质子交换膜燃料电池控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从宇宙诞生、地球形成到人类的出现、进化、发展,能源—直扮演着极其重要的角色。随着社会经济的不断进步,严峻的环境问题越来越成为摆在人们面前的一个亟待解决的重要议题。世界各国都已经并且持续投入大量的资源对清洁、绿色能源进行学术研究和产品开发。作为氢能领域代表的质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell, PEMFC)技术以其低排放、高效率、结构简单等优势尤其受到青睐。但PEMFC也因其内部电化学反应的高度非线性过程而存在着强耦合性、大滞后性、约束性、不确定性和随机干扰等特点,具体表现为受外界环境和操作条件因素影响大、输出电压不稳定、输出特性较软、响应速度慢、需要对外进行排水操作(Purge)、易发生氢气泄露等不足之处。因此对其商业化前景和应用推广造成了较大阻碍,需要探索和研究其特性,基于此设计并选择更合适的控制策略,扬长避短,最终开发研制出适合商业化推广的产品,真正为人类社会发展服务。
     本文通过对PEMFC所做的单体电池电压分布和不同风扇系统的流速与功耗平衡分析实验,得出通过单体PEMFC电压分布可以检验和判断电堆是否符合设计要求,并在运行过程中对其进行实时监测、定位性能欠佳的单体电池以进行控制策略上的调整的结论,提出流过燃料电池阴极的空气流速和风扇系统功耗之间存在着一个平衡的观点。设计了一种外部控制策略,使PEMFC系统摆脱了对外排水(Purge)的束缚。
     为了全面、完整的掌握阴极风扇系统对PEMFC的影响,通过大量针对风扇系统的实验,得出当风扇工作在“吸”模式下,电池的表面工作温度分布和空气流量分布更均匀且性能史好,电池表面工作温度分布与流过电池阴极的空气流量分布具有一致性的观点。设计了一种在外接负载变化时针对阴极风扇系统的控制策略,达到仅需对阴极风扇进行调节便可在不同负载条件下实现对外输出性能最优的口标。
     设计建立PEMFC动态多输入多输出模型并在Matlab/Simulink软件环境下进行仿真,证实该系统可以模拟燃料电池的瞬态响应性能并保证电池外接负载发生较大变化时两极气体压力差尽可能小,对质子交换膜形成有效的保护,达到延长电池使用寿命的目标。
     基于前述研究中提出的儿种新型控制策略,设计制造了一款PEMFC便携式电源,制作了硬件控制电路板并编写了控制程序,实现对PEMFC系统的优化控制,对便携式电源实物展开实际测试证实其可用性良好。设计的PEMFC测试平台系统,运行良好且能够完成各种测试任务,证明两种产品均具有广阔的商业前景和实际应用价值。
From the birth of the universe, the formation of the Earth to the emergence of human evolution, development, energy has been playing a very important role. As social and economic progress, the serious environmental problems has increasingly become an urgent need to solve the important issues before the people. Countries in the world have been and continue to invest a lot of resources for academic research and product development for clean, green energy. Represented as hydrogen energy proton exchange membrane fuel cell technology with its low-emission, high efficiency, simple structure and other advantages are particularly favored. But because of its highly non-linear process of internal electrochemical reaction there is a strong coupling, large lag, constraints, uncertainty and random interference characteristics, specific performance is affected by the external environment and operating conditions factors, unstable output voltage, softer output characteristics, slow response, purge operation, prone to hydrogen leaks and other inadequacies. Therefore hinder its prospects for commercialization and application promotion need to explore and study its characteristics, design and choose a more appropriate control strategy based on this advantage, eventually developed to promote the commercialization of products for the development of human society services.
     Based on an open-cathode and self-humidifying design proton exchange membrane fuel cell stack prototype and other related equipment, the voltage distribution of each cell as well as the air velocity and flow rate, was measured under with-load and without-load conditions. The single cell voltage distribution analysis could monitor whether stack performance match the design requirement, it also could locate the position of low performance single cell and thus the weakest link can be improved. There was a comprise between the air velocity through the cathode and fan system power. An external control strategy is designed to make the PEMFC system to get rid of the purge operation.
     In order to complete and comprehensive grasp the cathode fan system influences on PEMFC, through a large number of experiments for the fan system. It is observed that cathode fan system has a different operating mode and air flow velocity distribution. When the fan system operating mode in cathode is "Suction", its temperature distribution more uniform than mode is "Blow", and it has better performance. It have consistency principle that between the fuel cell surface temperature distribution and air flow distribution through the cathode. Designed for an external load changes the cathode fan system control strategy, reaching only external output optimal performance goals can be achieved under different load conditions to adjust the cathode fan.
     Established a dynamic multi-input multi-output (MIMO) model of PEMFC and non linear control. A design of a relevant controller, is needed as the huge gases pressure difference between anode and cathode gases will lead to fuel cells'serious membrane damages. The design can minimize the damages and extend the lifetime of the PEMFC as long as possible. After establishing and combining the PEM fuel cell model and nonlinear controller design, it turns out the whole system is able to imitate the transient performance of fuel cells and protect the fuel cell membrane as well under the environment of Matlab/Simulink.
     Several new control strategy based on the aforementioned study, design and manufacture of a PEMFC portable power pack, making the hardware control circuit board and the preparation of the control program, PEMFC system optimization control, through the actual start of the portable power pack physical test to confirm its availability. Design the PEMFC test station system, running well and is able to complete a variety of test tasks to prove that the two products have a broad business outlook and practical value.
引文
[1]A. Z. Bonanos, K. Z. Stanek, R. P. Kudritzki, L. Macri, D. D. Sasselov, J. Kaluzny, D. Bersier, F. Bresolin, T. Matheson, B. J. Mochejska, N. Przybilla, A. H. Szentgyorgyi, J. Tonry, G. Torres, The First DIRECT Distance to a Detached Eclipsing Binary in M33[J]. Astrophysics and Space Science.2006, Online First
    [2]史蒂芬.霍金.时间简史[M].许明贤,吴忠超,译.湖南科学技术出版社,2002
    [3]史蒂芬.霍金.果壳中的宇宙[M].吴忠超,译.湖南科学技术出版社,2002
    [4]http://zh.wikipedia.org/wiki/%E5%9C%B0%E7%90%83[OL]
    [5]姚宇,陈向涛,李忠民.我国实现2020年减排目标的战略路径研究[J].干旱区资源与环境.2012,26(12):1-2
    [6]拉米尼等,燃料电池系统-原理.技术.应用[M].朱红译,衣宝廉校.北京:科学出版社,2009
    [7]衣宝廉.燃料电池现状与未来[J].电源技术.1998,22(5):216-221
    [8]侯明,衣宝廉.燃料电池技术发展现状与展望[J].电化学.2012,18(1)
    [9]杨顺风. PEMFC混合动力系统开发及燃料气体压强非线性控制研究[D].西南交通大学硕士学位论文.2010
    [10]Collecting The History Of Fuel Cells[OL]. http://americanhistory.si.edu/fuelcells/index.html. Smithsonian Institution,2006
    [11]高祖昌.分布式燃料电池UPS监控系统的设计与实现[D].西南交通大学硕士学位论文.2009
    [12]http://news.swjtu.edu.cn/shownews-5429.html[OL]
    [13]鲜亮.燃料电池延迟特性和燃料电池-蓄电池混合供电系统研究[D].西南交通大学硕士学位论文.2011:1-3
    [14]张锦芳.小功率质子交换膜燃料电池及其控制方法研究[D].西南交通大学硕士学位论文.2012:1-2
    [15]Alejandro J. del Real, Alicia Arce, Carlos Bordons, Development and experimental validation of a PEM fuel cell dynamic model[J]. Journal of Power Sources.2007, 173(2007):310-324
    [16]Caisheng Wang, M. Hashem Nehrir, Steven R. Shaw, Dynamic models and model validation for PEM fuel cells using electrical circuits[J]. IEEE TRANSACTIONS ON ENERGY CONVERSION.2005,20(2)
    [17]M. Hashem Nehrir, Caisheng Wang, Modeling and Control of Fuel Cells[M]. The Insitute of Electrical and Electronics Engineers, Inc,2009
    [18]Dachuan Yu, S. Yuvarajan. Electronic circuit model for proton exchange membrane fuel cells[J]. Journal of Power Sources,2005,142(2005):238-242
    [19]Stavros Lazarou, Eleftheria Pyrgioti, Antonio T. Alexandridis, A simple electric circuit model for proton exchange membrane fuel cells[J]. Journal of Power Sources,2009, 190(2009):380-386
    [20]Shaker Haji, Analytical modeling of PEM fuel cell i-V curve[J]. Renewable Energy, 2011,36(2011):451-458
    [21]Ai-Jen Hung, Lung-Yu Sung, Yi-hang Chen, Cheng-Ching Yu, Operation-relevant modeling of an experimental proton exchange membrane fuel cell[J]. Journal of Power Sources,2007,171(2007):728-737
    [22]Zhihao Zhang, Xinhong Huang, Jin Jiang, Bin Wu, An improved dynamic model considering effects of temperature and equivalent internal resistance for PEM full cell power modules[J]. Journal of Power Sources,2006,161 (2006):1062-1068
    [23]T. Yalcinoz, M. S. Alam, Dynamic modeling and simulation of air-breathing proton exchange membrane fuel cell[J]. Journal of Power Sources,2008,182(2008):168-174
    [24]Yongping Hou, Zhihua Yang, Gang Wan, An improved dynamic voltage model of PEM fuel cell stack[J]. International Journal of Hydrogen Energy,2010, 35(2010):11154-11160
    [25]Yongping Hou, Mingxi zhuang, Gang Wan, A transient semi-empirical voltage model of a fuel cell stack[J]. International Journal of Hydrogen Energy,2007, 32(2007):857-862
    [26]Cristian Kunusch, Paul F. Puleston, Miguel A. Mayosky, Jeronimo J. more, Characterization and experimental results in PEM fuel cell electrical behavior [J]. International Journal of Hydrogen Energy,2010,35(2010):5876-5881
    [27]Ahmad W. Al-Dabbagh, Lixuan Lu, Antonio Mazza, Modeling, simulation and control of a proton exchange membrane fuel cell power system[J]. International Journal of Hydrogen Energy,2010,35(2010):5061-5069
    [28]Hyun-il Kim, Chan Young Cho, Jin Hyun Nam, Donghoon Shin, Tae-Yong Chung, A simple dynamic model for polymer electrolyte membrane fuel cell power modules: parameter estimation and model prediction [J]. International Journal of Hydrogen Energy,2010,35(2010):3656-3663
    [29]J. J. More, P. F. Puleston, C. Kunusch, A. Visintin, Temperature control of a PEM fuel cell test bench for experimental MEA assessment[J]. International Journal of Hydrogen Energy,2010,35(2010):5985-5990
    [30]L. Dumercy, R. Glises, H. Louahlia-Gualous, J. M. Kauffmann, Thermal management of a PEMFC stack by 3D nodal modeling[J]. Journal of Power Sources,2006, 156(2006):78-84
    [31]Narissara Bussayajarn, Han Ming, Kwan Kian Hoong, Wan Yee Ming Stephen, Chan Siew Hwa, Planar air breathing PEMFC with self-humidifying MEA and open cathode geometry design for portable applications [J]. International Journal of Hydrogen Energy,2009,34(2009):7761-7767
    [32]Ahmad Haddad, Rachid Bouyekhf, Abdellah EL Moudni, Dynamic modeling and water management in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy,2008,33(2008):6239-6252
    [33]Jong Won Choi, Yong-Sheen Hwang, Suk Won Cha, Min Soo Kim, Experimental study on enhancing the fuel efficiency of an anodic deed-end mode polymer electrolyte membrane fuel cell by oscillating the hydrogen[J]. International Journal of Hydrogen Energy,2010,35(2010):12469-12479
    [34]Yong-Sheen Hwang. etc, Enhanced diffusion in polymer electrolyte membrane fuel cells using oscillating flow[J]. International Journal of Hydrogen Energy,2010, 35(2010):3676-3683
    [35]Aquiles Perez, Amir Abtahi, Ali Zilouchian, Experimental analysis of pulsing techniques in a proton exchange fuel cell[J]. Journal of Power Sources,2011, 196(2011):1030-1035
    [36]Jong Won Choi. etc, An experimental study on the purge characteristics of the cathode dead-end mode PEMFC for the submarine or aerospace applications and performance improvement with the pulsation effects [J]. International Journal of Hydrogen Energy, 2010,35(2010):3698-3711
    [37]Yongtaek Lee, Bosung Kim, Yongchan Kim, An experimental study on water transport through the membrane of a PEFC operating in the dead-end mode[J]. International Journal of Hydrogen Energy,2009,34(18):7768-7779
    [38]李奇,湛耀天,区永江,贾俊波,韩明.质子交换膜燃料电池的电响应研究[J].电池,2006,36(5)
    [39]姜志玲,陈维荣,屈志坚,郭爱.质子交换膜燃料电池模拟器的建模与控制[J].电力电子技术,2010,44(5)
    [40]李奇,陈维荣,贾俊波,湛耀天,韩明.质子交换膜燃料电池建模及其PID控制[J].电源技术研究与设计,2008,32(9)
    [41]李奇,陈维荣,贾俊波,湛耀天,韩明.质子交换膜燃料电池动态响应建模与仿真研究[J].系统仿真学报,2009,21(11)
    [42]鲜亮,肖建,贾俊波.质子交换膜燃料电池交流阻抗谱实验研究[J].中国电机工 程学报,2010,30(35)
    [43]郭亮,陈维荣,贾俊波,韩明,刘永浩.基于粒子群算法的BP神经网络光伏电池建模[J].电工电能新技术,2011,30(2)
    [44]李奇,陈维荣,贾俊波,湛耀天.基于改进PSO算法的燃料电池模型优化[J].电池,2007,37(6)
    [45]贾俊波,韩明,肖建.基于支持向量机的PEMFC电特性仿真研究[J].计算机仿真,2007,24(2)
    [46]李奇,陈维荣,戴朝华,贾俊波,韩明.基于搜寻者优化算法的质子交换膜燃料电池模型优化[J].中国电机工程学报,2008,28(17)
    [47]李奇,陈维荣,刘述奎,林川,贾俊波.基于H∝鲁棒控制的质子交换膜燃料电池空气供应系统设计[J].中国电机工程学报,2009,29(5)
    [48]李奇,陈维荣,贾俊波,刘述奎,刘小强.一种改进的质子交换膜燃料电池动态建模[J].系统仿真学报,2009,21(12)
    [49]W. Vielstich, A. Lamm, H. A. Gasteiger. Handbook of Fuel Cells:Fundamentals of Technology and Applications[M]. John Wiley & Sons Ltd.,2003
    [50]李奇.质子交换膜燃料电池系统建模及其控制方法研究[D].西南交通大学博士学位论文.2011
    [51]汪小珊,张锦芳,张财智,韩明.质子交换膜燃料电池的脉动进氢实验[J].化工学报,2012,63(1):237-243
    [52]Ciureanu M, Roberge R. Electrochemical impedance study of PEM fuel cells-experimental diagnosis and modeling of air cathodes[J]. J Phys Chem B, 2001,105(17):3531-3539
    [53]Choi W C, Hwang Y, Cha S W, et al. Experimental study on enhancing the fuel efficiency of an anodic dead-end mode polymer electrolyte membrane fuel cell by oscillating the hydrogen[J]. Int J Hydrogen Energy,2010,35(22):12469-12479
    [54]O'Hayre R P, Cha S W, Colella W G, et al. Fuel Cell Fundamentals[M]. New Jersey: John Wiley & Sons,2009
    [55]覃有为,刘坤,肖金生.车用质子交换膜燃料电池堆阴极进气系统模拟及优化[J].北京汽车,2007(3):1-3
    [56]刘晶,沈为东,阮喻,等.基于灰色系统的质子交换膜燃料电池温度控制[J].电源技术,2006,30(12):997-999
    [57]刘明义,蒋利军,黄倬,等.便携式质子交换膜燃料电池系统集成研究[J].电源技术,2006,30(6):446-449
    [58]Matian M, Marquis A, Brandon N. Application of thermal imaging to validate a heat transfer model for polymer electrolyte fuel cells [J].International Journal of Hydrogen Energy,2012(35):12308-12316
    [59]Miller M, Bazylak A. A review of polymer electrolyte membrane fuel cell stack testing[J]. Journal of Power Source,2011(196):601-613
    [60]Atiyeh H, Karan K, Peppley B, et al. Experimental investigation of the role of a microporous layer on the water transport and performance of a PEM fuel cell [J]. Journal of Power Sources,2007(170):111-121
    [61]秦敬玉,毛宗强,徐景明,等.氢空PEMFC发动机的几个须关注的问题[J].电源技术,2004,28(3):146-149
    [62]张传升,陈凤祥,高昆鹏,等.1 kW自呼吸PEMFC堆控制因素试验[J].同济大学学报:自然科学版,2011,39(6):890-894
    [63]贾秋红,韩明,邓斌,等.质子交换膜燃料电池动态建模及特性分析[J].电化学,2011,17(4):439-443
    [64]贾秋红,韩明,邓斌,等.小功率PEMFC移动式电源的箱体结构和造型设计[J].包装工程,2011,32(24):49-52
    [65]王军蓉.风洞试验数据管理信息系统设计与实现[D].成都:电子科技大学,2012
    [66]Woon KI Na, Bei Gou. Feedback-Linearization-Based Nonlinear Control for PEM Fuel Cells[J]. IEEE Trans. Control Syst. Technol.2008,23(1):179-190
    [67]Woon Ki Na, Bei Gou and Bill Diong. Nonlinear control of PEM fuel cells by exact linearization[J]. Industry Applications Conference,2005,4(2-6):2937-2943
    [68]S. Pasricha, S. R. Shaw. A Dynamic PEM Fuel Cell Model[J]. IEEE Trans. on energy convers,2006,21(2)
    [69]J. Purkrushpan, A. G. Stefanopoulou, and H. Peng. Control of fuel cell breathing[J]. IEEE Control Syst.Mag,2004,24(2):30-46
    [70]M. A. Henson and D. E. Seborg. Critique of exact linearization strategies for process control[J]. Process Control,1991(1):122-139
    [71]H. K. Khalil. Nonlinear Systems (Third Edition)[M]. New Jersey:Prentice Hall, Upper Saddle River,2002
    [72]Jurgen Jost. Riemannian Geometry and Geometric Analysis[M]. Springer-Verlag, Berlin,2002,section 1.6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700