鸡胚性分化早期性别差异表达miRNAs的鉴定及其特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
miRNA是近年来新发现的一类在转录后水平下调基因表达的小分子非编码RNA家族。研究发现,IniRNA在动物发育过程中发挥着重要作用,但它在鸡胚性腺分化中的调控作用还未确定。为研究miRNA在鸡胚早期性分化过程中的表达,探讨miRNA在性腺早期发育中的作用,本研究以前期芯片筛选出的差异表达miRNAs为研究对象,对其中新的miRNAs进行生物信息学分析,并分析了候选miRNAs在雌、雄鸡胚早期性腺中的时空表达模式。本研究所取得的结果如下:
     1.利用鸡基因组信息对新miRNAs进行定位,发现miR-363和363*、miR-551b和miR-612分别位于鸡染色体4(-)、9(-)和Z(-)上,同时通过克隆获得了miR-363*在鸡基因组上的未知侧翼序列。前体的二级结构折叠结果表明,预测的鸡新miRNAs均具有茎环状前体结构,成熟序列基本位于相应的茎部,且折叠最低自由能均≤-25kcal/mol。miR-363 (363*)和miR-551b在人、大鼠、小鼠和鸡4个物种中的同源性分析结果表明,前体序列的相似性均在80%以上,且成熟序列中仅有个别碱基的差异。
     2.利用RNA加尾及引物延伸和茎环状引物的半定量RT-PCR方法分析了13个miRNAs在E3.5-6.5 d雌、雄鸡胚性腺中的时间表达谱,并对它们在同一时期不同性别中以及同一性别不同时期中的差异性进行了显著性分析。结果表明,从总体趋势看,所检测miRNAs中有5个呈雌性高表达和4个呈雄性高表达,其余4个为不规则表达;miR-363、miR-200b、miR-1810、miR-1599、miR-551b和miR-196在所检某些时期两性间的差异表达达到显著或极显著水平;miR-363、miR-1456、miR-196、miR-363*、miR-612、miR-1599、miR-126和miR-1810在同一性别某些时期间的表达存在显著或极显著差异。
     3.利用WISH技术对miR-363和miR-1810进行空间表达模式分析,结果表明,miR-363主要在E4.5 d鸡胚的四肢、外胚层、脊索以及脑等部位表达,在E6.5 d性腺部位的表达明显高于肾脏,且在雌性性腺中的表达高于雄性;miR-1810主要在E4.5 d鸡胚的脑和四肢表达,在E6.5及E8.5 d性腺中表达高于肾脏,且雄性性腺中的表达高于雌性。
     结合本研究结果及其它物种中相应miRNA的研究,筛选了5个(miR-363、miR-551b、miR-1810、miR-1599和miR-200b)可能参与早期鸡胚性腺发育过程的miRNAs作为下一步研究的对象。
MiRNA is a group of recently discovered, small, non-coding RNA, which down-regulate gene expression at the post-transcriptional level. MiRNAs have been proved to play important roles during the process of development, but its function on the chicken sexual differentiation is uncertain. In order to investigate the expression during the early stages of gonad sexual differentiation and explore the effect of miRNA on gonad development in chicken, a body of miRNAs with sexual differentially expression were preliminary selected based on the results of miRNA chips, in which the novel miRNAs were analyzed by bioinformatics methods, and the temporal and spatial expression patterns of candidated miRNAs in female and male gonads of chicken embryo were studied. The results obtained were as follows:
     1. The chromosomes mapping of new miRNAs were analyzed through chicken genome information, miR-363 and 363*, miR-551b and miR-612 were mapped to the 4 (-),9 (-) and Z (-) and the uknown flanking sequence of miR-363* in chicken genome was obtained by cloning. Secondary structure analysis of precursor showed that all predicted chicken novel miRNAs possessed stem-loop precursor structures, mature sequences located in the stems of the corresponding hairpins, and the lowest free energy was≤-25 kcal/mol. Homology analysis among human, rat, mouse and chicken suggested that the similarities of precursor sequence were all above 80%, and only one or two bases difference existed in mature sequences.
     2. Temporal expression profiles of 13 miRNAs in female and male chicken embryo gonads at E3.5~6.5 d were studied by RNA tailing and primer extension and stem-loop primer RT-PCR methods, and significant analysis between different sexes at the same stage and different stages in the same sex were carried out. The results indicated that 5 miRNAs with higher expression in femal,4 miRNAs with higher expression in male and 4 miRNAs with scrambled expression were gained. Differential expressions of miR-363, 200b,1810,1599,551b and 196 between both sexes at centain stages reached significant and (or) extremely significant levels and the expressions of miR-363,1456,196,363*, 612,1599,126 and 1810 between some different stages in the same sex existed significant and (or) extremely significant differences.
     3. Spatial expression pattern analysis of miR-363 and 1810 were done by WISH, the results showed that the expression signals of miR-363 appeared primarily at limb buds, ectoderm, notochord and brain in E4.5 d chicken embryo, and obviously higher in gonads than surrounding kidneys with higher expreesion in female gonads than that in male in E6.5 d UGSs. MiR-1810 expressed mainly at brain and limb buds in E4.5 d chicken embryo, and higher in gonads than surrounding kidneys with higher expression in male gonads than that in female in E6.5 d and 8.5 d gonads.
     Combined our results in present study with studies of corresponding miRNA in other species, 5 miRNAs (miR-363, miR-551b, miR-1810,1599 and 200b) which might be involved in the process of early chicken embryonic gonadal development were screened as targets for further research.
引文
1.付元帅,施志仪.MicroRNA与动物发育.生物技术通报,2010,1:30-36
    2.胡锐颖,耿听,马珺,陈云霜,李仲逵,丁小燕.一种简单通用的鸟类性别分子鉴定技术.实验动物学报,2003,36(5):401-404
    3.孟和,潘玉春.鸡性别决定机制及相关基因研究进展.动物学杂志,2005,2:25-30
    4.萨姆布鲁克,弗里奇,曼尼阿蒂斯.分子克隆实验指南.第二版.金冬雁,黎孟枫等译.北京:科学出版社,1993,34-68
    5.杨勇飞,李政,樊启昶,龙漫远,张文霞.果蝇近缘物种间性腺特异ncRNA表达图谱存在显著差异.科学通报,2007,52(6):646-651
    6. Abbott A L, Alvarez-Saavedra E, Miska E A, Lau N C, Bartel D P, Horvitz H R, Ambros V. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell,2005,9:403-414
    7. Ambros V, Bartel B, Bartel D P, Burge C B, Carrington, J C, Chen X, Dreyfuss G, Eddy S R, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T. A uniform system for microRNA annotation. RNA,2003,9(3):277-279
    8. Anderson C, Catoe H, Werner R. MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res,2006,34:5863-5871
    9. Bak M, Silahtaroglu A, Moller M, Christensen M, Rath M F, Skryabin B, Tommerup N, Kauppinen S. MicroRNA expression in the adult mouse central nervous system. RNA,2008,14(3):432-444
    10. Bannister S C, Tizard M L, Doran T J, Sinclair A H, Smith C A. Sexually dimorphic microRNA expression during chicken embryonic gonadal development. Biol Reprod, 2009,81(1):165-76
    11. Bao N, Lye K W, Barton M K. MicroRNA binding sites in Arabidopsis class Ⅲ HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell, 2004,7:653-662
    12. Baumann C, De La Fuente R. ATRX marks the inactive X chromosome (Xi) in somatic cells and during imprinted X chromosome inactivation in trophoblast stem cells. Chromosoma,2009,118:209-222
    13. Bernstein E, Kim S Y, Carmell M A, Murchison E P, Alcorn H, Li M Z, Mills A A, Elledge S J, Anderson K V, Hannon G J. Dicer is essential for mouse development. Nat Genet,2003,35(3):215—217
    14. Brennecke J, Stark A, Cohen S M. Not miR-ly muscular: microRNAs and muscle development. Genes Dev,2005,19:2261-2264
    15. Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik A E, Hentze M W, Muckenthaler M U. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA,2006,12(5):913-920
    16. Chellappan P, Jin H. Discovery of plant microRNAs and short-interfering RNAs by deep parallel sequencing. Methods Mol Biol,2009,495:121-132
    17. Chen C, Ridzon D A, Broomer A J, Zhou Z, Lee D H, Nguyen J T, Barbisin M Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J, Guegler K J. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005,33(20):e179
    18. Chen J F, Mandel E M, Thomson J M, Wu Q, Callis T E, Hammond S M, Conlon F L, Wang D Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet,2006,38(2):228-233
    19. Cummins J M, He Y, Leary R J, Pagliarini R, Diaz L A, Jr Sjoblom T, Barad O, Bentwich Z, Szafranska A E, Labourier E, Raymond C K, Roberts B S, Juhl H, Kinzler K W, Vogelstein B, Velculescu V E. The colorectal microRNAome. Proc Natl Acad Sci U S A,2006,103:3687-3692
    20. Darnell D K, Kaur S, Stanislaw S, Konieczka J H, Yatskievych T A, Antin P B. MicroRNA expression during chick embryo development. Dev Dyn,2006,235(11): 3156-3165
    21. Du T, Zamore P D.microPrimer:the biogenesis and function of microRNA. Development,2005,132:4645-4652
    22. Dugas D V, Bartel B. MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol,2004,7:512-520
    23. Forstemann K, Tomari Y, Du T, Vagin V V, Denli A M, Bratu D P, Klattenhoff C, Theurkauf W E, Zamore P D. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domainprotein. PLoS Biol,2005,3(7):e236
    24. Fu X, Adamski M, Thompson E M. Altered miRNA repertoire in the simplified chordate Oikopleura dioica. Mol Biol Evol,2008,25(6):1067-1080
    25. Giraldez A J, Cinalli R M, Glasner M E, Enright A J, Thomson J M, Baskerville S Hammond S M, Bartel D P, Schier A F. MicroRNAs regulate brain morphogenesis in zebrafish. Science,2005,308(5723):833-838
    26. Giraldez A J, Mishima Y, Rihel J, Grocock R J, Van Dongen, S Inoue K, Enright A J, Schier A F. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science,2006,312:75-79
    27. Glazov E A, Cottee P A, Barris W C, Moore R J, Dalrymple B P, Tizard M L. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res,2008,18:957-964
    28. Griffiths-Jones S, Grocock R J, van Dongen S, Bateman A, Enright A J. MiRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 2006,34:D140-144
    29. Grad Y, Aach J, Hayes G D, Reinhart B J, Church G M, Ruvkun G, Kim J. Computational and experimental identification of C. elegans microRNAs. Mol Cell, 2003,11:253-263
    30. Hafner M, Landgraf P, Ludwig J, Rice A, Ojo T, Lin C, Holoch D, Lim C, Tuschl T. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods,2008,44:3-12
    31. Hicks J A, Tembhurne P, Liu H C. MicroRNA expression in chicken embryos. Poult Sci,2008,87(11):2335-2343
    32. Jin Z, Xie T. Dcr-1 maintains Drosophila ovarian stem cells. Curr Biol,2007,17(6): 539-544
    33. Johnston R J, Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature,2003,426(6968):845-849
    34. Johnston R J, Jr Chang S, Etchberger J F, Ortiz C O, Hobert O. MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc Natl Acad Sci U S A,2005,102(35):12449-12454
    35. Kloosterman W P, Plasterk R H. The diverse functions of microRNAs in animal development and disease. Dev Cell,2006,11(4):441-450
    36. Kloosterman W P, Wienholds E, de Bruijn E, Kauppinen S, Plasterk R H. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods,2006,3(1):27-29
    37. Krichevsky A M, King K S, Donahue C P, Khrapko K, Kosik K S. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA, 2003,9(10):1274-1281
    38. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science,2001,294(5543):853-858
    39. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol,2002,12: 735-739
    40. Lau N C, Lim L P, Weinstein E G, Bartel D P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science,2001,294(5543): 858-862
    41. Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75(5):843-854
    42. Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science,2001,294(5543):862-864
    43. Lee Y, Jeon K, Lee J T, Kim S, Kim V N. MicroRNA maturatio:stepwise processing and subcellular localization. Embo J,2002,21(17):4663-4670
    44. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim V N. The nuclear RNase Ⅲ Drosha initiates microRNA processing. Nature, 2003,425(6956):415-419
    45. Li Q J, Chau J, Ebert P J, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, Klein L O, Davis, M M, Chen C Z. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell,2007,129:147-161
    46. Li Y, Wang F, Lee J A, Gao F B. MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev,2006,20:2793-2805
    47. Lim L P, Glasner M E, Yekta S, Burge C B, Bartel D P. Vertebrate microRNA genes Science,2003a,299(5612):1540-1540
    48. Lim L P, Lau N C, Weinstein E G, Abdelhakim A, Yekta S, Rhoades M W, Burge C B, Bartel D P. The microRNAs of Caenorhabditis elegans. Genes Dev,2003b,17(8): 991-1008
    49. Llave C, Xie Z, Kasschau K D, Carrington J C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science,2002,297(5589): 2053-2056
    50. Lu J, Getz G, Miska E A, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert B L, Mak R H, Ferrando A A, Downing J R, Jacks T, Horvitz H R, Golub T R. MicroRNA expression profiles classify human cancers. Nature,2005,435:834-838
    51. Lund E, Guttinger S, Calado A, Dahlberg J E, Kutay U. Nuclear export of microRNA precursors. Science,2004,303(5654):95-98
    52. Mansfield J H, Harfe B D, Nissen R, Obenauer J, Srineel J, Chaudhuri A, Farzan-Kashani R, Zuker M, Pasquinelli A E, Ruvkun G, Sharp P A, Tabin C J, McManus M T. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet, 2004,36:1079-1083
    53. Marshall Graves J A, Shetty S. Sex from W to Z: evolution of vertebrate sex chromosomes and sex determining genes. J Exp Zool,2001,290(5):449-462
    54. Martello G, Zacchigna L, Inui M, Montagner M, Adorno M, Mamidi A, Morsut L, Soligo S, Tran U, Dupont S, Cordenonsi M, Wessely O, Piccolo S. MicroRNA control of Nodal signalling. Nature,2007,449:183-188
    55. Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol,2006,8:278-284
    56. Nelson P T, Baldwin D A, Scearce L M, Oberholtzer J C, Tobias J W, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods,2004,1(2):155-161
    57. Ng J M, Vrieling H, Sugasawa K, Ooms M P, Grootegoed J A, Vreeburg J T, Visser P, Beems R B, Gorgels T G, Hanaoka F, Hoeijmakers J H, van der Horst G T. Developmental defects and male sterility in mice lacking the ubiquitin-like DNA repair gene mHR23B. Mol Cell Biol,2002,22:1233-1245
    58. Nuovo G, Lee E J, Lawler S, Godlewski J, Schmittgen T. In situ detection of mature microRNAs by labeled extension on ultramer templates. Biotechniques,2009,46(2): 115-126
    59. Obernosterer G, Martinez J, Alenius M. Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat Protoc,2007,2(6):1508-1514
    60. Okamura K, Phillips M D, Tyler D M, Duan H, Chou Y T, Lai E C. The regulatory activity of microRNA* species has substantial influence on microRNA and 3'UTR evolution. Nat Struct Mol Biol,2008,15:354-363
    61. O'Neill M, Binder M, Smith C, Andrews J, Reed K, Smith M, Millar C, Lambert D, Sinclair A. ASW:a gene with conserved avian W-linkage and female specific expression in chick embryonic gonad. Dev Genes Evol,2000,210(5):243-249
    62. O'Rourke J R, Georges S A, Seay H R, Tapscott S J, McManus M T, Goldhamer D J, Swanson M S, Harfe B D. Essential role for Dicer during skeletal muscle development. Dev Biol,2007,311(2):359-368
    63. Ouellet D L, Plante I, Landry P, Barat C, Janelle M E, Flamand L, Tremblay M J, Provost P. Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucleic Acids Res,2008,36:2353-2365
    64. Pask A, Renfree M B, Marshall Graves JA. The human sex-reversing ATRX gene has a homologue on the marsupial Y chromosome, ATRY: implications for the evolution of mammalian sex determination. Proc Natl Acad Sci U S A,2003,97:13198-13202
    65. Reed K J, Sinclair A H. FET-1:a novel W-linked, female specific gene up-regulated in the embryonic chicken ovary. Gene Expr Patterns,2002,2(1-2):83-86
    66. Reinhart B J, Slack F J, Basson M, Pasquinelli A E, Bettinger J C, Rougvie A E, Horvitz H R, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000,403(6772):901-906
    67. Schratt G M, Tuebing F, Nigh E A, Kane C G, Sabatini M E, Kiebler M, Greenberg M E. A brain-specific microRNA regulates dendritic spine development. Nature, 2006,439(7074):283-289
    68. Schwarz D S, Hutvagner G, Du T, Xu Z, Aronin N, Zamore P D. Asymmetry in the assembly of the RNAi enzyme complex. Cell,2003,115(2):199-208
    69. Sempere L F, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol,2004,5(3):R13
    70. Shao P, Zhou H, Xiao Z D, He J H, Huang M B, Chen Y Q, Qu L H. Identification of novel chicken microRNAs and analysis of their genomic organization. Gene,2008,418(1-2):34-40
    71. Shi R, Chiang V L. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques,2005,39(4):519-525
    72. Smith C A, Roeszler K N, Ohnesorg T, Cummins D M, Farlie P G, Doran T J, Sinclair A H. The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature,2009,461:267-271
    73. Sun Q, Zhang Y, Yang G, Chen X, Zhang Y, Cao G, Wang J, Sun Y, Zhang P, Fan M, Shao N, Yang X. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res,2008,36:2690-2699
    74. Takada S, Berezikov E, Yamashita Y, Lagos-Quintana M, Kloosterman W P, Enomoto M, Hatanaka H, Fujiwara S, Watanabe H, Soda M, Choi Y L, Plasterk R H, Cuppen E, Mano H. Mouse microRNA profiles determined with a new and sensitive cloning method. Nucleic Acids Res,2006,34:e115
    75. Tang P, Park D J, Marshall Graves J A, Harley V R. ATRX and sex differentiation. Trends Endocrinol Metab,2004,15:339-344
    76. Tang W, Yuan J, Chen X, Shan Y, Luo K, Guo Z, Zhang Y, Wan B, Yu L. Cloning and characterization of the CDZFP gene which encodes a putative zinc finger protein. DNA Seq,2005,16:391-396
    77. Teleman A A, Maitra S, Cohen S M. Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev,2006,20:417-422
    78. Thompson R C, Deo M, Turner D L. Analysis of microRNA expression by in situ hybridization with RNA oligonucleotide probes. Methods,2007,43(2):153-161
    79. Valencia-Sanchez M A, Liu J, Hannon G J, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev,2006,20:515-524
    80. Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S, Havelda Z. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res,2004,32:e175
    81. Vasudevan S, Tong Y, Steitz J A. Switching from repression to activation: microRNAs can up-regulate translation. Science,2007,318:1931-1934
    82. Ventura A, Young AG, Winslow M M, Lintault L, Meissner A, Erkeland S J, Newman J, Bronson R T, Crowley D, Stone J R, Jaenisch R, Sharp P A, Jacks T. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell,2008,132:875-886
    83. Wang S, Aurora A B, Johnson B A, Qi X, McAnally J, Hill J A, Richardson J A, Bassel-Duby R, Olson E N. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell,2008,15(2):261-271
    84. Wienholds E, Koudijs M J, van Eeden F J, Cuppen E, Plasterk R H. The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet,2003,35(3):217-218
    85. Wienholds E, Kloosterman W P, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz H R, Kauppinen S, Plasterk R H. MicroRNA expression in zebrafish embryonic development. Science,2005,309(5732):310-311
    86. Wong C F, Tellam, R L. MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem,2008,283:9836-9843
    87. Yan N, Lu Y, Sun H, Tao D, Zhang S, Liu W, Ma Y. A microarray for microRNA profiling in mouse testis tissues. Reproduction,2007,134(1):73-79
    88. Yekta S, Shih I H, Bartel D P. MicroRNA-directed cleavage of HOXB8 mRNA Science,2004,304(5670):594-596
    89. Yoo A S, Greenwald Ⅰ. LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C.elegans. Science,2005,310(5752):1330-1333
    90. Yu Z, Jian Z, Shen S H, Purisima E, Wang E. Global analysis of microRNA target gene expression reveals that miRNA targets are lower expressed in mature mouse and Drosophila tissues than in the embryos. Nucleic Acids Res,2007,35:152-164
    91. Zhang W, Dahlberg J E, Tam W. MicroRNAs in tumorigenesis:a primer. Am J Pathol,2007,171(3):728-738
    92. Zhao D, McBride D, Nandi S, McQueen H A, McGrew M J, Hocking P M, Lewis P D, Sang H M, Clinton M. Somatic sex identity is cell autonomous in the chicken. Nature,2010,464:237-242
    93. Zhao Y, Yu L, Fu Q, Chen W, Jiang J, Gao J, Zhao S. Cloning and characterization of human DDX24 and mouse Ddx24, two novel putative DEAD-Box proteins, and mapping DDX24 to human chromosome 14q32. Genomics,2000,67:351-355
    94. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature,2005,436(7048): 214-220
    95. Zhao Y, Ransom J F, Li A, Vedantham V, von Drehle M, Muth A N, Tsuchihashi T, McManus M T, Schwartz R J, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell,2007,129(2):303-317
    96. ZhaoY, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci,2007,32:189-197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700