008, groundwater quality of Datong Country is evaluated by adopting single component evaluation, integrated components evaluation and coefficient method. The results show that quality level of groundwater in Datong County basically is IV level, even V in specific areas. The overweight items of groundwater are pH, fluoride, and bacteria number. Through assessment for drinking water quality, except the quality of drinking water in Yongsheng village and Jule village fulfill the standard, all the rest groundwater are not meet the standard of drinking water.
     Based on geographic and geomorphic conditions, geology and hydrogeology conditions, the conceptual hydrogeological model is established. And it conducts parameter partition according to the watery characteristics of water aquifer. The boundary condition, initial condition of aquifer and source and sink term of model is generalized. The identification and confirmation of numerical model are conducted by making use of existing data of long-term observation wells. The results show that the conceptual hydrogeological model is basic accord with the actual, the model better reflect the characteristics of underground water, can predict groundwater table.
     The main recharge and discharge term of simulated domain are calculated, such as rainfall infiltration recharge, riverway infiltration recharge, surface water infiltration recharge, lateral recharge, phreatic water evaporation, lateral spring excretion and so on. Combined with aritificial exploitation yield, water balance status of phreatic aquifer is analyzed. The results show that the charge of aquifer storage in regional is positive equilibrium.
     Taking2015as forecast year, using the numerical model, predicted under the groundwater exploitation maintains33.6million cubic metres per year(2008is below) and the groundwater exploitation increases to52.45million cubic metres per year(Allowable Yield of Groundwater) in25%,50%, and75%of the underground water level under rainfall assurance rate in change tendency of groundwater table. Based on the simulated results, it comparatively analyzed change condition of groundwater level under two different mining schemes and confirmed the allowable yield of groundwater is52.45million cubic metres per year in Datong County.
引文
[1]陈葆仁,洪再吉等.地下水动态及其预测[M].北京:科学出版社,1988.
    [2]薛禹群.地下水动力学原理[M].北京:地质出版社,1986.
    [3]王晓明,代革联,巨天乙等.可视化的地下水数值模拟[J].西安科技学院学报,2004,(24):84-186.
    [4]张洪霞,宋文.地下水数值模拟的研究现状与展望[J].水利科技与经济,2007,13,(11):794-796.
    [5]ANDERSON M P, WOESSNER W W. Applied groundwater modeling: Simulation of flow and advective transport[M]. New York:Academic Press Inc., 1992:145~152.
    [6]Wood W L.A note on how to avoid spurious oscillation in the finite element solution of the unsaturated flow equation[J]. Journal of Hydrology,1996,176: 205-218.
    [7]GHASSEMI F, MOLSON J W, FALKLAND A. Three-dimensional simulation of the Home Island freshwater lens:preliminary results[J]. Environmental Modelling&Software,1999,14:181-190.
    [8]LI Shu-guang, McLANGHLIN D. A computationally practical method for stochastic groundwater modeling[J]. Advances in Water Resources,2003,26: 1137~1148.
    [9]丁继红,周德亮,马生忠.国外地下水模拟软件的发展现状与趋势[J].勘察科学技术,2002,(1):37-42.
    [10]McDonald G. Michael and Arlen W. Harbaugh. A modular three-dimensional finite-difference ground-water flow model, United States Government Printing Office, Washington,1988.
    [11]Leake, S.A., Prudic, D.E.,1991, Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference groundwater flow model. US Geological Survey Techniques of Water Resources Investigation, Book6, USGS, Washington, USA, Chapter A2.
    [12]Hsieh, P.A., and J.R.Freckleton.1993. Documentation of a computer program to simulate horizontal-flow barriers using the U.S. Gelolgical Survey's modular three-dimensional finite-difference ground water flow model. U.S. Geological Surwey Open File Rrport 92-477.
    [13]卞玉梅,卢文喜,马洪云.Visual MODFLOW在水源地地下水数值模拟中的应用[J].东北水利水电,2006,3(24):31-33.
    [14]武强,董东林,武钢等.水资源评价的可视化专业软件(Visual MODFLOW)与应用潜力[J].水文地质工程地质[J].1999(7):35-36.
    [15]郭卫星,卢国平编译.MODFLOW三维有限差分地下水流模型,南京大学地球科学系,1998.
    [16]OLSTHOORNTN. A comparative review of analytic and finite difference models used at the Amsterdam Water Supply[J]. Journal of Hydrology,1999,226: 139-143.
    [17]杨旭,黄家柱,杨树才等.地理信息系统与地下水资源评价模型集成应用研究[J].小型微机计算机系统,2005,26(4):710-715.
    [18]JUANC S, KOLMK E. Conceptualization, characterization and numerical modeling of the Jackson Hole alluvial aquifer using ARC/INFO and MODFLOW[J]. Engineering Geology,1996,42:119-137.
    [19]HARRINGTONGA, WALKER G R. A compartmental mixing-cell approach for the quantitative assessment of groundwater dynamics in the Otway Basin[J]. Journal of Hydrology,1999,214:49~63.
    [20]RAMIREDDYGARI S R, SOPHOCLEOUSMA. Development and application of a comprehensive simulation model to evaluate impacts of watershed structures and irrigation water use on streamflow and groundwater:the case of Wet Walnut Creek Watershed, Kansas, USA[J]. Journal of Hydrology,2000,236: 223~246.
    [21]OSMAN Y Z, BRUEN M P. Modelling stream-aquifer seepage in an alluvial aquifer:an improved loosing-stream package for MODFLOW[J]. Journal of Hydrology,2002,264:69~86.
    [22]DAHANO, McGRAWD. Multi-variable mixing cell model as a calibration and validation tool for hydrogeologic groundwater modeling[J]. Journal of Hydrology,2004,293:115~136.
    [23]FACCHI A, ORTUANI B. Coupled SVAT-groundwater model forwater resources simulation in irrigated alluvial plains[J]. Environmental Modelling&Software,2004,19:1053~1063.
    [24]Xue Yuqun and Xie Chunhong.2007. Numerical Simulation for Groundwater[M]. Beijing:Science Press.9-76.
    [25]林学钰,侯印伟,邹立芝等.1985.地下水水量水质模型及管理程序集[M].长春:吉林科学技术出版社.
    [26]薛禹群,吴吉春,谢春红.1997.越流含水层系统地下水污染数值模拟[J].地质学报,71(2):186-192.
    [27]Xue Yuqun, Xie Chunhong and Wu Jichun.1995. A three-dimensional miscible transport model for seawater intrusion in China[J]. Water Resources Research,31(4):903-912.
    [28]张永祥.1997.咸水入侵含水层中地下水流及溶质运移模型研究[D].南京:南京大学.
    [29]张勇,薛禹群,谢春红等.1999.高浓度条件下的地下水运动方程[J].南京大学报(自然科学版),35(3):309-315.
    [30]Wu Jianfeng, Zhu Xueyu, Liu Jianli.1999. Using genetic algorithm based simulated annealing penalty function to solve groundwater management model[J]. Science in China(Series E),29(5):474-480.
    [31]薛禹群,吴吉春,张云等.2008.长江三角洲(南部)区域地面沉降模拟研究[J].中国科学D辑,38(4):477-492.
    [32]Xue Yuqun, Xie Chunhong and Li Qinfen.1990. Aquifer thermal energy storage:A numerical simulation of field experiments in China[J]. Water Resources Research,26(10):2365-2375.
    [33]吴剑锋,朱学愚,刘建立.1999.基于遗传算法的模拟退火罚函数方法求 解地下水管理模型[J].中国科学(E辑),29(5):474-480.
    [34]李恩羊.1982.渗灌条件下土壤水分运动的数学模拟[J].水利学报,(4):1-10.
    [35]张慧春.1989.渗流数值计算方法在农田排水设计中的应用[J].水利学报,(12):1-11.
    [36]毛昶熙,段祥宝,李祖贻.1999.渗流数值计算与程序应用[M].南京:河海大学出版社.
    [37]Ye Shujun, Xue Yuqun and Xie Chunhong.2004. Application of the multiscale finite element method to flow in heterogeneous porous media[J]. Water Resources Research,40:1-9.
    [38]Xue Yuqun.1985. Logarithmic finite element interpolation of flow near wells in phreatic aquifers[J]. Advances in Water Resources,8(3):111-117.
    [39]薛禹群,谢春红.1980.水文地质学的数值法[M].北京:煤炭工业出版社.
    [40]薛禹群.地下水动力学原理[M].北京:地质出版社,1986,54.
    [41]卢文喜.地下水运动数值模拟过程中边界条件问题探讨[J].水利学报,2003,3:33-36.
    [42]王玮.水文地质数值模拟中结点地面标高的获取方法[J].长安大学学报:地球科学版,2003,25(2):41-45.
    [43]张明江,门国发,陈祟希等.渭干河流域三维地下水流数值模拟[J].新疆地质,2004.3:238-243.
    [44]林琳,杨金忠,方跃骏等.多尺度有限元法在地下水拟三维数值模拟中的应用[J].中国农村水利水电,2005,12:10-12.
    [45]束龙仓,王茂枚,刘瑞国等.地下水数值模拟中的参数灵敏度分析[J].河海大学学报(自然科学版),2007,35(5):491-495.
    [46]胡立堂,仪彪奇,杨旭辉.地下水数值模拟中入渗补给滞后的处理方法[J].水文地质工程地质,2009,3:16-20.
    [47]桂和荣,陈兆炎,许多顶等.淮南市区浅层地下水动态特征及其预测[J].海南矿业学院学报,1993,13(2):6-14.
    [48]薛禹群,谢春红.1980.水文地质学的数值法[M].北京:煤炭工业出版社.
    [49]张笑然,王岩,王梓霖等.地下水环境自量评价研究综述[J].吉林农业,2011,9:215.
    [50]王勇,曹丽文,刘勇.淮北某矿区地下水环境质量评价[J].煤田地质与勘探,2011,39(2):34-41.
    [51]胡代华.生活饮用水水质评价及分类方法讨论[J].工程勘察,1981,3:10-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700