衡水市水资源可持续利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文“衡水市水资源可持续利用”依据衡水市区域资源开发规划项目《衡水市水资源规划与管理系统》选题。论文以水资源可持续利用为主题,探索性地研究了水资源可持续利用理论;查明了研究区自然地理、地质、水文地质条件,进行三维地下水流数值模拟并对研究区地下水资源进行预测;在充分考虑水资源可持续利用自身特点及其影响因素的基础上建立了适合衡水市的水资源可持续利用评价指标体系,采用灰色关联分析法对评价指标进行筛选并对各指标值进行计算;建立了衡水市水资源可持续利用综合评价模型,采用层次分析法确定了各指标的权重;预测了2010年、2020年衡水市的需水量和可供水量,进行了衡水市水资源可持续利用的综合评价,为有关部门制定社会经济发展规划提供了科学依据。
Water resource is one of the fundamental natural resources for the survival and development of human society and it can't be substituted. It is one of the important elements that control the ecological environment. Meanwhile, it can reflect the integrated power of a nation. It provides the safeguard for the district sustainable development. It is limited and unsubstitutable therefore the problem of water resource arouses extensive attention from every nation, expert and scholar inevitably. According to the explanation for social sustainable development, the exploitation and utilization of water resource, which can satisfy the demand of human beings and can’t do harm to requirement ability of the next generation, is called the sustainable utilization of water resource. Our country is a developing country which suffers from the high frequency of flood and drought, and the unequal water distribution. It is in the face of many challenges by water problems such as the shortage of water resource and deterioration of water quality. The water amount per person is only one fourth of the world average level. The contradiction between supply and demand has become the choke point in the social economic development, the improvement of living standard and environment protection in our country.
     Therefore the sustainable utilization of water resource is a strategic problem which should be solved urgently in our country. It refers to in our country or in a certain district, in the guarantee for sustainable utilization of water resource, the reliable fresh water should be provided for the sustainable development of social economics on one hand and for the benign upgrowth ofthe ecological environment on the other hand. It is a reasonable way to contribute to the harmonious development of the population, resource, society, economy and environment and to exploit, utilize, manage and protect the water resource effectively.
     The study on the theory of sustainable utilization of water resource is of significant scientific value. It provides application foreground for the sustainable development of social economy in our country and will promote the harmonious development of the population, resource, society, economics and environment. Hengshui City is located in the middle and lower reaches of a river, where is short of water resource. The amount of water resource is only 185 m3. Surface water is not sufficient. The water for industry, agriculture, living and ecology mostly relies on the groundwater. There is a large gap between the supply and need of water resource. The balance between the supply and need is maintained by exploiting the ground water on a large scale for many years. Thereby all these result in s series of environmental problems, such as land subsidence, crack, the sink and breakage of buildings, deterioration of water quality. How to exploit and utilize the water resource in Hengshui City reasonably becomes a work of stratagemical significance.
     The aquifer in the research section is divided into four aquiferous groups. According to the hydrogeological similarity, aquiferous groupⅠandⅡare combinated as superficial aquiferous group, existing in phreatic water─micro confined water(superficial groundwater), aquiferous groupⅢandⅣare combinated as deep aquiferous group confined water(deep groundwater). The superficial groundwater is supplied mainly by atmospheric condensation infiltration and irrigation infiltration. The groundwater flows from southwest to northeast. The main drainage manners are manual exploitation, evaporation from phreatic water and leakage water complementing deep confined water. The deep groundwater is supplied mainly by the leakage water from the superficial groundwater. The groundwater flows from northeast to southeast.As a result of long-term over-exploitation of the deep groundwater, regional water table descending funnel is formed, which bring about the runoff gathering from the deep groundwater towards the heart of the funnel. The main drainage manner is manual exploitation. The chemical type in research section is complicated with obvious characters of horizontal zoning. According to the distributing characters of mineralization of groundwater, research section can be divided into the tasteless section, upper salted and lower tasteless section (In superficial layer all is salt water, while in deep layer freshwater), superficial layer freshwater-middle layer salt water-deep layer freshwater (In the superficial layer, the upper is freshwater, middle is salt water and lower is freshwater).The main dynamic type of the superficial groundwater is precipitation infiltration, irrigation infiltration- exploitation type and precipitation infiltration, irrigation infiltration-evaporation type. The overall dynamic changing trend of the groundwater has been descending for years. Water table has descent accumulatively 6.38m from 1975 to the end of 2000. The dynamic type of the deep groundwater is leakage water complement-exploitation type. The dynamic changing trend of the ground water has been descending continually; from 1970 to the end of 2000 the water level has descent accumulatively 39.81m.
     Hydrogeological conceptual model of the simulation district and the three-dimensional numerical simulation model of the unsteady flow of the ground water are established, which give a description of characters of calculational target stratum and aquiferous system in the research district. The boundary condition is summarized and is solved by the finite element method. The calculated area is 7923.6km2 and can be divided upwards into triplex layer vertically. Altogether the trigonal unit is 10749 and the node is 7344. Numerical simulation is conducted by adopting the FEFLOW finite element simulation software. Simulation period is from January 30 to December 30 in 2002, altogether 335 days with one month as a period of time. The subarea andthe initial value of hydrogeological parameter are made certain. Relevant source sink terms are conducted. After the recognition and emendation on mathematical model, each parameter value in the simulation district is obtained. The total supply amount of the groundwater in the simulation district is 10.9930×108m3, the total drainage amount is 15.3876×108m3. The model established conforms to the current circumstances and can be used in the calculation and forecast of the groundwater resource. Based on the frequency analysis method, the amount of precipitation, evaporation capacity and class 1 boundary water level from 2004~2020 are forecast. Optimal pumping project are designed. By using the model the groundwater resource in Hengshui City is calculated and forecast. Here is the forecast outcome: in 2010 the total supply amount of the groundwater in the simulation district is 2.9764×108m3, the total drainage amount is 16.4521×108m3, of which the supply amount of the superficial aquifer is 11.3389×108m3, the drainage amount is 14.4760×108m3. The supply amount of the deep aquifer is 8.0641×108m3, the drainage amount is 10.2137×108m3 and the balance difference is -3.4757×108m3; In 2020 the total supply amount of the groundwater is 14.1836×108m3, the total drainage amount is 17.4960×108m3, in which the supply amount of the superficial aquifer is 13.2476×108m3 and the drainage amount is 16.9180×108m3. The supply amount of the deep aquifer is 10.8751×108m3, the drainage amount is 13.4522×108m3, and the balance difference is -3.3124×108m3. The water requirement and water supply of Hengshui City in 2010 and 2020 are forecast in detail. In 2002 the city available water is 140784.96×104m3, the water requirement is 177043.46×104m3, there is a lack of 36258.51×104m3 water. The proportion of supply and demand is 79.52%. In 2010 the city available water is 185776.28×104m3, the water requirement is 195020.24×104m3, there is a lack of 9243.96×104m3 water. The proportion of supply and demand is 95.26%. In 2020 the city available water is 206872.15×104m3, the water requirement is 210129.15×104m3, there is alack of 3257×104m3 water. The proportion of supply and demand is 98.45%.
     Based on the assessment index to the sustainable utilization of water resource, by adopting the grey association analysis method to analyse and filter the index, comprehensive assessment system of indices on the sustainable utilization of water resource in Henghui City is set up. By using the hierarchy analytic method, the feature weight of every index is obtained. In the present year (2002) the comprehensive index of sustainable utilization of water resource is 0.3857, which indicates that the utilization is weak and goes against the sustainable utilization of water resource. 2002 is a low flow year, when the annual precipitation, the surface water and guest water introduced from other drainage area is little, these constitute major reasons. Water is supplied mainly by over exploitation of the deep phreatic water, which enlarges descending funnel of the deep phreatic water and brings on a series of entironmental and geological problems. Furthermore, it is also associated with the reusing rate of the treated wastewater water saving irrigation rate. Other factors, such as the city economic development level, public water-saving consciousness, and the devotion of water research and development personnel and hydraulic engineering outlay, also exert an influence on that. In 2010 the agriculture and industry will develop on a large scale, with the execution of the leading-water project and wastewater regeneration, the problem that the deep phreatic water descends too quickly will be solved. With the improvement of public water-saving consciousness, the increase of water research and development personnel and hydraulic engineering outlay, the comprehensive index of sustainable utilization of water resource will rise to 0.5136. In 2020 the farming irrigation water will decrease as a result of the popularization and spread of the water-saving irritation technology. Moreover, industrial structure should be adjusted so as to make the limited water resource gain the most economic benefit. The standard for urban flood-preventing and rural surface drainage should be intensified. The law enforcement system constructionshould be perfected. Population quality should be advanced and a group of trans-century water professionals should be brought up. Therefore the quality of the irrigational scientific outcome could be improved distinctly, and comprehensive index of sustainable utilization of water resource will rise to 0.6248. There will be a significant development trend for the sustainable utilization of water resource.
引文
1.水利部水资源司,南京水利科学研究所.21世纪初中国地下水资源开发利用[M].北京:中国水利水电出版社,2004.
    2.中国21世纪议程-中国21世纪人口、环境与发展白皮书[M].北京:中国环境出版社,1994.
    3.左其亭,陈曦.面向可持续发展的水资源规划与管理[M].北京:中国水利水电出版社,2003.
    4.21世纪水资源研究[M].国土资源资源部信息中心编译,2001.
    5.张巧显,欧阳志云,王如松.中国水安全系统模拟及对策比较研究[J].水科学进展,2002(05),596-578.
    6.中国21世纪议程-中国21世纪人口、环境与发展白皮书[M].北京:中国环境出版社,1994.
    7.左其亭,陈曦.面向可持续发展的水资源规划与管理[M].北京:中国水利水电出版社,2003.
    8.冯尚友.水资源持续利用与管理导论[M].北京:科学出版社,2000.
    9.钱易,刘昌明,邵益生.中国城市水资源可持续开发利用[M].北京:中国水利水电出版社,2001.
    10.沈国舫.中国生态环境建设与水资源保护利用[M].北京:中国水利水电出版社,2001.
    11.傅湘,纪吕明.区域水资源承载力综合评价一主成分分析法的应用.长江流域资源 与环境,1999.8 (2): 168-170.
    12.罗先香,伺岩,邓伟等.区域水资源丰富度综合评价的A-K网络模型[J].水上保持学报, 2002, 16 (5): 112-134.
    13.刘绿柳.水资源脆弱性及其定量评价[J].水土保持通报,2002, 22 (2): 41-44.
    14.黄奕龙,汤洁.水资源可持续利用的生态经济评价[J].吉林地质,2001, 20 (4 ): 692-66.
    15.杨晴,雷声隆.灌区水资源利用特性评价模型研究[J].水利发电,2002,1(5):1-16.
    16.幻夏军,王中根,穆宏强.可持续水资源管理评价指标体系研究[J].长江学报,2000, 17 (2):1-7.
    17.吕一河.中国水资源需求管理及其政策评价[J].中国人口资源与环境,1999, 9 (3):84-89.
    18.Bissel H. Indicators of sustainable development: Theory, Method, Applications[R]. International Institute of Sustainable Development. Winnipeg. Canadian Cataloguing in Publication Data. 1999.20-55.
    19.Bissel H. The human actor in ecological-economic models: Policy assessment and simulation of actor orientation for sustainable development[J]. Ecological Economics, 2000,34:337-355.
    20.Loucks D P. Sustainability criteria for water resources system[M]. Cambridge: Cambridge University Press, 1999. 33-90.
    21.Loucks D P. Sustainable water resources management[J]. Water international, 2000,25(1):3-10.
    22.Faures J M. Indicators for sustainable water resources development[R]. Land and water Development Division, FAO, Rome, Italy. 1998.1-10.
    23.Ministry of Agriculture and Forestry. PA Svenka. Criteria, objectives and indicators for sustainable development of renewable natural resources.[M]. Cambridge: Cambridge University Press, 1999. 133-192.
    24.Europran Commission. Towards sustainable water resources management: A Stragtegic Approach[M]. Colourwise Ltd, Burgess Hill, UK September,1998.41-54.
    25.New Delhi Declaration International Conference On Sustainable Development Of Water Resources: Socio Economic, Institutional And Environmental Aspects[R]. New Delhi, November 2000.27-30.
    26.Belousova A P. A concept of forming a structure of ecological indicators and indexes for regions sustainable development[J]. Environmental Geology,2000,39(11):1227-1236.
    27.Jay J Walmsley. Framework for Measuring Sustainable in Catchment Systems[J]. Environment Management,2002,29:195-206.
    28.Peter Hardi, Stephan Barg, Tony, et al. Measuring Sustainable Development: Review of current Practics[M]. The International Institute for sustainable. Canada Cataloguing in Publication Data. November 1997.
    29.徐中民,张志强,程国栋.可持续发展定量研究的几种新方法评介[J].中国人口、资源与环境,2000,10(2):60-64.
    30.水科学进展编辑部,水与可持续发展定义与内涵[J].水科学进展,1997,8(4):377—384.
    31.曾珍香,顾培亮.可持续发展利用的系统分析与评价[M].北京:科学出版社,2000.13—20,81—115.
    32.王先甲,肖文.水资源持续利用的特性与原理[J].长江流域资源与环境,2000,9(4):436—440.
    33.冯耀龙等.区域水资源系统可持续利用发展评价研究[J].水利水电技术,2001,32(12):9—11.
    34.宋松柏,蔡焕杰,徐良芳.水资源可持续利用指标体系及评价方法研究[J].水科学进展,2003,5:647-652.
    35.徐良芳,冯国章,刘俊民.区域水资源可持续利用及其评价指标体系研究[J].西北农林科技大学学报(自然科学版),2002,2:119-122。
    36.邹积君等.区域水资源可持续利用指标体系的设计及评价方法研究[J].干旱区资源与环境,2003,1:37-40.
    37.葛吉琦.水资源可持续利用评价[J].科技与经济,1998,增刊:26-29.
    38. 陈 守 煜 . 区 域 水 资 源 可 持 续 利 用 评 价 理 论 模 型 与 方 法 [J]. 中 国 工 程 科学,2001,2:33-38.
    39.刘恒, 耿雷华,陈晓燕. 区域可持续利用评价指标体系的建立[J].水科学进展,2003,3:265-270.
    40.姚荣,唐德善,张娜.区域水资源可持续发展评价模型的建立与应用[J].水电能源科学,2004,1:16-19.
    41. 薛 小 杰 等 . 水 资 源 可 持 续 利 用 模 型 及 其 应 用 研 究 [J]. 西 安 理 工 大 学 学报,2000,3:301-305.
    42. 宋 松 柏 , 蔡 焕 杰 . 区 域 水 资 源 可 持 续 利 用 的 综 合 评 价 方 法 [J]. 水 科 学 进展,2005,2:244-249.
    43.崔振才等.水资源可持续利用的模糊优选模型[J].中国人口资源与环境,2000,专刊:97-98.
    44.王颖,于会泉,王建华.温州某区域水资源可持续利用的模糊模型评价[J].地下水,2006,5:7-10.
    45.宋松柏,蔡焕杰.区域水资源可持续利用评价的人工神经网络模型[J].农业工程学报,2004,6:89-92.
    46.楼文高,刘隧庆.区域水资源可持续利用评价的神经网络方法[J].农业系统科学与综合研究,2004,2:115-119.
    47.潘峰等.模糊物元模型在区域水资源可持续利用综合评价中的应用[J].水科学进展,2003,3:271-275.
    48.童芳,董增川,金菊良等.区域水资源可持续利用等级评价的 GPPM 模型[J].水利水电技术,2006,8:1-4.
    49.黄晓荣等.基于 RAGA 的 PPC 模型对区域水资源可持续利用的评价[J].四川大学学报(工程科学版),2003,4:29-32.
    50.王华.城市水资源可持续利用综合评价—以南京市为例[J].南京农业大学学报,2003,26(2):59-62.
    51. 马振民,武强,付守会.地下水资源可持续利用管理模型研究 [J]. 水利学报,2004,9:63-67.
    52.尤龙凤等.城市地下水资源可持续开发利用模型研究[J].数学的时间与认识,2005,11:23-26.
    53.张立杰.地下水资源可持续开发利用的综合技术体系[J].东北林业大学学报,2001,4:64-69.
    54.黄志兴.地下水可持续利用评价[J].资源产业,2003,2:39-43.
    55.王好芳,董增川,左仲国.开发度—评价水资源可持续开发利用的新模型[J].水电能源科学,2002,3:7-9.
    56.付建飞,王恩德,王毅.辽宁省滨海城市水资源可持续利用研究[J].东北大学学报(自然科学版),2005,8:787-789.
    57. 卞建民 , 杨建强 . 水资源可持续利用评价的指标体系研究 [J]. 水土保持通,2000,4:43-45.
    58.宋松柏,蔡焕杰.区域水资源可持续利用的 Bossel 指标体系及评价方法[J].水利学报,2004,6:68-74.
    59.陈梦熊,马凤山.中国地下水资源与环境[M].北京:地震出版社,2002.
    60.张光辉,费宇红,刘克岩等.海河平原地下水演变与对策[M].北京:科学出版社,2004.
    61.王大纯,张人权,史毅等.水文地质学基础[M].北京:地质出版社,1995.
    62.陈葆仁,洪再吉,汪福炘.地下水动态及其预测[M].北京:科学出版社.
    63.曹剑锋,李续谦.地下水系统模拟与管理[M].西安:西安地图出版社,1998.
    64.李同斌,邹立芝.地下水动力学[M].长春:吉林大学出版社,1995.
    65.李俊亭.地下水流数值模拟[M].北京:地质出版社,1989.
    66.薛禹群.地下水动力学[M].北京:地质出版社,1997.
    67.贺国平,邵景力,崔亚莉.FEFLOW 在地下水流数值模拟方面的应用[J].成都理工大学学报(自然科学版),30(4):356-361.
    68.孔祥光,王井泉,翁明华译,Hans-Jorg GD. FEFLOW 有限元地下水流系统.中国矿业大学出版社,2000.
    69. 崔 天 怀 , 魏 晓 妹 . 频 谱 分 析 法 在 地 下 水 动 态 预 报 中 的 应 用 [J]. 地 下水,1990(4):201-205.
    70. 郭 彬 锋 , 尹 伟 平 . 利 用 频 谱 分 析 方 法 预 测 地 下 水 动 态 [J]. 勘 察 科 学 技术,1993(3):41-44.
    71. 王 祥 三 . 用 频 谱 分 析 法 对 地 下 水 位 进 行 中 长 期 预 报 [J]. 水 电 能 源 科学,1993,11(4):217-224.
    72.李栋臣.频谱分析法在地下水预测中的应用[J].中国煤田地质,1994,6(3):49-55.
    73.佟成利.频谱分析法在兰州市地下水水源地水情预报中的应用[J].甘肃地质学报,1995,4(1):77-81.
    74. 王 红 雨 . 频 谱 分 析 方 法 在 地 下 水 动 态 预 报 中 的 应 用 [J]. 宁 夏 农 学 院 学报,1994,15(4):30-37.
    75.李平,卢文喜, 杨忠平.频谱分析法在吉林西部地下水动态预报中的应用[J].水文地质工程地质,2005(4):70-73.
    76.齐胜利.衡水市地下水开发利用存在的问题与对策[J].地下水,2005,27(3):189-190.
    77.付学功.衡水市深层地下水降落漏斗及发展趋势分析[J].海河水利,1999,(3):26-28.
    78.曹利军.可持续发展评价理论与方法.[M].北京:科学出版社,1999, 9-10.
    79.曹利军,王华东.可持续发展评价指标体系建立原理与方法研究[J].环境科学学报,1998,18(5):526-532.
    80.方创琳,毛汉英.区域发展规划指标体系建立方法探讨[J].地理学报,1999,54(5):410-419.
    81.洪登明.应用灰色关联法分析影响因素[J].工程勘察,1996(1):42~45.
    82.樊保东.关联分析法在水资源可持续利用中的应用[J].地下水,1997(1):23~30.
    83.郝晓辉.可持续发展指标体系初探[J].国土开发与防治,1996,6(3):33-39.
    84.刘毅,贾若详,侯晓丽.中国区域水资源可持续利用评价及类型划分[J]环境科学,2005,26(1): 42-46.
    85.刘旺.水资源可持续利用评价方法研究[J].四川大学学报(自然科学版),1999,4:453-456.
    86.赵焕臣.层析分析法:一种简易的新决策方法[M].北京:科学出版社,1986.
    87.温淑瑶,马占青,周之豪等.层次分析法在区域湖泊水资源可持续发展评价中的应用[J].长江流域资源与环境,2000,9(2):196-201.
    88.王研,何士华.多目标层次分析法评价区域水资源可持续利用[J].云南水利水电,2003,1:5-9.
    89.金菊良,张礼兵,魏一鸣.水资源可持续利用评价的改进层次分析法[J].水科学进展,2004,2:228-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700