家蚕卵色限性品种(W-1)蚕卵的发育后期及蚁蚕蛋白质组的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕是完全变态昆虫,一生中要经过卵、幼虫、蛹和成虫4个形态完全不同的发育阶段。对卵期胚胎发育不同时期的蛋白质时间和空间的表达差异已经有大量的研究,但对家蚕卵期和蚁蚕性别差异性表达的研究报道很少。
     本研究利用双向电泳和质谱相结合的蛋白质组学的研究方法利用家蚕卵色限性品种(W-1)对催青后期胚胎和蚁蚕进行雌雄性别差异蛋白质的研究,找出性别生理差异蛋白,结合家蚕数据库进行质谱鉴定,进一步发现性别会影响家蚕胚胎发育过程中器官和组织蛋白质的合成,获得的主要结果如下:
     1.W-1蚕卵不同发育阶段的形态图
     用氢氧化钾脱壳法成功解剖了家蚕品种W-1雌雄卵各个时期的胚胎,采用倒置显微镜拍摄了照片。为后续实验材料做了充分的前期准备。并且将雌雄胚胎分别解剖出来。
     2家蚕品种W-1己3期雌雄卵可溶性蛋白质表达谱的研究
     2.1家蚕品种W-1己3期雌雄卵可溶性蛋白质双向电泳图谱的建立
     用蛋白质双向电泳技术对己3期家蚕卵可溶性蛋白进行了蛋白质组分的比较分析。结果显示:雄卵和雌卵分别检测到317和335个斑点,能互相匹配的蛋白点273对。其中雄卵特异斑点44个,雌卵特异斑点62个。这些差异蛋白的出现,显示雌雄蚕卵可溶性蛋白质组分存在差异。
     2.2家蚕品种W-1己3雌雄卵可溶性蛋白表达谱差异蛋白的质谱鉴定
     特征蛋白进行了基质辅助质量飞行时间质谱(MALDI-TOF MS)分析,已鉴定的蛋白包括家蚕未知的角蛋白、原肌球蛋白同源体5、Sqd基因编码的RNA结合蛋白、转胶蛋白、热激蛋白20.4、原肌球蛋白1和与果蝇同源的Tm1蛋白。进一步说明性别会影响胚胎器官和组织蛋白质的合成。
     3家蚕品种W-1己4期雌雄卵蛋白质双向电泳图谱比较分析
     用蛋白质双向电泳技术对己4期家蚕卵蛋白进行了蛋白质组分的比较分析。结果显示:雄性蚕卵蛋白样品中共检测到486个蛋白斑点,雌性蚕卵蛋白样品中共检测到427个蛋白斑点,雌雄能匹配的蛋白斑点有380对,匹配率达到81.29%。其中雄性特异蛋白斑点106个,占总蛋白斑点数的21.81%。而雌性特异蛋白斑点47个,占总蛋白斑点数的11.01%。
     4家蚕品种W-1己5期雌雄卵蛋白质双向电泳图谱比较分析
     对胚胎己5期雌雄卵蛋白质用双向电泳的技术和方法进行蛋白组分的比较分析。结果显示:雄性蚕卵蛋白样品中共检测到471个蛋白斑点,雌性蚕卵蛋白样品中共检测到432个蛋白斑点,雌雄能匹配的蛋白斑点有395对,匹配率达到84.27%。其中雄性特异蛋白斑点76个,而雌性特异蛋白斑点37个。
     5家蚕卵色限性品种(W-1)雌雄蚁蚕蛋白质表达谱的研究
     5.1家蚕品种W-1雌雄蚁蚕蛋白质双向电泳图谱的建立
     应用双向电泳和图像分析技术,研究家蚕品种W-1雌雄蚁蚕的总蛋白的差异。结果显示:雄蚁和雌蚁分别检测到478和444个蛋白点,能相互匹配的蛋白点为410对,占88.57%,雄蚁特异斑点有68个,雌蚁有34个。这些差异蛋白的出现,显示雌雄蚁蚕蛋白质组分存在差异。
     5.2家蚕品种W-1雌雄卵蚁蚕表达谱差异蛋白的质谱鉴定
     特征蛋白进行了基质辅助质量飞行时间质谱(MALDI-TOF MS)分析,已鉴定的蛋白包括血浆蛋白30K,热激蛋白21.4,低分子量30K蛋白脂蛋白质PBMHP-12,肌球蛋白轻链2,推测的蛋白质和与果蝇同源的蛋白GM17246。进一步说明性别会影响胚胎器官和组织蛋白质的合成。
Silkworm is a complete metamorphosis insect, In their lifetime they go through four different developmental stages:egg, larvae, pupa and adult .Protein of eggs in different periods have been studied. But protein of gender differences of eggs and newly-hatched larvae in Bombyx mori have little report .
     In this study, we identify different protein on eggs at later stages and the newly-hatched larvae combining two-dimensional electrophoresis and mass spectrometry using egg color-limited Bombyx mori variety (W-1),Furtherly we find that gender of the Bombyx mori have an influence on organs and tissues during embryonic development. Main results obtained are as follows:
     1 male and female embryonic morphology of egg color-limited Bombyx mori variety,W-1,in different periods
     male and female embryos of egg color-limited Bombyx mori variety,W-1 in different periods were successfully dissected with potassium hydroxide.Then prepare for the follow-up experiments.And for the first time male and female embryos are presented separately.
     2 The study of expression profiling of dissolvable protein of male and female eggs of the period of ji3 in Bombyx mori variety,W-1
     2.1 The establishment of patterns of dissolvable protein of male and female eggs of the period of ji3 in Bombyx mori variety,W-1 by two dimensional polyacrylamide gel electrophoresis
     we compared the dissolvable protein of male and female eggs of the period of ji3 by using two-dimensional electrophoresis technology. The results showed that 317 and 335 protein spots were detected in dissolvable proteins of male and female egg respectively. Comparison analysis showed that 273 of the total protein spots were matched between male and female egg, and 44 and 62 specific protein spots were found in male and female egg respectively. The results indicated that dissolvable protein of male and female eggs of the period of ji3 in silkworm are different between male and female.
     2.2 the identification of different proteins from patterns of dissolvable protein of male and female eggs of the period of ji3 in Bombyx mori variety,w-1 by mass spectrometry
     The characteristic protein spots were excised to identify by MALDI-TOF MS.The result show that proteins identified were putative cuticlar protein, tropomyosin isoform 5, Bmsqd-1, transgelin , heat shock protein 20.4 ,tropomyosin 1 and Tm1 protein similar to Drosophila.It furtherly show that gender has an important influence on the formation of embryonic organs and tissues.
     3 Anaylsis of patterns of protein of male and female eggs of the period of ji4 in Bombyx mori variety,W-1 by two dimensional polyacrylamide gel electrophoresis
     we compared the protein components of male and female eggs of the period of ji4 by using two-dimensional electrophoresis technology. The results showed that 486 and 427 protein spots were detected in proteins of male and female egg respectively. Comparison analysis showed that 380 of the total protein spots were matched between male and female egg, the matching rate is 81.29% and 106 and 47 specific protein spots were found in male and female egg respectively.
     4 Anaylsis of patterns of protein of male and female eggs of the period of ji5 in Bombyx mori variety,W-1 by two dimensional polyacrylamide gel electrophoresis
     we compared the protein components of male and female eggs of the period of ji5 by using two-dimensional electrophoresis technology. The results showed that 471and 432 protein spots were detected in proteins of male and female egg respectively. Comparison analysis showed that 395 of the total protein spots were matched between male and female egg, the matching rate is 84.27% and 76 and 37 specific protein spots were found in male and female egg respectively.
     5 The study of protein expression profiling of the male and female newly-hatched larvae in Bombyx mori variety,W-1
     5.1 The establishment of protein patterns of male and female newly-hatched larvae in Bombyx mori variety , W-1 by two dimensional polyacrylamide gel electrophoresis
     we compared the protein components of male and female newly-hatched larvae by using two-dimensional electrophoresis technology. The results showed that 478 and 444 protein spots were detected in dissolvable proteins of male and female egg respectively. Comparison analysis showed that 410 of the total protein spots were matched between male and female egg, the matching rate is 88.57% and 68 and 34 specific protein spots were found in male and female egg respectively.
     5.2 the identification of different proteins from patterns of male and female newly-hatched larvae in Bombyx mori variety,w-1 by mass spectrometry
     The characteristic protein spots were excised to identify by MALDI-TOF MS.The result show that proteins identified were major plasma protein 30K, heat shock protein 21.4, low molecular 30kD lipoprotein PBMHPC-21, myosin light chain 2,putative protein CLK_A0112and GM17246 protein similar to Drosophila.It furtherly show that gender has an important influence on the formation of embryonic organs and tissues.
引文
[1]夏建国,唐文月.家蚕性别与经济性状的关系[J].蚕业科学, 1980,6(3):167-172.
    [2]项美华,庄大桓,何家禄,等.雌雄蚕若干生理特性的研究[J].蚕业科学, 1982, 8(1): 20-25.
    [3]黄君霆.家蚕性别控制的研究[J].遗传, 1980,2(20):1-5.
    [4]牛虹.蚕桑生产新技术:专养雄蚕[J].农村新技术, 2006, 1: 16-16.
    [5]蔡明文,房丽秀,司马杨虎.家蚕EST数据库的应用现状及展望[J].江苏蚕业, 2007,29 (3): 9-12.
    [6]向仲怀.家蚕遗传育种学[M].北京:农业出版社, 1994. 24-35.
    [7]Sturtevant A H. No crossing over in the female of the silkworm moth[J]. Am Naturalist, 1915, 49: 42-44.
    [8]Tanaka Y. Genetic studies on the silkworm[J]. J Coll Agric Sapporo, 1916, 7: 129-255.
    [9]吕鸿声.中国养蚕学[M].上海:上海科学技术出版社, 1990. 229-245.
    [10]Suzuki M G, Shimada T, Kobayashi M. Absence of dosage compensation at the transcription level of a sex-linked gene in a female heterogametic insect, Bombyx mori[J]. Heredity, 1998, 81(3): 275-283.
    [11] Suzuki M G, Shimada T, Kobayashi M. Bm kettin, homologue of the Drosophila kettin gene, is located on the Z chromosome in Bombyx mori and is not dosage compensated[J]. Heredity, 1999, 82(2): 170-179.
    [12]Koike Y, Mita K, Suzuki M G, et al. Genomic sequence of a 320 kb segment of the Z chromosome of Bombyx mori containing a ketin ortholog[J]. Mol Genet Genomics, 2003, 269: 137-149.
    [13]Zha Xing-fu, Xia Qing-you, Duan Jun, et al. Dosage analysis of Z chromosome genes using microarray in silkworm, Bombyx mori[J]. Insect Biochem Mol Biol, 2009,,39(5): 315-321.
    [14]Fujii H, Banno Y, Doira H, et al. Genetical Stocks and Mutations of Bombyx mori: Important Genetic Resources[M]. Fukuoka, Japan: Institute of Genetic Resources,Kyushu University, 1998.
    [15]Yuji Y. A dense genetic map of the silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers[J]. Genetics, 2005, 150(4): 1513-1525.
    [16]Nagaraja G M, Mahesh G, SatishV, et al. Genetic mapping of Z chromosome and identification of W chromosome-specific markers in the silkworm, Bombyx mori[J]. Heredity, 2005, 95(2): 148-157.
    [17]牛宝龙,吕顺霖,翁宏飚,等.家蚕BmTpi基因Z染色体定位[J].昆虫学报, 2005, 48(4): 622-626.
    [18]Miao Xue-xia, Li Wei-hua, Li Mu-wang, et al. Inheritance and linkage analysis of co-dominant SSR markers on the Z chromosome of the silkworm (Bombyx mori L)[J]. Genet Res, 2008, 90(2): 151-156.
    [19]Arunkumar K P, Mita K, Nagaraju J. The silkworm Z chromosome is enriched in testis-specific genes[J]. Genetics, 2009, 182(2): 493-501.
    [20]Sahara K, Yoshido A, Kawamura N. W-derived BAC probes as a new tool for identification of the W chromosome and its aberrations in Bombyx mori[J]. Chromosoma, 2003, 112(1): 48-55.
    [21]Abe H, Mita K, Yasukochi Y, et al. Retrotransposable elements on the W chromosome of the silkworm, Bombyx mori[J]. Cytogenet Genome Res, 2005, 110(1): 144-151.
    [22]Abe H, Sugasaki T, Terada T, et al. Nested retrotransposons on the W chromosome of the wild silkworm Bombyx mandarina[J]. Insect Molecular Biology, 2002, 11(4): 307-314.
    [23]Abe H, OhbayashiF, Shimada T, et al. A complete full-length non-LTR retrotransposon, BMC1, on the W chromosome of the silkworm, Bombyx mori[J]. Genes Genet Syst, 1998, 73(6): 353-358.
    [24]Hasimoto H. The role of the W chromosome in the sex determination of Bombyx mori[J]. Japan J Genetics, 1933, 8: 245-247.
    [25]Fujii T, Shimada T. Sex determination in the silkworm, Bombyx mori: A female determinant on the W chromosome and the sex-determining gene cascade[J]. Seminars in Cell & Developmental Biology, 2007, 18(3): 379-388.
    [26] Abe H, Fujii T, Tanaka N, et al. Identification of the female-determining region of the W chromosome in Bombyx mori[J]. Genetica, 2008, 133(3): 269-282.
    [27] Abe H, Seki M, Ohbayashi F. Partial deletions of the W chromosome due to reciprocal translocation in the silkworm Bombyx mori[J]. Insect Molecular Biology, 2005, 14(4): 339-352.
    [28]王慧超,朱勇.家蚕雌特异分子标记筛选、克隆及其序列分析[J].蚕业科学, 2004, 3(1): 34-37.
    [29]Traut W, Niimi T, et al. Phylogeny of the sex-determining gene Sex-lethal in insects[J]. Genome, 2006, 49(3): 254-262.
    [30]Ohbayashi F, Suzuki M G, Shimada T, Sex determination in Bombyx mori[J]. Current Science, 2002, 83(4): 466-470.
    [31]Niimi T, Sahara K, et al. Molecular cloning and chromosomal localization of the Bombyx Sex-lethal gene[J]. Genome, 2006, 49(3): 263-268.
    [32]查幸福.家蚕(Bombyx mori)性别决定网络及其关键基因BmSxl cDNA克隆和功能研究[D].重庆:西南大学, 2006.
    [33]柳学广.家蚕与野桑蚕的sex-lethal的比较研究[D].苏州:苏州大学, 2007.
    [34]宋艳,柳学广,司马杨虎,等.野桑蚕Bmand-Sxl基因的克隆及原核表达[J].江苏蚕业, 2009, 31(1): 14-18.
    [35]赵敏,刘劲,朱虹,等.家蚕sans fille基因的分子克隆及序列分析[J].蚕业科学, 2006, 32(1): 6-11.
    [36]Niu Bao-long, Meng Zhi-qi, Tao Yue-zhi. Cloning and alternative splicing analysis of Bombyx mori Transformer-2 gene using silkworm EST database[J]. Acta Biochimica et Biophysica Sinica, 2005, 37(11): 728-736.
    [37]王子龙.家蚕性别决定相关基因Bmrbp1的克隆及原核表达[D].重庆:西南大学, 2006.
    [38]Wang Z, Zha X, He N, et al. Molecular cloning and expression analysis of Bmrbp1, the Bombyx mori homologue of the Drosophila gene rbp1[EB/OL]. Mol Biol Rep, 2009-09-04.
    [39]潘敏慧,王强,沈以红,等. Bmrbp1基因在家蚕染色体上的定位(简报)[J].分子细胞生物学报, 2007, 40(5): 365-370.
    [40]Ohbayashi F, Suzuki M G, Mita K, et al. A homologue of the Drosophila doublesex gene is transcribed into sex-specific mRNA isoforms in the silkworm, Bombyx mori[J]. Comp Biochem and Physiol Part B, 2001, 128(1): 145-158.
    [41]Suzuki M G, Ohbayashi F, Mita K, et al. The mechanism of sex-specific splicing at the doublesex gene is different between Drosophila melanogaster and Bombyx mori[J]. Insect Biochemistry and Molecular Biology, 2001, 31(12): 1201-1211.
    [42]Suzuki M G, Funaguma S, Kanda T, et al. Analysis of the biological functions of a doublesex homologue in Bombyx mori[J]. Dev Genes Evol, 2003, 213(7): 345-354.
    [43]Suzuki M G, Funaguma S, Kanda T, et al. Role of the male BmDSX protein in the sexual differentiation of Bombyx mori[J]. Evol Dev, 2005, 7(1): 58-68.
    [44]Siegal M L, Baker B S. Functional conservation and divergence of intersex, a gene required for female differentiation in Drosophila melanogaster[J]. Dev Genes Evol, 2005, 215(1): 1-12.
    [45]Yano K, Sakurai M T, Izumi S, et al. Vitellogenin gene of the silkworm, Bombyx mori structure and sex-dependent expression[J]. FEBS Lett, 1994, 356: 207-211.
    [46]Yano K, Sakurai M T, Watabe S, et al. Structure and expression of mRNA for vitellogenin in Bombyx mori[J]. Biochim Biophys Acta, 1994, 1218(1): 1-10.
    [47]Sakurai H, Fujii T, Izumi S. Structure and expression of gene coding for sex-specific storage protein of Bombyx mori[J]. Biol Chem, 1988, 263(16): 7876-7880.
    [48]Mita K, Nenoi M, Morimyo M. Expression of the Bombyx mori beta-tubulin-encoding gene in testis[J]. Gene, 1995, 162(2): 329-330.
    [49]Sandler B H, Nikonova L, Leal W S. Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex[J]. Chem Biol, 2000, 7(2): 143-151.
    [50]Zha X F, Xia Q Y. Detection and analysis of alternative splicing in the silkworm by aligning expressed sequence tags with the genomic sequence[J]. Insect Molecular Biology, 2005, 14(2): 113-119.
    [51]王永强,靳远祥,何秀玲,等.家蚕蛋白质组研究现状与趋势[J].蚕业科学, 2006, 32(4): 541-547.
    [52]夏佳音,龙晓辉,陈健,等.家蚕孤雌生殖差异蛋白———热休克相关蛋白的生物信息学分析[J].蚕业科学, 2007, 33(4): 568-573.
    [53]于威,聂作明,王丹,等.家蚕孤雌生殖相关蛋白ERp57基因的克隆和分析[J].丝绸, 2007(8): 23-27.
    [54]毛立明,林健荣,赵峰,等.家蚕蛹期雌雄生殖腺蛋白质双向电泳比较分析[J].昆虫学报, 2007, 50(6): 628-633.
    [55]徐秋云,林健荣,毛立明,等.温敏性品种雌雄蚁蚕蛋白质双向电泳图谱差异分析[J].昆虫学报, 2009, 52(3): 327-338.
    [56]高见丈夫,北泽敏男,家蚕胚子发生阶段表:日122号,日124号,支122号,支124号。蚕丝试验场报告, 1960,75:1-31.
    [57]Pan M L, Bell W J, Telfer W H.Vitellogenic blood protein synthesis by insect fat body.Science,1969,165:393-394.
    [58]Ken Irie, Okitsugu Yamashita.Changes in vitellin and other yolk proteins during embryonic development in the silkworm, Bombyx mori.Journal of Insect Physiology .1980,26(12) : 811-817.
    [59]Ken Irie, Okitsugu Yamashita. Egg-specific protein in the silkworm, Bombyx mori Purification, properties, localization and titre changes during oogenesis and embryogenesis.Insect Biochem.1983,13:71-80.
    [60] Jiang Zhu, Leslie S Indrasith, Okitsugu Yamashita.Charaeterization of vitellin,egg-specific protein and 30 K Da protein from Bombyx mori eggs and their fates during oogenesis and embryogencsis.Biochem.Biophys.Act.1986,882(3):427-436.
    [61]颜新培,钟伯雄,徐孟奎等.家蚕卵黄蛋白组成及其胚胎时期的变化.农业生物技术学报.2004,12(5):556-563.
    [62]Leslie S Indrasith, Toshiharu Furusawa, Masayoshi Shikata,et al.Limited degradation of vitellin and egg-specific protein in Bombyx eggs during embryogenesis. InsectBiochemistry.1987,17(4):539-545.
    [63]Yamashita O, L S Indrasith.Metabolic fates of yolk proteins during embryogensis in arthropods.Develop.Growth &Differ.1988,30(4):337-346.
    [64]朱江,戴玉锦,孙景萍.家蚕卵长期保存中碳水化合物和蛋白质的代谢变化.蚕业科学.1992,18(2):105-112.
    [65]张剑韵,黄龙全,徐永镇.家蚕卵和幼虫、蛹、蛾血液蛋白成分的电泳观察与比较.1994,4:245-246.
    [66]范兰芬,钟杨生,林健荣. SDS-PAGE与MALDI-TOF-MS质谱联用分析家蚕胚胎程序化发育差异蛋白.中国蚕学会第六届家蚕和柞蚕遗传育种暨蚕桑产业技术体系遗传育种学术研讨会.2009.
    [67]王叶元,刘京,秦获等.家蚕卵、幼虫期蛋白SDS-PAGE电泳观察.广东蚕业.2006,40(2):16-20.
    [68]钟伯雄.家蚕胚胎发育时期的蛋白质变化及构造分析.遗传学报.1999,26(6):627-633.
    [69]颜新培,钟伯雄,曹家树等.家蚕催青期胚胎蛋白质图谱的建立.蚕业科学, 2004, 30(1):28-33.
    [70]颜新培,钟伯雄,徐孟奎等.家蚕催青前期胚胎蛋白质双向电泳图谱分析.昆虫学报.2005,48(2):295-300.
    [71]钟伯雄,陈金娥,颜新培等.家蚕催青后期胚胎蛋白质双向电泳图谱分析.昆虫学报.2005,48(4):637-642.
    [72]叶键,钟伯雄,林健荣等.家蚕温敏性品种胚胎发育的蛋白质表达谱变化.蚕业科学.2005,31(3):362-366.
    [73]颜海燕.家蚕胚胎高温干燥敏感期的蛋白质研究.硕士学位论文.浙江大学.2002.
    [74]Zhong B X, Li Y K, Lin J R,et al. Possible Effect of 30K Proteins in Embryonic Development of Silkworm Bombyx mori.Acta Biochimica et Biophysica Sinica.2005, 37:355-361.
    [75]姚国华,钟伯雄,颜新培等.家蚕胚胎发育关联的初始蛋白质研究.蚕业科学.2004,30(4):436-439.
    [76]赵峰,林健荣,霍永康,等.家蚕浸酸活化滞育卯早期胚胎发育的难溶性蛋白质差异表达分析.中国农业科学.2008,41(11):3933—3940.
    [77]赵峰,霍永康,林健荣等.家蚕滞育卵浸酸后易溶性蛋白的表达差异分析.蚕业科学.2008,34(1):54-60.
    [78]王永强.家蚕无性繁殖系的构建及其遗传特性研究,浙江大学博士论文,2004.
    [79]于威,聂作明,王丹,等.家蚕孤雌生殖相关蛋白ERp57基因的克隆和分析[J].丝绸,2007(8):23-27.
    [80]Wasinger V C, Cordwell S J, Cerpa Peljak A, et al.Progress with Gene-product mapping of the Molecules:Mycoplasma genitalium[J].Electrophoresis.1995,16:1090—1094.
    [81]钟伯雄,颜海燕,沈飞英,等.家蚕蛋白质双向电泳的样品制备方法.蚕业科学.2003,29(4):427-431.
    [82]刘建军,房师松,李习艺,等.蛋白质组研究技术平台的建立——双向电泳条件的建立及优化.卫生研究.2004,33(3):327-330.
    [83]X H Long, J W Zhu, Z H Mo et al.Development of an effective sample preparation approach for proteomic analysis of silkworm eggs using two-dimensional gel electrophoresis and mass spectrometry.Journal of Chromatography A.2006, 1128(1-2)133-137.
    [84]易发平,张平波,常平安,等.双向电泳法在家蚕蛋白质分离中的应用.昆虫知识.2006,43(6):873-876.
    [85]龙晓辉.家蚕卵蛋白质组技术平台的优化及有性与孤雌生殖的比较蛋白质组研究浙江大学博士学位论文.2006.
    [86]何克荣,黄健辉,祝新荣,等.一种导入蚕限性标记基因的有效方法[J]蚕业科学.1999,25(4):24-248.
    [87]冯家新.蚕种学[M].农业出版社.1990:155-156.
    [88]浙江农业大学主编.蚕体解剖生理学[M].农业出版社.1985:11-11.
    [89]孙勇,于兰,刘国俊,等.专养雄蚕项目的研究效果[J].中国蚕业,2003,24(2):72-73.
    [90]白兴荣,董占鹏,廖鹏飞.家蚕人工性别控制与应用[J].云南农业科技,2007,1:30-31.
    [91]郭尧君.SDS电泳技术的实验考虑及最新进展[J].生物化学与生物物理进展,1991,18(1):32-37.
    [92]詹显全,关勇军,李萃,等.人肺腺癌细胞和正常细胞HBE的蛋白质组差异分析[J].生物化学与生物物理学报,2002,34(1):50-56.
    [93]X.H. Long, J.W. Zhu, Z.H. Moc et al. Development of an effective sample preparation approach for proteomic analysis of silkworm eggs using two-dimensional gel electrophoresis and mass spectrometry[J]. Journal of Chromatography A. 2006 (1128):133–137.
    [94]Ryo Futahashi, Shun Okamoto, Hideki Kawasaki, et al. Genome-wide identification of cuticular protein genes in the silkworm,Bombyx mori[J]. Insect Biochemistry and Molecular Biology,2008,38:1138-1146.
    [95]Kelley R L. Initial organization of the Drosophila dorsoventral axis depends on an RNA-binding protein encoded by the squid gene[J]. Genes Dev,1993,7:948-960.
    [96]Feng-Qian Li, Guan-Cheng Sun, Hitoshi Ueda,et al.Sequences of two cDNAs encoding silkworm homologues of Drosophila melanogaster squid gene[J]. Gene,1995,154:295-296.
    [97]杨之明.转胶蛋白抑制ARA54增强的雄激素受体转录功能和前列腺癌细胞的生长[D].杭州:浙江大学,2006.
    [98]谢敏,贡成良,薛仁宇,等.家蚕hsp20.4启动子克隆及其驱动表达产物EGT对家蚕蛹体发育的影响[J].昆虫学报,2009,52(3):246-253.
    [99]Clark A G, Eisen M B, Smith D R,et al.Evolution of genes and genomes on the Drosophila phylogeny[J].Nature.2007,450(7167):203-218.
    [100]Niu B L, Meng Z Q, Weng H B, et a1.Blast silkworm EST data-base for functional genes[R/OL].http://www.uniprot.org/uniprot/Q1HPSO.2007-02-06.
    [101]Xu X K Xu S S, Shen W D.cDNA cloning,genomic structure and expression of myosin light chain 2(MLC-2) from Bombyx mandarina[R/0L]. http://www.uniprot.org/unipmt/BOFL77.2008-02-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700