用户名: 密码: 验证码:
面向汽车驾驶模拟器的网格计算关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文尝试以吉林大学汽车动态模拟国家重点实验室的开发型汽车驾驶模拟器为背景,建立一个汽车动力学仿真网格GVDS的框架。围绕GVDS框架的建立,以及实现GVDS的中间件和资源调度策略等关键技术问题,开展如下工作:
     参考OGSA开放网格服务体系和HLA联邦模型,建立汽车动力学仿真网格GVDS的体系结构。GVDS在逻辑上分为4层,分别是仿真网格资源层、仿真网格中间件层、仿真网格服务层和仿真网格应用层。
     针对汽车动力学仿真网格GVDS的仿真网格资源层,以吉林大学汽车动态模拟国家重点实验室仿真联邦为例,描述网格资源的组成与配置。设计一个汽车动力学仿真网格的应用部署,描述一个联邦用户使用仿真网格的过程。
     针对汽车动力学仿真网格GVDS的仿真网格中间件层,以吉林大学汽车动态模拟国家重点实验室的开发型汽车驾驶模拟器为背景,研究了仿真运行支撑环境RSI的结构设计和关键技术,完成关键模块的设计。
     针对汽车动力学仿真网格GVDS的仿真网格服务层的资源调度关键问题,从四个不同角度研究GVDS环境下的资源调度策略,包括(1)提出一个多约束网格调度算法。(2)参照P2P体系结构的混杂模式,设计一个基于聚合服务模型的网格体系结构。(3)在网格资源调度中引入合作博弈。(4)提出一个分级式网格自适应调度算法。
Vehicle Dynamics which research all things related to automotive system movement mostly research the interaction of the force during car moving and the law of car moving. With the development of info-technology, the Vehicle Dynamics study has been expended an integrated system, that is, man-car-road. In recent years, the step of automotive information has further expedited based on the development of requirement and computer simulation.
     Vehicle Dynamics study faced on more complex environment. Automobile movement involved lots of movement assembly, which bring complex interaction and coupling relationship. In view of research scope, automobile movement is not only the movement of car itself, but also the interrelationship of man-car-road integrated environment. These actual situations bring some difficulty to Vehicle Dynamics study. The effective approach to resolve these problems is that import the modern computer simulation technology into Vehicle Dynamics study field, which shortened form Vehicle Dynamics Simulation.
     Computer Simulation is a kind of digital technology testing on the computer. It has three mainly elements including system, model and computer. System is the research object, model is system abstract, modeling or discrimination, and computer is that we achieve the testing and testify goals by computer simulation with setting up the algorithm.
     Aimed at the Vehicle Dynamics field, the research object is Vehicle Dynamics system, the model means to automobile system dynamics model. Vehicle Dynamics Simulation is based on the automobile theory and control theory, making use of computing simulation technology and automobile system dynamics to experiment, and carrying out analysis of results from experiment with the help of expert knowledge and the statistics data.
     With the development of automotive industry, vehicle density, travelling high-speeding, cars household and driver non-occupation have become an inevitable trend. Thus, the overall research of vehicle appears to more important, the status of vehicle dynamics simulation also become more prominent. Vehicle Dynamics Simulation not only has the relative independence, but also closely coalesces with several professional technologies such as light, machine, electricity, sound, especially information, and so on. It is interdisciplinary, comprehensive, furthermore, also has some advantage including repeat, security, economy, controllability, without restriction of clime condition, which are other methods can not be compared.
     Vehicle Driving Simulators plays an increasingly important role in the Vehicle Dynamics Simulation. Due to constraints of domestic automobile manufacturers’resources, the capacity of development and experiment of large Vehicle Driving Simulators is not fully utilized. So how to make the best sharing of the limited resources in Vehicle Dynamics Simulation has become an urgent issue to resolve. Given the success of grid computing applications, Vehicle Dynamics Simulation program become one of feasible solutions, which contains key technology such as resource scheduling strategy and service model. It is of great importance theoretically and practically to research these technologies
     Grid computing is an integrated computing and resource environment. It can fully absorb all kinds of computing resource and transform into a sort of everywhere acquirable, reliable, standard and economic computing capacity. In addition to various computers, there are network communication capacity, data, apparatus, human-being and other relative resources. Grid computing, as a newly arisen important foundation facility, takes on distribution, self-similarity, dynamic diversity, multiplicity of management and other important characteristics. Globus is currently one of the most influential grid computing projects in some general purpose grid computing study. On the strength of grid function, it can be divided into computing grid, data grid and information grid etc.
     Computing grid polymerizes all kinds of which distributed on the network such as isomorphism and heterogeneous computer, workstation, fleet, database, advanced apparatus, storage equipment etc. It forms a comparative transparent, virtual high performance computing environment. Computing grid is defined as a wide area within the scope of integration and the integration of collaborative computing environment. The mostly purpose is to use the existing network resources to implement the effective polymerization of high performance computing environment and to sustain the wide-area distribution of high performance collaborative computing. Computing grid constructs the middleware layer to polymerize the computing resources which are wide distributed via the autonomous computer system and constitute an extensive distribution of super computing based on Internet. It has become a new extensive scientific and engineering computing platform.
     Based on analysis of necessity of building Vehicle Dynamics Simulation environment with grid computing, we focus on the key technologies for implementing it. Grid computing, the research of which started early and relatively mature in its structure and function, is the basis of network environment. So our researches focus on it. Inherent characteristics have been inherited from the existed parallel systems and distributed systems by grid computing. Since resources are generally heterogeneous and dynamic, new challenging technical problems which do not exist in the parallel systems and distributed systems appear. In allusion to the critical resource scheduling algorithm problems, the thesis draws some new algorithms and important conclusions in depth study from different angles.
     Our work:
     1. Propose a multi-constrained scheduling algorithm for grid. Put up an extended-assignment probability concept. That is setting weight according to the impact of load balancing assignment probability and expected execution time, mapping task to nodes in accordance with extended-assignment probability. Task scheduling model is divided into request information collection module, scheduling management module, task assignment module, user query information module, resource monitoring module and resources collection module by function. According to the each node of entire grid and the whole loading capacity, we get a loading balancing assignment probability concerning about time. On the basis, adding the effect parameters of the expected execution of the mission at each node, we design a function which makes the load balancing of the grid system within the expected range, as the same time, let the makespan of the mission when it executes keep a reasonable minimum.
     2. Design an aggregation service model based grid architecture referring to the hybrid mode in P2P architecture. The aggregation service based grid is the expansion of grid services. It is divided into four roles, general service providers, polymerization service providers, registration service center, service requestor and six operations which is general service registration, general service binding, general service searching, discovery of service and service searching. Based on the general service, congregate aggregation service and add into grid by the form of grid service, moreover, map the aggregation service model to the refined model, design a service usage model based on the RPC semantics and catalog service semantics.
     3. Introduce cooperation game in the grid resource scheduling. The unit that the task is allocated to execute is a union of several nodes. In order to keep stable and equitable, we allocate tasks and benefits by the Shapley value. Scheduling algorithm allocates task by union band value, union current capacity proportion and assurance ratio provided, and maps task to union. This module includes seven parts, module to query information which contains task information and resource information, module to maintain a union, module to schedule tasks, module to get instant information, module to allocate tasks to union, module to allocate tasks to members, module to allocate benefits.
     4. Propose a hierarchical adaptive grid scheduling algorithm. The auctioneers allocate tasks to server-level union according to assignment probability and the Banzhaf Index of Power. Based on the principle of load balancing at the internal of the union, in accordance with communication delays and dynamically adjust the load, and in accordance with Banzhaf value distribute benefits. Introduce the Service Level league reputation degrees, with the implementation of mission, the value is change constant, therefore, the scheduling algorithm is an evolving and learning process.
     5. Discuss the operation mode of distributed real-time simulation middleware (RSI), with the application of Vehicle Dynamics Simulation as an example. Vehicle Dynamics Simulation refers to multiple independent simulation module worked together, which are dynamic computing server, visual simulation system, sound simulation system, touch simulation system, movement simulation system, and data collection system. These modules are located on the independent grid host computer each other with high speed network linking. Each simulated host installs the support simulation run-time environment (RSI), the provider write simulation model program in accordance to RSI interface criterion.
引文
[1]郑士源,徐辉,王浣尘.网格及网格化管理综述[J].系统工程,2005(3):1-7.
    [2]I.Foster, Kesselman C.The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Fransisco, CA, 1999.
    [3]I.Foster, Kesselman C, Tuecke S. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. International Journal of High Performance Computing Applications, Vol. 15, No. 3, 200-222 (2001).
    [4]Foster I, Kesselman C, Nick J, Tuecke S. The physiology of the grid: an open grid services architecture for distributed systems integration. 2002. [824 citations - 23 self]
    [5]刘素芹,何旭莉,仝兆岐,何潮观.基于网格环境的地震资料处理系统的研究与应用[J].高性能计算技术,2008(2):41-45.
    [6]龙浩,梁毅,邸瑞华,张争.地震网格数据采集与遥现系统设计[J].计算机工程与设计,2009(2):304-306,317.
    [7]陈志荣.移动空间信息网格服务模型研究及实现方法[D].杭州:浙江大学,2008.
    [8]陈兵,王备战,胡雪琴,史亮,瞿城.知识网格在数字化医院系统中的应用[J].高性能计算技术,2008(2):46-49.
    [9]俞平,肖南峰.基于网格计算的仿人机器人计算平台研究[J].高性能计算技术,2008(3):20-25.
    [10]杨晓东.基于网格技术的现代远程教学应用研究[J].中国西部科技,2009(3):20-21.
    [11]侯冠基,张尧,周二专,武志刚,刘配配.一种基于开源软件的新型电力系统网格计算平台[J].电力系统自动化,2009(1):56-60,80.
    [12]夏诗斌.数字图书馆建设中网格技术的应用前景[J].科技文献信息管理,2008(4):46-48.
    [13]滕龙妹.土地资源时空数据网格服务模型及其实现方法[D].杭州:浙江大学,2008.
    [14]刘德祥.网格技术及其对军事领域的影响[C].第十届中国科协年会信息化与社会发展学术讨论会分会场论文集,2008.
    [15]钟珞,朱博,宋华珠,杨丽,李洁.基于OGSA的军事信息网格体系结构研究[J].舰船科学技术,2009(1):168-171.
    [16]黄景廉,钟绍波.基于网格技术的校园网作业服务模型和调度算法[J].计算机应用,2009(1):291-292,296.
    [17]陈玉军,赵金辉.网格计算环境下企业事务工作流建模研究[J].商场现代化,2009(2):27-28.
    [18]狄驰,宋玉泉,郑国君,郭威.基于网格的汽车覆盖件冲压方向快速算法[J].吉林大学学报(工学版),2009(1):88-92.
    [19]王繁业,刘登.网格技术在生命科学中的应用研究[J].生物技术通报,2008(1):88-90.
    [20]肖会敏,高博.网格技术在智能公交系统中的应用[J].河南科学,2008(3):333-338.
    [21]L.Smarr, Catlett C. Metacomputing, Communication of the ACM. 1992, 35(6):44-52.
    [22]I.Foster, Kesselman C. Globus: A Metacomputing Infrastructure Toolkit. International Journal of Supercomputer Applications, 1997,11(2):115-128.
    [23]黄飏 ,李伟,徐志伟.国家高性能计算环境中的资源目录管理[EB/OL]. [2009-3-12]. http://www.chinagrid.net/grid/paperppt/gct/rdmncg01.pdf.
    [24]David R, Mark A. Baker, Nicholas R, Jennings and Nigel R. Shadbolt. The evolution of the Grid, inthe book of Grid Computing - Making the Global Infrastructure a Reality. John Wiley and Sons Ltd, 2003:65-100.
    [25]Paul Messina. Distributed Supercomputing Applications, The Grid: Blueprint for a Future Computing Infrastructure, Morgan Kaufmann Publishers, 1999:55-73.
    [26]Reagan Moore, Chaitanya Baru, Richard Marciana, Arcot Rajasekar, and Michael Wan. Data Intensive Computing, The Grid: Blueprint for a Future Computing Infrastructure. Morgan Kaufmann Publishers, 1999:105-129.
    [27]William Johnson. Realtime Widely Distributed Instrumentation Systems. The Grid: Blueprint for a Future Computing Infrastructure. Morgan Kaufmann Publishers, 1999:75-103.
    [28]Tom Defanti, Rick Stevens. Teleimmersion, The Grid: Blueprint for a Future Computing Infrastructure, Morgan Kaufmann Publishers, 1999:131-156.
    [29]I.Foster. The Grid: A New Infrastructure for 21st Century Science. Physics Today, 54(2), 2002。
    [30]Ben Segal. Grid Computing: The European Data Project. IEEE Nuclear Science Symposium and Medical Imaging Conference, Lyon, 15-20 October 2000.
    [31]徐志伟,李伟.织女星信息网格的体系结构研究[J].计算机研究与发展,2002(8):923-929.
    [32](德)米奇克著,陈荫三译.汽车动力学[M].北京:人民交通出版社, 1992.
    [33]E.A.曲达可夫.汽车理论[M].上海:龙门联合书局,1954.
    [34]Segel L. An Overview of Developments in Road Vechicle Dynamics:Past,Present and Future. Proceedings of Imech E Conference on Vechicle Ride and Handling,1993.
    [35]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    [36]傅立敏.汽车空气动力学[M].上海:机械工业出版社,2006.
    [37]张洪欣.汽车系统动力学[M].上海:同济大学出版社,1996.
    [38]尹念东.汽车驾驶模拟器研究现状与技术关键[J].湖北汽车工业学院学报,2002(4):7-10.
    [39]吴振晰.基于总成结构的车辆动力学实时仿真方法的研究[D].长春:吉林大学汽车工程学院,2007.
    [40]夏青松.电动汽车动力系统设计及仿真研究[D].武汉:武汉理工大学汽车工程学院,2007.
    [41]吴碧磊.重型汽车动力学性能仿真研究与优化设计[D].长春:吉林大学汽车工程学院,2008.
    [42]明守政,田浩.电动轮驱动的电动汽车动力学仿真[J].汽车工程,2007(2):109-111,100.
    [43]王鹏.汽车实时动力学仿真中转向回正特征建模方法研究[D].长春:吉林大学汽车工程学院,2008.
    [44]张翔.电动汽车建模与仿真的研究[D].合肥:合肥工业大学,2004.
    [45]董新建.履带车辆行动部分动力学分析与仿真[D].长沙:湖南大学,2007.
    [46]于瑞.基于径向基网络的汽车操纵逆动力学仿真研究[J].湖南工程学院学报(自然科学版),2008(1):36-39
    [47]张扬军,吕振华,徐石安,涂尚荣,丛艳吉.汽车空气动力学数值仿真研究进展,汽车工程,2001 (2):82-91.
    [48]邢亮亮.汽车动力学及ABS系统的计算机仿真研究[D].西安:西北工业大学,2002.
    [49]荆旭.基于虚拟现实技术的汽车虚拟驾驶系统的研究与开发[D].淄博:山东理工大学,2007.
    [50]李磊,任勇生,孙爱芹.ADAMS/Car在汽车动力学仿真分析中的应用[J].现代制造技术与装备,2007(1):25-27.
    [51]王波兴,江继都,夏鸿建.面向汽车动力学自动建模的模型描述语言研究[J].计算机应用研究,2007(6):38-41.
    [52]娄燕,何汉武,卢永明.基于EonStudio的虚拟汽车动力学建模[J].微计算机信息,2007 (29):223-225.
    [53]孙维汉,孙宏侠,陈俊武.基于MATLAB汽车动力学仿真研究,公路交通科技,2007(3):136-144.
    [54]李亮,宋健,于良耀.汽车动力学稳定性控制系统仿真平台研究[J].系统仿真学报,2007 (7):1579-1600.
    [55]张竹林.汽车驾驶模拟器动态模拟系统的研究[D].济南:山东大学,2005.
    [56]曾纪国,熊坚.驾驶模拟器汽车动力学模型的设计及实现,中国农业机械学会成立40周年庆典暨2003年学术年会论文集[C].2003年:158.
    [57]水瑞锋.汽车驾驶模拟器数据采集系统与车辆模型的研究与应用[D].昆明:昆明理工大学,2001.
    [58]高振海.驾驶员最优预瞄加速度模型的研究[D].长春:吉林大学,2000.
    [59]管欣,王鹏,詹军,吴振昕.用于车辆动力学实时仿真的转向力输入模型[J].吉林大学学报(工学版),2008(6):1257-1261.
    [60]管欣,姬鹏,詹军.基于虚拟样机协同仿真平台的电动车DYC控制策略的研究[J].系统仿真学报,2008(9):2338-2344.
    [61]管欣,吴振昕,詹军.用于汽车动力学实时仿真的悬架建模方法的研究[J].汽车工程,2007 (5):433-436.
    [62]杨得军,林柏忠,郭学立,管欣,郭孔辉.汽车动力传动系实时动力学仿真模型[J].汽车工程,2006(5):430-432,442.
    [63]管欣,张威,林柏忠.车辆实时动态仿真模型的研究[J].江苏大学学报(自然科学版),2004 (3):203-207.
    [64]张威,张景海,隗海林,贾洪飞.汽车动力学仿真模型的发展[J].汽车技术,2003(2):1-4.
    [65]张雷.汽车动力学系统建模与虚拟仿真的研究[D].大连:大连海事大学,2006.
    [66]IBM.IBM为汽车和宇航设计分析引入网格计算方案[EB/OL].(2004-7-1)[2009-2-4]. http://news.e-works.net.cn/category10/news20266.htm
    [67]徐恒.面向网格计算的汽车动力学实时仿真虚拟系统框架开发[D].长春:吉林大学汽车工程学院,2004.
    [68]赵志杰,金先龙,曹源,王建炜.基于网格的汽车耐撞性协同设计及应用[J].计算机集成制造系统,2008(11):2106-2174.
    [69]赵艳,李世明.网格技术及其应用的研究[J].科技创新导报,2008(1):16.
    [70]侯宝存,柴旭东,李伯虎,唐震,邸彦强.面向多学科虚拟样机协同仿真的仿真网格技术研究[J].计算机集成制造系统,2006(12):2004-2010.
    [71]温浩宇.制造网格若干关键技术研究[D].西安:西安电子科技大学,2005.
    [72]刘红璐,夏木美,张真继.基于网格技术的城市公共汽车到站时刻预测研究[J].物流技术,2007(4):59-61,72.
    [73]孙海龙,怀进鹏,富公为.一种自适应的网格计算资源组织与发现机[J].制软件学报, 2009(1):152-163.
    [74]肖莉萍.基于改进自适应遗传算法的网格任务调度算法[J].中国制造业信息化, 2009(1):48-50.
    [75]何亨,袁平鹏,曹文治,范传伟.基于网格的分布仿真平台的核心技术研究[J].系统仿真学报, 2009(2):437-442.
    [76]邝坪,金海,袁平鹏.仿真网格中服务的最优化调度机制研究[J].小型微型计算机系统, 2009(1):8-12.
    [77]李运芝.基于蚁群算法的网格任务调度研究[D].大连:大连海事大学,2008.
    [78]童一飞,李东波.基于资源预测的网格资源预留机制研究[J].系统仿真学报,2009(2):432-436.
    [79]刘冠峰.基于网格经济模型的资源分配策略研究[D].青岛:青岛大学,2008.
    [80]张家驹.分布式实时仿真中间件RSI的设计与实现[D].长春:吉林大学,2004.
    [81]魏天宇,曾文华,黄宝边.基于min-min改进后的网格调度算法[J].计算机应用, 2005 (5):1190-1192.
    [82]Xiaoshan He,Xianhe Sun,Gregor von Laszewski,QoS Guided Min-Min Heuristic for Grid Task Scheduling, National Science Foundation of USA under NSF Grant Nos.EIA-0224377, ANI-0123930, EIA-0130673, and by the Army Research Office under ARO Grant No.DAAD19-01-1-0432.
    [83]Yaojun Han,etal. Resource SchedulingAlgorithms for Grid Computing and Its Modeling and Analysis Using Petri Net [C]. Shanghai:The 2nd InternationalWorkshop on Grid and Cooperative Computing,2003.
    [84]陈宏伟,王汝传,韩光法.基于移动代理网格计算中任务调度的研究[J].计算机应用研究,2004.
    [85]Junwei Cao,Daniel P.Spooner,James D.Turner,Stephen A.Jarvis,Darren J.Kerbyson,Subhash Saini,and Graham R.Nudd,Agent-based Resource Management for Grid Computing,Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID.02),2002.
    [86]陶军.一种基于多Agent的动态负载平衡算法应用研究[J].东南大学学报(自然科学版), 2003,33(4):401-405.
    [87]Warren Smith,Ian Foster,Valerie Taylor,Predicting Application Run Times Using Historical Information.
    [88]Xian-He Sun,Ming Wu,Grid Harvest Service A System for Long-term, Application-level Task Scheduling, International Parallel and Distributed Processing Symposium (IPDPS'03).
    [89]Harmon M, Baker T, Whalley B. A Retargetable Technique for Predicting Execution Time,IEEE Real-Time Systems Symposium,1992:68-77.
    [90]Byoung-Dai Lee, Jennifer M. Schopf, Run-Time Prediction of Parallel Applications on Shared Environments. poster-paper, in Proceedings of Cluster 2003, December 2003.
    [91]林剑柠,吴慧中.基于遗传算法的网格资源调度算法[J].计算机研究与发展.2004 (12):2195-2199.
    [92]Zhihong Xu, Xiangdan Hou, Jizhou Sun. Ant Algorithm-based Task Scheduling in Grid Computing [C]. IEEE CCECE,2003.
    [93]唐觅.支持并行任务的多约束网格调度模型研究[D].长春:吉林大学,2006.
    [94]The Common Object Request Broker: Architecture and Specification—Version 2.2, Object Management Group, Framingham, Massachusetts, July 1998. [2009-2-13] http://dret.net/ biblio/titles#corba
    [95]刘韬.基于网格的聚合服务模型的研究[D].长春:吉林大学,2007.
    [96]于维生,朴正爱.博弈论及其在经济管理中的应用[M].北京:清华大学出版社,2005.
    [97]王德民,刘小灵,刘昕,胡平.计算网格中经济模型调度算法[J].计算机工程与应用, 2006(29):207-209.
    [98]黄昌勤.计算网格中任务管理的若干问题研究[D].杭州:浙江大学,2005.
    [99]李伟.基于合作博弈的网格资源调度模型研究[D].长春:吉林大学,2007.
    [100]耿学梅.分级式网格自适应调度算法研究[D].长春:吉林大学,2008.
    [101]陆松,苏德富.网格资源管理中的经济学原理运用[J].计算机工程与应用,2004(11):72-74.
    [102]Rajkumar Buyya, David Abramson, and Srikumar Venugopal. The grid economy. Proceedings of the IEEE, 93(3):698–714, March 2005.
    [103]chee shin yeo, Rajkumar Buyya. Pricing for Utility-driven Resource Management and Allocation in Cluster. Grid Computing and Distributed Systems Laboratory 2007.
    [104]Marco A. Netto1, Kris Bubendorfer, Rajkumar Buyya. SLA-based advance reservations withflexible and adaptive time QoS parameters. Grid Computing and Distributed Systems (GRIDS) Laboratory Department of Computer Science and Software Engineering The University of Melbourne, Australia.
    [105]Buyya R. Economic-based Distributed Resource Management and Scheduling for Grid Computing, Ph.D. Thesis, Monash University, Melbourne Australia, 2002,4,12.p42-43, p120-135.
    [106]Anthony Sulistio and Rajkumar Buyya. A Time Optimization Algorithm for Scheduling Bag-of-Task Applications in Auction-based Proportional Share Systems. Grid Computing and Distributed Systems (GRIDS) Laboratory Department of Computer Science and Software Engineering the University of Melbourne, Australia.
    [107]Guillermo Owen. Game theory[M]. Academic Press, 1982.
    [108]Hyo J. Song, Xin Liu, Dennis Jakobsen, Ranjita Bhagwan, Xianan Zhang. The MicroGrid: aScientific Tool for Modeling Computational Grids. Proceedings of Super Computing 2000.
    [109]Atsuko Takefusa. Bricks: A Performance Evaluation System for Scheduling Algorithms on the Grids. JSPS Workshop on Applied Information Technology for Science, 2001.
    [110]Henri Casanova. SimGrid: A Toolkit for the Simulation of Application Scheduling. Proceedings of the First IEEEIACM International Symposium on Cluster Computing and theGrid, pp. 430-437, 2001.
    [111]Rajkumar Buyya and Manzur Murshed, GridSim: A Toolkit for the Modeling and Simulation of Distributed Resource Management and Scheduling for Grid Computing, Concurrency and Computation: Practice and Experience (CCPE) Journal, Volume 14, Issue 13-15, Pages:1175-1220, Wiley Press, USA, November-December 2002.
    [112]卢鹏,金海,谢夏,戴志华,廖振松.关于网格模拟器的研究[J].高性能计算技术,2005(2):5-9.
    [113]Buyya R, Murshed M. GridSim: A Toolkit for the Modeling and Simulation of Distributed Resource Management and Scheduling for Grid Computing. The Journal of Concurrency and Computation Practice and Experience, Vo1.14, Issue 13-15. Wiley Press, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700