CD34抗体表面修饰去细胞光氧化牛颈静脉再内皮化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章牛颈静脉基质材料的制备及表面CD34抗体修饰的研究
     目的:通过按不同摩尔比,用光化学交联剂SANPAH将不同浓度鼠抗人CD34抗体接枝于经过去细胞和光氧化后的牛颈静脉(BJV)表面的初步研究,明确接枝鼠抗人CD34抗体的最佳浓度和与SANPAH的最佳反应摩尔比,探讨CD34抗体光化学偶联法修饰去细胞光氧化牛颈静脉基质的方法。
     方法:按4个不同摩尔比,SANPAH和4个不同浓度鼠抗人CD34抗体进行反应后,经紫外线照射光化学接枝于经过去细胞和光氧化后的BJV上,各组进行快速冰冻切片,滴加FITC标记的羊抗鼠IgG,然后在荧光显微镜下照相,用Image-pro plus 5.0对图像进行分析,比较不同摩尔比和浓度反应、结合的荧光效果,从而初步推断出最佳反应和结合的摩尔比和浓度。
     结果:随着鼠抗人CD34抗体浓度的升高,荧光累积光密度、平均光密度,整体上是越来越强,但是当浓度高于0.665×10~(-2)mM时,荧光差别不是很明显;当鼠抗人CD34抗体和SANPAH的反应摩尔比为1:20时,荧光最强。
     结论:最佳的鼠抗人CD34抗体和SANPAH反映接枝的浓度是0.665×10~(-2)mM,最佳的摩尔比是1:20。
     第二章CD34抗体表面修饰去细胞光氧化牛颈静脉体外再内皮化研究
     目的:探讨鼠抗人CD34抗体表面修饰后的去细胞光氧化牛颈静脉体外促进再内皮化的情况。
     方法:牛颈静脉经过去细胞和光氧化交联后,裁成与24孔培养板孔径相同大小的、直径1.6cm的血管片,用光化学偶联剂SANPAH采用第一章的方法将CD34抗体接枝到牛颈静脉血管片上,以未接枝CD34抗体的作为空白对照。在其上面种植人脐静脉内皮细胞株(HUVEC,CRL-2480)5×10~5/ml,静态培养,取第1,3,5,7日标本,一半血管片表面细胞消化并记数,另一半标本切片HE染色,对比CD34抗体接枝后和空白对照组血管片表面细胞粘附数目和HE的染色结果,以探讨接枝CD34抗体体外能否促进细胞粘附和生长。
     结果:(1)细胞计数:细胞培养第1、3、5、7日,CD34抗体组细胞数目均多于对照组(p<0.05),(2)标本石蜡包埋后切片HE染色结果:第1天各组血管片表面细胞排列密集,紊乱,未完全铺开;第3天,对照组血管表面细胞数量减少明显,有断裂出现;CD34抗体组细胞连接成片,呈单层排布;第5,7日这种现象更明显,第7日两组细胞数与本组第5日无明显差异。
     结论:CD34抗体表面修饰的牛颈静脉,体外能促进内皮细胞的粘附与生长。
     第三章CD34抗体表面修饰去细胞光氧化牛颈静脉体内再内皮化研究
     目的:探讨鼠抗人CD34抗体表面修饰后的去细胞光氧化牛颈静脉体内促进再内皮化的情况。
     方法:24只犬随机分入处理组和对照组,将CD34抗体表面修饰和未修饰的血管植入犬右室流出道与肺动脉主干之间,采用连续缝合的方式进行旁路重建,术后两组均给予阿托伐他汀10mg/kg╱天和1.25mg/天剂量的华法林喂养,分别于术后10天、20天、1月、2月取出血管,标本进行石蜡包埋HE染色、Ⅷ因子免疫组织化学、透射电镜和扫描电镜检测,取普通显微镜40倍下的HE染色的血管片标本照相,用Image-pro plus 5.0对图像进行测量内膜厚度,计算平均值,两组间进行比较;取普通显微镜40倍Ⅷ因子免疫组织化学血管标本照相,Image-pro plus 5.0对图像进行细胞计数,评价内皮化程度。
     结果:(1)组织大体观结果:间植血管质软,周围粘连较轻,颜色变白,亚甲兰的蓝色已完全消失。剖开见血管表面光滑,瓣膜组织菲薄,开闭好,无血栓,其上附着一薄层增厚组织,薄而透明,为新生内膜组织。
     (2)HE染色结果:经过去细胞光氧化交联的BJVC植入体内,细胞浸润受到抑制,浸润全层首先在血管吻合区域发生,术后10天两组中间区域均未能浸润全层,只是在小部分个别区域全层BJVC有细胞相连;CD34抗体组在新生内膜中有更多的细胞,而对照组则主要还是纤维素等不定型成分。新生内膜在吻合区域薄,中间较厚,剔除新生内膜后的HE切片显示:术后10天,CD34抗体组BJVC表面有细胞粘附,对照组几乎没有细胞;CD34抗体组术后20天即能在内膜面看到内皮样细胞覆盖,术后1个月完整覆盖补片,对照组则需要术后2个月才能看到内膜面较多的细胞覆盖,Image-pro plus 5.0细胞计数抗体组较对照组多,内皮化程度高,统计学有显著差异。
     (3)Ⅷ因子染色结果:CD34抗体表面修饰后的血管片植入大鼠体内10天后Ⅷ因子染色即呈阳性,而且新生内膜中已经形成新生微血管,20天后阳性更强;对照组20天后内膜面只有很少的细胞,Ⅷ因子染色是阴性,2个月后虽然内膜面虽有较多的细胞,但是Ⅷ因子染色仍是阴性。
     (4)扫描电镜结果:CD34抗体组术后10天内膜面可见较多的上皮样细胞顺血流方向排列,但是细胞之间有间距,术后20天内膜面附着一层排列致密、整齐的内皮细胞,细胞间可见形成的牢固连接;对照组术后20天内膜面仍是增厚的纤维素样物质,下面似有细胞突起,可能为平滑肌或成纤维细胞,表面无内皮样细胞覆盖,只是粘附一些大分子物质和散在的一些小细胞。
     (5)内膜厚度的比较:术后第10天,CD34抗体组新生内膜较对照组厚,但是没有统计学意义(P>0.05),随后的20天、1个月、2个月CD34抗体组新生内膜均较对照组薄,而且有统计学意义(P<0.01)。两组新生内膜总体上说随着时间的延长,厚度越来越大,术后20天时达到高峰,1个月即开始下降,CD34抗体组术后20天新生内膜厚度有波折,其在2个月时下降到术后10天的水平,而对照组厚度值仍然较大。
     结论:CD34抗体表面修饰的牛颈静脉,体内能快速达到内皮化的效果,虽然仍然伴有内膜的增生,但是新生内膜的厚度显著薄于未经CD34抗体修饰的牛颈静脉。
ChapterⅠFabrication and Preliminary Assessment of Mouse Anti-human CD34 Grafting onto Decellularized and Photooxidated Bovine Jugular Vein Matrix Intima
     Objective:To investigate the suitable reactive concentration and ratio of photocrosslinking mouse anti-human CD34 onto the decellularized and photooxidated bovine jugular vein(BJV)matrix intima.
     Methods:BJV were decellularized and photooxidated,then divided into 16 groups randomly.The different concentration solutions of mouse anti-human CD34 and photochemical crosslinker SANPAH were prepared.The reaction between them were performed with 4 different mole ratios in 2 hours away from light.100μl reacted solution of them were dropped onto the prepared BJVC,then irradiated under 365nm ultraviolet ray for 5 minutes.The BJV were rinsed in a shaking machine for 6 hours.The fast frozen sections of the specimens were observed under the fluorescent microscope,after having been dropping goat anti-mouse IgG FITC-labeled.The brigtness of samples were measured and compared between two groups by using Image Pro Plus software.The grafting effect was viewed by different fluorescent brightness,so the suitable reactive concentration and ratio were educed.
     Results:The brighter mean and integrated fluorescence optical density on the side of endangium was viewed on the SANPAH photocrosslinking group.The higher the concentrations of mouse anti-human CD34 and SANPAH were,the brighter the mean and integrated fluorescence optical density was.But when the concentration of them was higher than 0.665×10~(-2)mM,the difference of fluorescent brightness was not so clear.In the same concentration,the fluorescence was brightest if the reactive mole ratio between them was 1:20.
     Conclusion:mouse anti-human CD34 could be covalently coated onto the BJVC endangium by photochemical cross-linker SANPAH.The optimal concentration of mouse anti-human CD34 and SANPAH and reactive mole ratio between them were 0.665×10~(-2)mM and 1:20 respectively.
     ChapterⅡReendothelialization on bovine jugular vein matrix modified with Mouse Anti-human CD34 in vitro
     Objective:To investigate the reendothelialization on bovine jugular vein matrix surface modified with mouse anti-human CD34 in vitro
     Methods:Decellularized and photooxidated bovine jugular vein was cut into 24 pieces of diameter 1.6cm,which were as large as the well in the 24-well culture plate.Mouse anti-human CD34 was photocrosslinked (mouse anti-human CD34 group)onto the surface of 12 BJVC pieces with the same procedure as the first chapter mentioned,12 rest untreated pieces as control.Human umbilical vein endothelial cells(HUVEC, CRL-2480)were implanted on these pieces with 5×10~5/ml density and cultured for 7 days.The cells were departed with enzyme from the surface of these pieces at 1~(st),3~(th),5~(th),7~(th),their numbers were counted.The slices of BJVC implanted with cells were HE stained and pictured.The difference between two groups was compared to verify whether BJVC modified with mouse anti-human CD34 could promote the cell adhesion and proliferation.
     Results:(1)Cells counting:The cells number in mouse anti-human CD34 group was more than control group at 1~(st),3~(rd),5~(th).7~(th)day(p<0.05). (2)At 1~(st)day,the cells arrayed intensively and not spreaded completely in each group's surface.At 3~(rd)day,the cells on BJVC surface decreased apparently and disrupt among themselves in control group,while the mouse anti-human CD34 group gained a cell-layer well.At 5~(th)and 7~(th)day, this phenomenon was more obvious.But this phenomenon was no different between 5~(th)and 7~(th)day respectively.
     Conclusions:mouse anti-human CD34 surface modification could promote the cell adhesion and prolification on BJVC in vitro.
     ChapterⅢReendothelialization on bovine jugular vein matrix modified with Mouse Anti-human CD34 in vivo
     Objective:To investigate the reendothelialization on bovine jugular vein matrix surface modified with mouse anti-human CD34 in vivo
     Methods:1.24 dogs were divided into mouse anti-human CD34 modified group and control group equally.BJVCs were implanted between their right ventricle and pulmonary artery.Running suture technique was performed.The dogs were fed with Warfarin of 1.25mg/d respectively.The conducts were harvested at 10~(th)day,20~(th)day,1~(st),2~(nd) month postoperatively.Gross view was achieved.The samples were HE stained and scanned under scanning electron microscope and tested ofⅧfactor dyeing with immunohistochemistry method.The cell numbers of endangium and the thickness of neointima were measured and compared between two groups by using Image Pro Plus software.
     Results:(1)Gross view:The conducts were harvested from IVC of the rats.Adherence with surrounding tissue was slight.The color of methylthioninium chloride disappeared and the patches turned white and were still soft.The inner side of all conducts was smooth.No thrombus was found in both two groups.The suture line was seen clearly.A thickening lamella was viewed on all patches.
     (2)HE(hematoxylin-eosin)stain:BJVC treated with photooxidation could inhibit cell infiltration.The infiltration occurred firstly in anastomotic area and was not through the whole midpiece wall after 2 months in both groups except in a very small area.Inside the neointima there were more cells in mouse anti-human CD34 group than control group.As soon as the neointima was shucked,cells were seen on BJVC surface in mouse anti-human CD34 group while few cells in control group at 10~(th)day postoperatively by HE stain.Endothelioid cells were viewed in mouse anti-human CD34 group at 10~(th)day and it completely covered neointima at 20~(th)days While this phenomenon occurred at 2~(nd) month in control group.
     (3)Ⅷfactor staining:Positive staining was viewed at 10~(th)day in mouse anti-human CD34 group,stronger positive at 20~(th)day postoperatively,and there was neocapillary in neointima at 10~(th)day postoperatively.There were fewer cells on the neointimal surface at 3~(rd) month in control group.Negative staining still existed at 2~(nd)month in control group postoperatively,though lots of cells were seen on the neointimal surface at this time.
     (4)Scanning electron microscope:Lots of endothelioid cells along with the direction of blood flow were observed but there was still distance between the cells in mouse anti-human CD34 group at 10~(th)day.A layer of endothelial cells were compacted and well-arrayed,the cell junction was tight at 20~(th)day in mouse anti-human CD34 group.There was only cellulose and macromolecule substance on the neointima in control group at these times.Though it was seems that there were cells under the surface but the endothelial cell covering was not observed.
     (5)Thickness of neointima:The neointima was thicker in mouse anti-human CD34 group than in control group at 10~(th)day postoperatively,but it was not significant(P>0.05).It was thinner in mouse anti-human CD34 group than in control at 20~(th)day,1~(st),2~(nd)month postoperatively(P<0.01).In general,the neointima turned thicker when time went on,which got to the peak at 1~(st)month and then went down in both group.The thickness of neointima at 20~(th)day decreased to the level of that at 10~(th)day postoperatively in mouse anti-human CD34 group, while the thickness of neointima was still large at 2~(nd)month in control group.
     Conclusions:mouse anti-human CD34 surface modification could promote the cell adhesion and prolification on BJVC in vivo.Fast reendothelialization was achieved on the BJVC patches modified with mouse anti-human CD34 in vivo.Even still accompanying with intima hyperplasia,but the thickness of neointima was slighter than that untreated with mouse anti-human CD34.
引文
[1].Wei Dong Lu,Feng Lei Yu and Zhong Shi Wu,Superior vena cava reconstruction using bovine jugular vein conduit,European Journal of Cardio-Thoracic Surgery,2007,32(5),816-817
    [2].Bonhoeffer P,Boudjemline Y,Hausse AO,et al.Trascatheter implantation of a bovine valve in pulmonary position:a lamb study.Circulation,2000,102:813-816.
    [3].Gomez-Jorge J,Venbrux AC,Magee C.Percutaneous deployment of a valve bovine jugular vein in the swine venous system:a potential treatment for venous insufficiency.J Vac Interv Radiol,2000,11:931-936.
    [4].方佩斐,贾维敏.组织工程中天然支架材料的研究现状.医学文选,2006,25(4):901-903
    [5].Zund G,Hoerstrup SP,Schoeberlein A,et al.Tissue engineering:a new approach in cardiovascular surgery:Seeding of human fibroblasts followed by human endothelial cells on resorbable mesh.Eur J Cardiothorac Surg,1998,13:160-4
    [6].Kim BS,Nikolovski J,Bonadio J,et al.Engineered smooth muscle tissues:regulating cell phenotype with the scaffold.Exp Cell Res,1999,251:318-28
    [7].Hoerstrup SP,Zund G,Sodian R,et al.Tissue engineering of small caliber vascular grafts.Eur J Cardiothorac Surg 2001;20:164-9
    [8].Niklason LE,Gao J,Abbott WM,et al.Functional arteries grown in vitro.Science,1999,284:489-93
    [9].Shum-Tim D,Stock U,Hrkach J,et al.Tissue engineering of autologous aorta using a new biodegradable polymer.Ann Thorac Surg,1999;68:2298-305
    [10].Stephen F.Badylak,Regenerative Medicine and Developmental Biology:The Role of the Extracellular Matrix.Anat Rec,2005,287(B):36-41,.
    [11].Li F,Li W,Johnson S,Ingram D,et al,Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells.2004,11:199-206.
    [12].Dave HH,Kadner A,Berger F,et al.Early results of the bovine jugular vein graft used for reconstruction of the right ventricular outflow tract[J].Ann Thorac Surg,2005,79(2):618-624.
    [13].Boethig D,Thies WR,Hecker H,et al.Mid term course after pediatric right ventricular outflow tract reconstruction:a comparison of homografts,porcine xenografts and Contegras[J].Eur J Cardio thorac Surg,2005,27(1):58-66.
    [14].Brown JW,Ruzmetov M,Rodefeld MD,et al.Valved bovine jugular vein conduits for right ventricular outflow tract reconstruction in children:an attractive alternative to pulmonary homograft.Ann Thorac Surg.2006,82(3):909-916
    [15].吴忠仕,胡建国,杨一峰,等.带瓣牛颈静脉在治疗复杂先天性心脏病中的应用.中南大学学报(医学版).2005,30(4):471-473
    [16].Herijgers P,Ozaki S,Verbeken E,et al.Valved jugular vein segments for right ventricular outflow tract reconstruction in young sheep.J Thorac Cardiovasc Surg,2002,124(4):798-805.
    [17].Tiete AR,Sachweh JS,Roemer U,et al.Right ventricular outflow tract reconstruction with the Contegra bovine jugular vein conduit:a word of caution.Ann Thorac Surg,2004,77(6):2151-2156..
    [18].Jiro Aoki,Patrick W.Serruys,Heleen van Beusekom,et al,Endothelial Progenitor Cell Capture by Stents Coated With Antibody Against CD34 The HEALING-FIM(Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man)Registry Journal of the American College of Cardiology Vol.45,No.10,2005,1574-157.
    [19].曹华明,苏海,王晓华,等,CD34抗体包被支架预防兔损伤动脉支架内狭窄,中国病理生理杂志,2007,23(10):2060-2062
    [20].Joris I.Rotmans;Jan M.M.Heyligers;Hence J.M.Verhagen,et al,In Vivo Cell Seeding With Anti-CD34 Antibodies Successfully Accelerates Endothelialization but Stimulates Intimal Hyperplasia in Porcine Arteriovenous Expanded Polytetrafluoroethylene Grafts.Circulation 2005;112;12-18;Ferreira LS,Gerecht S,Fuller J,et al.Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells.Biomaterials.2007,28(17):2706-2717
    [21]. Hadjizadeh A, Doillon CJ, Vermette P,et al.Bioactive polymer fibers to direct endothelial cell growth in a three-dimensional environment. Biomacromolecu- les. 2007 Mar;8(3):864-73
    
    [22]. Teebken OE, Haverich A. Tissue engineering of small diameter vascular grafts. Eur J V asc Endovasc Surg, 2002; 23 : 474
    
    [23]. Ichikawa Y. A new RV-PA conduit with a natural valve made of bovine jugular vein. ASAIO J, 1992,38 :M266 - 270.
    [24]. Ichikawa Y, Noishiki Y, Soma T , et al . A new antithrombogenic RV-PA valved conduit. ASAIO J , 1994,40 :N714 - 718.
    [25]. Ichikawa Y, Noishiki Y, Kosuge T , et al. Use of a bovine jugular vein graft with natural valve for right venticular outflow tract reconstruction : a one-year animal study. J Thorac Cardiovasc Surg, 1998,115 :960 - 961.
    [26]. Eberl T. Experimental in vitro endothelialization of cardiac valve leaflets. Ann Thorac Srug,1991,53:487-492
    [27]. Ferrans VJ, Spray TL, Billingham ME, et al. Structual changes in glutaraldehyde-treated procine heterografts used as substitude cardiac valves. Transmission and scaning electron microscopic observations in 12 patients. Am J Cardiol,1987,42:1159
    [28]. Dunn JM, Marmon LM. Mechanisms of calcification of tissue valves. Cardiol Clin 1985,3:385-396
    
    
    [29]. Human P, Zilla PJ . Inflammatory and immune processes: the neglected villain of bioprosthetic degeneration? Long Term Eff Med Implants 2001;11(3-4):199-220
    [30]. Dahm M, Husmann M, Eckhard M, et al. Relevance of immunologic reactions for tissue failure of bioprosthetic heart valves. Ann Thorac Surg 1995;60:S348-52.
    [31]. Eishi K, Ishibashi UH, Nakano K, et al. Calcific degeneration of bioprosthetic aortic valves in patients receiving steroid therapy. J Heart Valve Dis 1996;5:668-72
    [32]. Chauvaud S, Jebara V, Chachques J, et al. Valve extension with glutaraldehyde-preserved autologous pericardium Results in mitral valve repair. J Thorac Cardiovasc Surg 1991;102:171-8.
    [33]. Suh H, Hwang YS, Park JC, Cho BK. Calcification of leaflets from porcine aortic valves crosslinked by ultraviolet irradiation. Artifical Organs 2000 Jul;24(7):555-63.
    [34]. Rossi MA,Braile DM,Teixeira MD,et al.Lipid extraction attenuates the calcific degeneration of bovine pericardium used in cardiac valve bioprostheses. J Exp Pathol (Oxford), 1990; 71:187-196.
    
    [35]. Jorge-Herrero E,Gutierrez MP,Castillo-Olivares JL.Calcification of soft tissue employed in the construction of heart valve prostheses: study of different chemical treatments. Biomaterials, 1991; 12:249-252.
    [36]. Jorge-Herrero E, Fernandez P ,Gutierrezand M .Study of the calcification of bovine pericardium: analysis of the implication of lipids and proteoglycans. Biomaterials, 1991; 12:683-689.
    [37]. Nimni ME, Cheung D,Strates B,et al.Chemically modified collagen: a natural biomaterial for tissue replacement. J Biomed Mater Res, 1987; 21:741-771.
    [38]. Hilbert SL, Boerboom LE, Livesey SA,et al. Explant pathology study of decellularized carotid artery vascular grafts. Biomed Mater Res, 2004; 69(2):197-204.
    [39]. Schoen FJ, Levy RJ,Nelson AC , et al. Onset and progression of experimental bioprosthetic heart valve calcification. Lab Invest 1985; 52:523-532.
    [40]. Schoen FJ. Pathologic findings in explanted clinical bioprosthetic valves fabricated from photooxidized bovine pericardium. J Heart Valve Dis, 1998 Mar, 7(2): 174-9.
    [41]. Bengtsson LA, Phillips R, Haegerstrand AN. In vitro endothelialization of photooxidatively stabilized xenogeneic pericardium. Ann Thorac Surg 1995;60(Suppl 2):S365-368.
    [42]. Fischbeck JA, Hern D, Ranieri J, et al. Genetically modified xenogeneic endothelium for tissue engineered vascular grafts. In: Peppas NA, editor. Proceedings of the 1997 Topical Conference on Biomaterials, Carriers for Drug Delivery,and Scalolds for Tissue Engineering(AIChE,NY),1997.p.344-346.
    [43].Bianco RW,Phillips R,Mrachek J,et al.Feasibility evaluation of a new pericardial bioprosthesis with dye mediated photo-oxidized bovine pericardial tissue.J Heart Valve Dis 1996;5:317-322
    [44].Hern-Anderson D,Ranieri J.Sulzer Innotec,Inc.,Austin,TX,personal communication,1999.
    [45].冯耀光,吴忠仕,胡建国,等,光氧化反应处理牛颈静脉带瓣管道的形态学与理化性能研究。中南大学学报(医学版),2004;29:429-431
    [46].Adams AK,Talman EA,Campbell L,et al,Crosslink formation in porcine valves stabilized by dye-mediated photooxidation,John Wiley & Sons,Inc.2001:582-587
    [47].Ewa M.kozma,Gregorz Wisowski,Agnieszka,et al,The influence of physical and chemical agents on Photooxidation of Porcine pericardial collagen.Bio Medicine Material and Engineering,2005,15:137-144
    [48].Glenn M.LaMuraglia,Farzin Adili,et al,Photodynamic Therapy Inhibits Experimental Allograft Rejection,Circulation,1995;92:1919-1926.
    [49].Marcus Overhaus,Joerg Heckenkamp,Sylvie Kossodo,et al,Photodynamic Therapy Generates a Matrix Barrier to Invasive Vascular Cell Migration,Circ.Res.2000;86;334-340
    [50].王晖,胡建国,吴忠仕,不同交联方法处理的牛颈静脉移植后免疫学的研究,中国医师杂志,2005,7(7):928-930
    [51].Ke-Xiang Liu,Fumio Yamamoto,Satoshi Sekine,et al,Inhibitory Effect of Methylene Blue-Induced Photooxidation on Intimal Thickening of Vein Graft,Ann Thorac Surg,1999;68:84-8
    [52].ShiQ,Rafii S,WuMH,et al.Evidence for circulating bone marrow-derived endothelial cells[J].Blood,1998,92:362-367.
    [53].SchmidtD,B reymann C,WeberA,et al.Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts[J].Ann Thorac Surg,2004,78(6):2094-2098.
    [54].Cho HJ,Kim HS,LeeMM,et al.Mobilized endothelial progenitor cells by granulocyte-macrophage colony-stimulating factor accelerate reendothelialization and reduce vascular inflammation after intravascular radiation [J]. Circulation,2003,108 (23): 2918-2925.
    [55]. Griese DP,Achatz S,Batzlsperger CA, et al. Vascular gene delivery of anticoagulants by transp lantation of retrovirally transduced endothelial p rogenitor cells[J]. Cardiovasc Res, 2003,58 (2): 4692477.
    [56]. Walter DH, R itting K, Bahlmann FH, et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow derived endothelial p rogenitor cells [J]. Circulation, 2002, 105:3017-3024.
    [57]. Glogaher M , Ferrier J. A New Method for Application of Force to Cells via Ferric Oxide Beads. Pflugers Arch. 1998;435 (2) : 320
    [58]. Hadjizadeh A, Doillon CJ, Vermette P. Bioactive polymer fibers to direct endothelial cell growth in a three-dimensional environment. Biomacromolecules. 2007,8(3):864-73.
    [59]. Gauvreau V, Laroche G.Micropattern printing of adhesion, spreading, and migration peptides on poly(tetrafluoroethylene) films to promote endothelialization. Bioconjug Chem,2005,16(5):1088-97.
    
    [60]. Theresa M. Allen , Ester Brandeis, Christian B et al. A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. Biochimica et Biophysica Acta 1237 (1995) 99-108.
    [61]. M. Mercadal, J.C. Domingo, J. Petriz . A novel strategy a(?)ords high-yield coupling of antibody to extremities of liposomal surface-grafted PEG chains ,Biochimica et Biophysica Acta 1418 (1999) 232-238.
    [62]. Christian B Hansen, Grace Y. Kao, Elaine H.et al. Moase Attachment of antibodies to sterically stabilized liposomes: evaluation,comparison and optimization of coupling procedures Biochimica et Biophysica Acta 1239 (1995) 133-144.,
    [63]. Christophe Boeckler , Beno?t Frisch , Sylviane Muller Immunogenicity of new heterobifunctional cross-linking reagents used in the conjugation of synthetic peptides to liposomes Journal of Immunological Methods 19 1(1996)1-10.
    [64].YB Zhu,C Y Gao.Biomaterials,2002,23(24):4889-4895
    [65].罗祥林,黄嘉,何斌,等,光化学固定法--医用高分子材料表面改性的一种新方法,生物医学工程学杂志,2000:17(3):320-323
    [66].Jhansi Kota,Per O.Ljungdahl,Specialized membrane-localized chaperones prevent aggregation of polytopic proteins in the ER,JCB,2005,168(1):79-88
    [67].Vasupu NJ,Jewell M.Graves,et al,Efect of VitaminD Analog(1_Hydroxy D5)Immunoconjugated to Her-2 Antibody on Breast Cancer,Int.J.Cancer,2004,108,922-929
    [68].Azmi Naqvi,Pradip Nahar.Photochemical immobilization of proteins on microwave-synthesized photoreactive polymers,Analytical Biochemistry,2004,327:68-73
    [69].Gregory T.Carroll,Denong Wang,Nicholas J.Turro,et al,Photochemical Micropatterning of Carbohydrates on a Surface,Langmuir,2006,22,2899-2905
    [70].Kantlehner M,Schaffner P,Finsinger D,et al.Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation.Chem-BioChem 2000;1:107-14.
    [71].Wendt SJ,Ziemecki TL,Spagb LS,et al.Indiret cytotoxic evaluation of dental materials.Oral Surg Oral Med Oral Pathol,1993,75:353-356.
    [72].Metzler V,Bienert H,Lehmann T,et al.Anovel method for quantifying shape deformation applied to biocompatibility testing.ASAIOJ,1999,45:264-271,
    [73].Kue R,Sohrabi A,Nagle D,et al.Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells on silicon nitride ceramic discs.Biomaterials,1999,20:1195-1201.
    [74].Steven K,Nelson A,John C,et al.Cytotoxicity of dental casting alloys pretreated with biologic solutions.J Prosthet Dent,1999,81:591-597.
    [75].Srivastava S,Gorham SD,Courtney JM.Screening of in vitro cytotoxicity by the adhesive film test. Biomaterials, 1990,11(2) :133
    
    [76]. Kirkpatrick CJ, Bittinger E, Wangner M, et al. Current trends in biocompatibility testing. Proc Inst Mech Eng H, 1998, 212:75-79.
    [77]. Lewis CW, Smith JE, Anderson JG, et al. Increased cytotoxicity of food-borne mycotoxins toward human cell lines in vitro via enhanced cytochrome p450 expression using the MTT bioassay. Mycopathologia, 1999, 148(2):97-102.
    
    [78]. Hsiao WL, Mo ZY, Fang M, et al. Cytotoxicity of PM(2.5) and PM(2.5-10) ambient air pollutants assessed by the MTT and the Comet assays. Mutat Res, 2000, 471(1-2):45-55.
    
    [79]. Johson HJ. Biocompatibility test procedures for materials evaluation in vitro comparative test system sensitivity. J Biomed Mater Res, 1983, 17:571-576.
    [80]. Loredana De Bartolo, Sabrina Morelli, Antonella Piscioneri,et al. Novel membranes and surface modification able to activate specific cellular responses. Biomolecular Engineering. 2007,24:23-26
    [81]. Hong Yu, Wangde Dai, Zhe Yang, et al. Smooth muscle cells improve endothelial cell retention on polytetrafluoroethylene grafts in vivoJ Vasc Surg2003;38:557-63
    [82]. Cho SW,Park HJ,Ryu JH,et al. Vascular patches tissue-engineered with autologous bone marrow-derived cells and decellularized tissue matrices. Biomaterials,2005,26(14):1915-1924
    [83]. Kaushal S,Amiel GE, Guleserian KJ, et al, Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med.2001,7(9):996-997
    [84]. Bos GW,Poot AA,Beugeling T,et al.Small-diameter vascular graft Prostheses: current status. Arch Physiol Biochem. 1998,106:100-115
    [85]. Ishikawa T, Eguchi M, Wada M, et al. Establishment of a functionally active collagen-binding vascular endothelial growth factor fusion protein in situ. Arterioscler Thromb Vasc Biol. 2006,26(9): 1998-2004
    [86]. Dio K,Matsuda T.Enhanced vascularization in a microporous polyurethane graft impregnated with basic fibroblast growth factor and heparin. J Biomed Master Res.1997,34:361-370
    [87]. Sharon Sagnella, Eroc Anderson, Naomi Sanabria,et al. Human Endothelial Cell Interaction with Biomimetic Surfactant Polymers Containing Peptide Ligands from the Heparin Binding Domain of Fibronectin. Tissue Eng. 2005 ; 11(1-2): 226-236.
    [88]. Bordenave L,Remy-Zoghadri M,Fernandez PH,et al,Clinical performance of vascular graft lined with endothelial cells.Endothelium. 1999,6:267-275
    [89]. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science. 1999;284:489-93.
    [90]. Shinoka T, Imai Y, Ikada Y. Transplantation of a tissue engineered pulmonary artery. N Engl J Med 2001;344:532-3.
    [91]. L' Heurenx N , Paquet S , Labbe R ,et al. A completely biological tissue engineered human blood vessel [J ] .FASEB, 1998,12 :47 - 56.
    [92]. L' Heurenx N , Stocld J , Francois A , et al . A human tissue engineered vascular media :a new model for pharmacological studies of contractile responses[J ]. FASEB, 2001,15 :515 - 524.
    [93]. Kadner A,Zund G,Maurus C,et al. Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. Eur J Cardiothorac Surg. Eur J Cardiothorac Surg,2004,25(4):635-641
    [94]. Yu H, Wang Y, Eton D, et al. Dual cell seeding and the use of zymogen tissue plasminogen activator to improve cell retention on polytetrafluoroethylene grafts. J Vasc Surg 2001;34:337-43.
    [95]. Fillinger MF, O'Connor SE, Wagner RJ, et al. The effect of endothelial cell coculrure on smooth muscle cell proliferation. J Vasc Surg. 1993; 17:1058-68.
    [96]. Powell RJ, Cronenwett JL, Fillinger MF, et al. Endothelial cell modulation of smooth muscle cell morphology and organizational growth pattern. Ann Vasc Surg. 1996;10:4-10.
    [97]. Hong Yu, Wangde Dai, Zhe Yang, et al. Smooth muscle cells improve endothelial cell retention on polytetrafluoroethylene grafts in vivoJ Vase Surg. 2003;38:557-63
    [98]. Matsumura G,Miyagawa-Tomita,Shin'oka T,et al. First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo.Circulation,2003,108(14):1729-1734
    [99].Shin'oka T,Matsumura G,Hibino N,et al.Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells.J Thorac Cardiovasc Surg,2005,129(6):1330-1338
    [100].Kaushal S,Amiel GE,Guleserian KJ,et al,Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo.Nat Med.2001,7(9):996-997
    [101].易成刚.血管内皮祖细胞的研究进展及在整形外科应用前景.中华整形外科杂志,2004,20:305-307
    [102].Urbich C,Dernbach E,Zeiher AM,et al,Double-edged role of statins in angiogenesis signaling.Circ Res,2002,90:737-744
    [103].Rosenzweig A.Circulating endothelial progenitors cells as biomarkers,N Egl J Med,2005,353:1055-1057
    [104].Cetrulo CL,Knox KR,Brown DJ,et al,Stem cells and distraction osteogenesis:endothelial progenitor cells home to the ischemic generate in activation and consolidation.Plast Reconstr Surg.2005,116:1053-1067.
    [105].Tepper OM,Capla JM,Galiano RD,et al,Adult vasculogenesis occurs through in situ recruitment,proliferation,and tubulization of circulating bone marrow-derived cells.Blood,2005,105:1068-1077
    [106].季亢挺.内皮祖细胞与他汀类药物调脂外心血管保护作用,心血管病学进展,2004,(25)5:360-362
    [107].Kazuro L Fujimoto,Jianjun Guan,et al.In Vivo Evaluation of a Porous Elastic Biodegradable Patch for Reconstructive Cardiac Procedures.Ann Thorac Surg.2007,83:648-54
    [108].Yuguang Wu,Felix I Simonovsky,Buddy D.Ratner,et al,The role of adsorbed fibrinogen in platelet adhesion to polyurethane surfaces:A comparison of surface hydrophobicity,protein adsorption,monoclonal antibody binding,and platelet adhesion,J Biomed Mater Res,2005,74:722-738
    [109].Redmond EM,Cullen JP,Cahill PA,,et al.Endothelial cells inhibit flow-induced smooth muscle cell migration: role of plasminogen activator inhibitor-1. Circulation 2001; 103:597-603.
    [110]. Proia RR, Nelson PR, Mulligan-Kehoe MJ, et al. The effect of endothelial cell overexpression of plasminogenactivator inhibitor-1 on smooth muscle cell migration. J Vasc Surg,2002;36:164-71.
    [111]. Fillinger MF, O'Connor SE, Wagner RJ, et al. The effect of endothelial cell coculrure on smooth muscle cell proliferation. J Vasc Surg 1993; 17:1058-67 discussion 1067-8.
    [112]. Powell RJ, Cronenwett JL, Fillinger MF, et al. Endothelial cell modulation of smooth muscle cell morphology and organizational growth pattern. Ann Vase Surg.1996;10:4-10.
    [113]. Hong Yu, Wangde Dai, Zhe Yang, et al.Smooth muscle cells improve endothelial cell retention on polytetrafluoroethylene grafts in vivoJ Vasc Surg 2003;38:557-63
    [114]. Angela GV, Yan Jiang,Marc DB. Pressure alters endothelial effects upon vascular smooth muscle cells by decreasing smooth muscle cell proliferation and increasing smooth muscle cell apoptosis. The American Journal of Surgery, 2004,190(5):780-786
    
    [115]. McDonald DA. Blood flow in arteries. London: Arnold; 1974.
    [116]. Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for arterogenesis. Proc Roy Soc London B .1971;177:109-59.
    [117]. Bassiouny HS , Song RH , Hong XF , et al. Flowregulation of 722kD Collagenase IV (MMP-2) after experimental arterial injury. Circulation , 1998,98 (2): 1572163
    [118]. Schechner J S , Nath AK, Zheng L , et al. In vivo formation of complex microvessels lined by human endothelial cells in an immundeficient mouse. Proc Natl Acad Sci, 2000,97 :9191 - 9196.
    [119]. Matsumura G, Miyagawa-Tomita S, Shin'oka T, et al. First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation .2003,108:1729-34.
    [120]. Sata M, Saiura A, Kunisato A, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 2002;8:403-9.
    [121]. Reyes M, Dudek A, Jahagirdar B,et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002;109:337-46.
    [122]. Kashiwakura Y, Katoh Y, Tamayose K,et al. Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM-2a promoter: in vitro differentiation of putative smooth muscle progenitor cells of bone marrow. Circulation 2003;107:2078-81.
    [1]. Gundry SR , Razzouk AJ , Boskind JF , et al. Fate of the pericardial monocusp pulmonary valve for right ventricular outflow tract reconstruction : early function , late failure without obstruction. J Thorac Cardiovasc Surg , 1994,107 :908 - 913.
    [2]. Stewart S , Manning J, Alexson C, et al. The Hancock external valved conduit: a dichotomy between late clinical results and late cardiac catheterization findings. J Thorac Cardiovasc Surg, 1983,86 :562 - 569.
    [3]. Bowman FO Jr, Hancock WD, MalmJRl. A valve containing dacron prosthesis. Arch Surg, 1973 ,107 :724 - 728.
    [4]. Cipriano PR , Billingham ME , Oyer PE , et al . Calcification of porcine prosthetic heart valves : a radiographic and light microscopic study. Circulation, 1982,66:1100 -1104.
    [5]. Saravalli OA , Somerville J , Jefferson KE. Calcification of aortic homografts used for reconstruction of the right ventricular outflow tract . J Thorac Cardiovasc Surg, 1980,80 :902 - 920.
    [6]. Kirklin JK, Smith D , Novick W, et al. Long term function of cryopreserved aortic homografts. J Thorac Cardiovasc Surg, 1993,106 :154 -164.
    [7]. Clarke DR , Bishop DA. Ten year experience with pulmonary allografts in children. J Heart Valve Dis, 1995 ,4 :384 - 391.
    [8]. Tam RK, Tolan MJ , Zamvar VY, et al . Use of larger sized aortic homograft conduits in right ventricular outflow tract reconstruction. J Heart Valve Dis ,1995 ,4 :660 - 664.
    [9]. Sano S, Karl TR, Mee RB. Extracardiac valved conduits in the pulmonary circuit. Ann Thorac Surg. 1991 ;52(2):285-290.
    [10]. Rastelli GC, McGoon DC, Wallace RB. Anatomic correction of transposition of the great arteries with ventricular septal defect and subpulmonary stenosis. J Thorac Cardiovasc Surg. 1969 ;58(4):545-552.
    [11]. Ilbawi MN, DeLeon SY, Backer CL,et al. An alternative approach to the surgical management of physiologically corrected transposition with ventricular septal defect and pulmonary stenosis or atresia. J Thorac Cardiovasc Surg. 1990;100(3):410-415
    [12].Delius RE,Stark J.Combined Rastelli and atrial switch procedure:anatomic and physiologic correction of discordant atrioventricular connection associated with ventricular septal defect and left ventricular outflow tract obstruction.Eur J Cardiothorac Surg.1996;10(7):551-555.
    [13].Imai Y,Sawatari K,Hoshino S,et al.Ventricular function after anatomic repair in patients with atrioventricular discordance.J Thorac Cardiovasc Surg.1994;107(5):1272-1283.
    [14].Wei Dong Lu,Feng Lei Yu and Zhong Shi Wu,Superior vena cava reconstruction using bovine jugular vein conduit,European Journal of Cardio-Thoracic Surgery,2007,32(5),816-817
    [15].Bonhoeffer P,Boudjemline Y,Hausse AO,et al.Trascatheter implantation of a bovine valve in pulmonary position:a lamb study.Circulation,2000,102:813-816.
    [16].Gomez-Jorge J,Venbrux AC,Magee C.Percutaneous deployment of a valve bovine jugular vein in the swine venous system:a potential treatment for venous insufficiency.J Vac Interv Radiol,2000,11:931-936.
    [17].Ichikawa Y.A new RV-PA conduit with a natural valve made of bovine jugular vein.ASAIO J,1992,38:M266-270.
    [18].Ichikawa Y,Noishiki Y,Soma T,et al.A new antithrombogenic RV-PA valved conduit.ASAIO J,1994,40:N714-718.
    [19].Ichikawa Y,Noishiki Y,Kosuge T,et al.Use of a bovine jugular vein graft with natural valve for right venticular outflow tract reconstruction:a one-year animal study.J Thorac Cardiovasc Surg,1998,115:960-961.
    [20].陈恩,丁文祥,鲁亚男,等.亲水性交联剂处理牛颈静脉的理化特征[J].生物医学工程学杂志,2004,25(1):75-77
    [21].吴忠仕,张竟超,程端,等.牛颈静脉带瓣管道结构特性及流体动力学的实验研究[J].湖南医科大学学报,2003,28(3):298-300.
    [22].SungHW,ChangY,ChiuYT,etal.Crosslinking characteristics and mechanical properties of bovine pericardium fixed with anaturally occurring crosslinking agent.JBiomed MaterRes,1999;47:116
    [23]. Eberl T. Experimental in vitro endothelialization of cardiac valve leaflets. Ann Thorac Srug,1991,53:487-492
    [24]. Ferrans VJ, Spray TL, Billingham ME, et al. Structual changes in glutaraldehyde-treated procine heterografts used as substitude cardiac valves. Transmission and scaning electron microscopic observations in 12 patients. Am J Cardiol,1987,42:1159
    [25]. Dunn JM, Marmon LM. Mechanisms of calcification of tissue valves. Cardiol Clin 1985,3:385-396
    [26]. Human P, Zilla PJ . Inflammatory and immune processes: the neglected villain of bioprosthetic degeneration? Long Term Eff Med Implants 2001;11(3-4):199-220
    [27]. Dahm M, Husmann M, Eckhard M, et al. Relevance of immunologic reactions for tissue failure of bioprosthetic heart valves. Ann Thorac Surg 1995;60:S348-52.
    [28]. Eishi K, Ishibashi UH, Nakano K, et al. Calcific degeneration of bioprosthetic aortic valves in patients receiving steroid therapy. J Heart Valve Dis 1996;5:668-72.
    [29]. Chauvaud S, Jebara V, Chachques J, et al. Valve extension with glutaraldehyde- preserved autologous pericardium Results in mitral valve repair. J Thorac Cardiovasc Surg 1991;102:171-8.
    [30]. Suh H, Hwang YS, Park JC, Cho BK. Calcification of leaflets from porcine aortic valves crosslinked by ultraviolet irradiation. Artif Organs 2000 Jul;24(7):555-63.
    [31]. Chatzis AC, Giannopoulos NM, Bobos D, et al. New xenograft valved conduit (contegra) for right ventricular outflow tract reconstruction. Heart Surg Forum. 2003;6(5):396-398.
    [32]. Boudjemline Y, Bonnet D, Massih TA,et al. Use of bovine jugular vein to reconstruct the right ventricular outflow tract: early results. J Thorac Cardiovasc Surg. 2003 Aug;126(2):490-497.
    [33]. Bove T, Demanet H, Wauthy P, Goldstein JP, et al. Early results of valved bovine jugular vein conduit versus bicuspid homograft for right ventricular outflow tract reconstruction. Ann Thorac Surg. 2002 Aug;74(2):536-541
    [34]. Carrel T, Berdat P, Pavlovic M, et al. The bovine jugular vein: a totally integrated valved conduit to repair the right ventricular outflow. J Heart Valve Dis. 2002 Jul;11(4):552-556.
    [35]. Weadock K, Olson RM, Silver FH..Evaluation of collagen crosslinking techniques. Biomater Med Dev Artif Organs1983-84;11:293-318.
    [36]. Breymann T, Thies WR, Boethig D, et al. Bovine valved venous xenografts for RVOT reconstruction: results after 71 implantations. Eur J Cardiothorac Surg. 2002 Apr;21(4):703-710.
    [37]. T Bove, H Demanet, P Wauthy et al. Early results of valved bovine jugular vein conduit versus bicuspid homograft for right ventricular outflow tract reconstruction. Ann Thorac Surg 2002;74:536-541.
    [38]. Dave H, Kadner A, Bauersfeld U, et al Early Results of Using the Bovine Jugular Vein for Right Ventricular. Outflow Reconstruction during the Ross Procedure. Heart Surg Forum. 2003;6(5):390-392.
    [39]. Corno AF, Hurni M, Griffin H , et al. Glutaraldyhyd fixed bovine jugular vein as a substitute for the pulmonary valve in the Ross operation. J Thorac Cardiovasc Surg, 2001,122 :493 - 494.
    [40]. Chang Y, Tsai CC , Liang HC , et al . Reconstruction of the right ventricular outflow tract with a bovine jugular vein graft fixed with a naturally occurring crosslinking agent (genipin) in a canine model . J Thorac Cardiovasc Surg ,2001,122 :1208 -1218.
    [41]. Tu R,Lu CL,Thyagarajan K,et al.Kinetic study of collagen fixation with polyepoxy fixatives J Biomed Mater Res,1993:27 '. 3
    [42]. Lee JM, Pereira CA, Kan LWK. Effect of molecular structure of poly(glycidylether) reagents on crosslinking and mechanical properties of bovine pericardial xenograft materials.JBiomed Mater Res,1994;28 '. 981.
    [43]. SungHW,HsuCS,LeeYS.Physical properties of aporc internal thoracic artery fixed with an epoxy compound Biomaterials, 1996;17 '. 2357
    [44]. SungHW,ChangY,ChiuYT,et al. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with anaturally occurring crosslinking agent.J Biome MaterRes,1999;47:116
    [45].SungHW,HsuHL,ShihCC,et al.Cross-linking characteristics of biological tissues fixed with monojfunkjjkjctional on multifunctional epoxycompounds.Biomaterials,1996;17:1405
    [46].Schmidt CE,BaierJM.A cellular vascular tissues:Natural biomaterials for tissuere pair and tissue engineering.Biomaterials,2000;21:2215
    [47].Mazzucotelli JP,BertrandP,Benhaiem-SigauxN,etal.In vitro and in vivo evaluation of a small caliber vascula prosthesis fixed with a polyepoxy compound.Artif Organs,1995;19:896.
    [48].Ichikawa Y,Noishiki Y,Soma T,et al.A new antithrombogenic RV-PA valved conduit.ASAIO J 1994 Jul-Sep;40(3):M714-8.
    [49].Ichikawa Y,Noishiki Y,Kosuge T,et al.Use of a bovine jugular vein graft with natural valve for right ventricular outflow tract reconstruction:a one-year animal study.J Thorac Cardiovasc Surg 1997 Aug;114(2):224-33
    [50].徐朝军,胡铁辉,吴忠仕,等,杂种犬右室肺动脉连接重建动物模型的建立。中国比较医学杂志,2005;15(6):360-362.
    [51].Sung HW,LiangIL,ChenCN,et al.Stability of a biological tissue fixed with anaturally occurring crosslinking agent(genipin).J Biomed Mater Res,2001;55:538.
    [52].Sung HW,ChangY,LiangIL,et al.Fixation of biological tissues with anaturally occurring crosslinking agent:Fixation rate and effects of PH,temperature,and initial fixative concentration.[J]Biomed Mater Res 2000;52:77.
    [53].Sung HW,HuangRN,HuangLLH,et al.Feasibility study of a natural crosslinking reagent for biological tissue fixation.J Biomed Mater Res,1998;42:560.
    [54].Sung HW,ChangY,ChiuCT,etal.Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent.Biomaterials,1999;20:1759.
    [55].Chang Y,T saiCC,LiangHC,et al.In vivo evaluate on of cellular and acellular bovine pericardia fixed with anaturally occurring crosslinking agent(genipin).Biomaterials,2002;23:2447.
    [56], Sung HW,Huang RN,Huang L LH,et al.In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. J Biomater Sci Polymer Edn,1999 ;10 : 63.
    [57]. Chang Y, Tsai CC, Liang HC, et al. Reconstruction of the right ventricular outflow tract with a bovine jugular vein graft fixed with a naturally occurring crosslinking agent (genipin) in a canine model. J Thorac Cardiovasc Surg 2001 Dec;122(6):1208-18.
    [58]. Adams AK,Talman EA,Campbell L,et al.Crosslink formation in porcine valves stabilized by dye-mediated photooxidation. J Biomed Mater Res, 2001;57 : 582.
    [59]. Moore MA,Adams AK.Calcification resistance,biostability,and low immunogenity potential of porcine heart valves modified by dye-mediated photooxidationJ Biomed Mater Res,2001;56 '. 24.
    [60]. Moore MA, Chen WM, Phillips RE. Shrinkage temperature versus protein extraction as a measure of stabilization of photooxidized tissueJ Biomed Mater Res, 1996,32(2):209-214.
    [61]. Moore MA, Bohachevsky IK, Cheung DT, et al. Stabilization ofpericardial tissue by dye-mediated photooxidation. J Biomed Mat Res 1994;28:611-8.
    [62]. Bianco RW,Phillip sR,Mrachek J.Feasibility evaluation of a new pericardial bioprosthesis with dyemediated photooxidized bovine pericardial tissue J Heart Valve Dis,1996,5(3):317 322.
    [63]. Sevendsen CA,Kreykes NS,Butany J,et al.in vivo assessment of a photofixed bovine pericardial valve. J Heart Valve Dis 2000,9(6);813-820
    [64]. Grabenwoger M, Sider J, Fitzal F, Zelenka C, et al. Impact of glutaraldehyde on calcification of pericardial bioprosthetic heart valve material. Ann Thorac Surg 1996 Sep;62(3):772-7.
    [65]. Rossi MA,Braile DM,Teixeira MD,et al.Lipid extraction attenuates the calcific degeneration of bovine pericardium used in cardiac valve bioprostheses. J Exp Pathol (Oxford), 1990; 71:187-196.
    [66]. Jorge-Herrero E,Gutierrez MP,Castillo-Olivares JL.Calcification of soft tissue employed in the construction of heart valve Prostheses: study of different chemical treatments.Biomaterials,1991;12:249-252.
    [67].Jorge-Herrero E,Fernandez P,Gutierrez and M.Study of the calcification of bovine pericardium:analysis of the implication of lipids and proteoglycans.Biomaterials,1991;12:683-689.
    [68].Nimni ME,Cheung D,Strates B,et al.Chemically modified collagen:a natural biomaterial for tissue replacement.J Biomed Mater Res,1987;21:741-771.
    [69].Bengtsson LA,Phillips R,Haegerstrand AN.In vitro endothelialization of photooxidatively stabilized xenogeneic pericardium.Ann Thorac Surg 1995;60(Suppl 2):S365-368.
    [70].Schoen FJ,Levy RJ,Nelson AC,et al.Onset and progression of experimental bioprosthetic heart valve calcification.Lab Invest 1985;52:523-532.
    [71].Marcus Overhaus,Joerg Heckenkamp,Sylvie Kossodo,et al,Photodynamic Therapy Generates a Matrix Barrier to Invasive Vascular Cell Migration,Circ.Res.2000;86;334-340
    [72].王晖,胡建国,吴忠仕,不同交联方法处理的牛颈静脉移植后免疫学的研究,中国医师杂志,2005,7(7):928-930
    [73].Carnagey J,Hern-Anderson D,Ranier iJ,et al.Rapid endothelialization of photofix natural biomaterial vascular grafts.J Biomed Mater Res,2003;65B:171.
    [74].Schoen FJ.Pathologic findings in explanted clinical bioprosthetic valves fabricated from photooxidized bovine pericardium.J Heart Valve Dis,1998 Mar,7(2):174-9.
    [75].Hilbert SL,Boerboom LE,Livesey SA,et al.Explant pathology study of decellularized carotid artery vascular grafts.Biomed Mater Res,2004;69(2):197-204.
    [76].Fischbeck JA,Hern D,Ranieri J,Schmidt CE.Genetically modified xenogeneic endothelium for tissue engineered vascular grafts.In:Peppas NA,editor.Proceedings of the 1997 Topical Conference on Biomaterials,Carriers for Drug Delivery,and Sca!olds for Tissue Engineering(AIChE,NY),1997.p.344-346.
    [77].Bianco RW,Phillips R,Mrachek J,Witson J.Feasibility evaluation of a new pericardial bioprosthesis with dye mediated photo-oxidized bovine pericardial tissue. J Heart Valve Dis 1996;5:317-322.
    [78]. Hern-Anderson D, Ranieri J. Sulzer Innotec, Inc., Austin, TX, personal communication, 1999.
    [79]. Bando K, Danielson GK, Schaff HV, et al. Outcome of pulmonary and aortic homografts for right ventricular outflow tract reconstruction. J Thorac Cardiovasc Surg. 1995 ;109(3):509-517.
    [80]. Weinberg CB,Bell E . A blood vessel model constructed from collagen and cultured vascular cells. Science .1986; 231:397-400.
    [81]. Teebken O E, Bader A, Steinhoff G, et al .A tissue engineering of vascular grafts: human cell seeding of decellularized procine matrix. Eur J Vas Endovasc Surg.2000;19:381-386.
    [82]. Goldstein S ,Clark DR,Walsh SP, et al. Transpecies heart valve transplant : advanced studies of a bioengineered xenoautograft. Ann Thorcac Surg . 2000;70:1962-1969.
    [83]. Dixit P, Hern-Anderson D, Ranieri J, Schmidt CE. Vascular graft endothelialization: comparative analysis of canine and human endothelial cell migration on natural biomaterials. J Biomed Mater Res. 200115;56(4):545-555.
    [84]. Shinoka T, Shum-Tim D, Ma PX, et al. Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg. 1998 ;115(3):536-545.
    [85]. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science. 1999 16;284(5413):489-493.
    [86]. Campbell JH, Efendy JL, Campbell GR. Novel vascular graft grown within recipient's own peritoneal cavity. Circ Res. 1999 3-17;85(12): 1173-1178.
    [87]. Mert M, Cetin G, Turkoglu H, et al .Early results of valved bovine jugular vein conduit for right ventricular outflow tract reconstruction.Int J Artif Organs, 2005;28(3):251-255.
    [88]. Pawelec-Wojtalik M, Mrowczynski W, Wodzinski A, et al. Mid-term experience with valved bovine jugular vein conduits. Asian Cardiovasc Thorac Ann, 2005 ;13(4):361-365.
    [89]. Boethig D, Thies WR, Hecker H, Breymann T. Mid term course after pediatric right ventricular outflow tract reconstruction: a comparison of homografts, porcine xenografts and Contegras. Eur J Cardiothorac Surg, 2005;27(1):58-66.
    [90]. Breymann T, Boethig D, Goerg R, Thies WR. The Contegra bovine valved jugular vein conduit for pediatric RVOT reconstruction: 4 years experience with 108 patients. J Card Surg. 2004;19(5):426-31.
    [91]. Boethig D, Breymann T. Contegra pulmonary valved conduits cause no relevant hemolysis.: J Card Surg, 2004 ;19(5):420-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700