超高强高性能混凝土随机损伤本构关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土材料由于具有原料丰富、耐久性好等优点,在建筑结构中得到广泛的应用。与钢材等各向同性均质材料不同,混凝土作为一种复合材料具有多相性、多孔性和非均质性,在宏观上反映为其力学性能的离散性和随机性,对建筑结构的受力性能及抗震性能产生的影响较为复杂。相对于普通混凝土,高强高性能混凝土中水泥浆强度较大,甚至与骨料强度相当。所以高强高性能混凝土脆性较强,也可认为其均匀性较强,其力学性能随机性和离散性减弱。针对混凝土材料的上述力学性能,本文进行了如下研究:
     配制了三组不同强度的超高强高性能混凝土,分析了水泥标号、胶凝材料种类、粗骨料级配、砂率、减水剂以及水胶比等参量对混凝土力学性能的影响。对3组共15个超高强高性能混凝土试件进行了单轴受压试验,分析了超高强高性能混凝土受压的损伤机理及组成材料对损伤性能的影响;对受压损伤过程中的弹性模量进行了阶段性检测。将损伤指数定义为损伤破坏过程中混凝土弹性模量的变化量与初始弹性模量的比值。基于试验所得损伤指数变化规律,建立了双参数函数以反映混凝土损伤演化发展规律。基于Yu Liu的弹簧摩擦块模型和李杰的弹簧模型,建立了混凝土随机损伤细观模型。该模型由两个弹簧、一个滑移块及摩擦块组成。运用能量守恒原理,建立了超高强高性能混凝土(UHSHPC)及普通混凝土的静力单轴受拉随机损伤本构关系。在上述细观模型中引入质量块,建立了UHSHPC和普通混凝土动力损伤细观模型,进而建立了UHSHPC和普通混凝土单轴拉压动力随机损伤本构关系。与试验结果及其它研究结果对比表明,本文所提出的一系列损伤本构模型能够较为准确地反映混凝土的损伤演化规律。
     本研究为超高强高性能混凝土的应用提供了一定的理论基础,有助于工程技术人员对混凝土内部组份之间的作用机理进行认识和理解,将为进一步研究混凝土在多轴应力作用下的力学性能提供参考。
Concrete material is widely used in the building structures, for its characteristics of obtaining material easily and good durability. Different from the isotropic homogeneous materials (e.g. shaped steel) the concrete is a kind of composite material with properties of heterogeneity, porosity and anisotropy, which reflect as stochastic and discreteness on the macro-mechanical properties of concrete. Stochastic and discreteness will have an influence on mechanical properties and the seismic performance of concrete structure. Compared with normal concrete, strength of cement paste in ultra-high strength and high performance concrete (UHSHPC) is close to, or even greater than that of coarse aggregate.
     First of all, three kinds of concretes with various strength levels are made in this paper. The influence of the cement grade, cementitious materials, coarse aggregate gradation, sand ratio, superplasticizer and water-cement ratio on the mechanical properties of concrete are analyzed. Uniaxial compression tests on 15 specimens, which are divided into 3 groups, are performed to research the damage and failure mechanism of UHSHPC. The elastic modulus of concrete is measured in the process of compression periodically. The damage index is defined as the ratio of variation of elastic modulus in the process of damage to initial elastic modulus. A double parameters damage function is established to research the damage evolution rules, based on study about variation of damage index obtained from the tests. A uniform mesoscopic model made up by two springs, one slipper and one displacement constraint element is proposed, based on Yu Liu's spring-friction model and Li Jie's spring model. The stochastic damage constitutive relationships are established for normal concrete and UHSHPC under uniaxial tension, for the energy conservation principle in the damage process. A mass block is introduced to the model above to establish the dynamic damage model, which is applied to normal concrete and UHSHPC. Consequently, the dynamic stochastic damage constitutive relationship of normal concrete and UHSHPC are found. Comparison between theoretical and experimental results of ordinary concrete and UHSHPC have verified that the constitutive relationship established in this paper can describe the failure mechanism of concrete well.
     The results of this study provide a theoretical foundation for wider application of HSHPC, and a profound knowledge and understanding about the mechanism of each component of concrete for engineers. This study provides some references for the further study of concrete mechanical properties subjected to multiaxial stress.
引文
[1]Yu Liu, Susanto Teng, and Chee-Kiong Soh. Three-Dimensional Damage Model for Concrete. I: Theory[J]. Journal of Engineering Mechanics, January 2008,72~80.
    [2]李杰.混凝土随机损伤力学的初步研究[J].同济大学学报,2004(10),1271~1277
    [3]曾磊,郑山锁,吴敏哲,车顺利,张亮,邓国专.适用于型钢混凝土结构的高强高性能混凝土试验研究及其力学性能分析[M].全国第九届混凝土结构基本理论及工程应用学术会议论文集,2006.08
    [4]吴寅,尚晓琳,赵德深.C80高性能泵送混凝土的配制技术[J].辽宁工程技术大学学报.2004(10),627~629
    [5]王庆法,梁云利,黄卫.C90级高性能混凝土的试验研究[J].混凝土.2005(6),90~92
    [6]孔凡营.HPC早期收缩开裂与预防[J].混凝土与水泥制品.2003(11),71~73
    [7]Shan-suo Zheng, Lei Zeng, Shun-li Che. Experimental Study on High Strength and High Performance Concrete Applied to Steel Reinforced Concrete Structures[J]. The Ninth International Symposium on Structural Engineering for Young Experts, Fuzhou & Xiamen, China
    [8]喻乐华,欧辉.掺珍珠岩粉高性能混凝土试验研究[J].华东交通大学学报,2001(3):83~87.
    [9]王博,戴连鹏,周明辉.磨细钢渣高性能混凝土的试验研究[J].沈阳建筑工程学院学报,2003(2):148~149.
    [10]王景贤,王立久.纳米材料在混凝土中的应用研究进展[J].混凝土,2004(11),18~23
    [11]陈拴发,高蕾.高性能混凝土腐蚀疲劳评价指标研究[J].西安建筑科技大学学报,2005(2):265~270.
    [12]许华胜,蒋正武.高性能混凝土中自身相对湿度变化与自收缩的研究[J].重庆建筑大学学报,2004(2):121~126.
    [13]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,1998
    [14]李杰.混凝土随机损伤本构关系研究新进展[J].东南大学学报,2002(9),751~754
    [15]李杰,杨卫忠.混凝土弹塑性随机损伤本构关系研究[J].土木工程学报,2009(2),32~38
    [16]刘维亚.型钢混凝土结构在我国高层建筑的应用[J].哈尔滨工业大学学报.2005,37(sup2):18~21
    [17]吴德飞,童根树.含初始缺陷钢结构损伤累积至断裂及后期的调查分析[J].工程力学.2006,23(8):160~167
    [18]董毓利,谢和平,赵鹏.循环受压砼全过程声发射试验及其本构关系[J].试验力学,1996,]1(2):216~221
    [19]董毓利,谢和平,李世平.不同围压下混凝土受压弹塑性损伤本构模型的研究[J].煤炭学报,1996,21(3):265~270
    [20]李崇智.现代高性能混凝土的研究与发展[J].建筑技术,2003,34(1):23~25
    [21]李杰,卢朝辉,张其云.混凝土随机损伤本构关系-单轴受压分析[J].同济大学学报,2003(5),506~509
    [22][美]陈惠发A.F.萨里普(著),余天庆,王勋文,刘西拉,韩大建(编译).混凝土和土的本构方程[M].北京:中国建筑工业出版社,2004
    [23]于寿文,冯西桥编著.损伤力学[M].北京,清华大学出版社,1997.
    [24]J. Mazars, Continuous Damage Theory-Application to Concrete[J]. Journal of Engineering Mechanics.1980,115(2):345~365.
    [25]K. E. Loland, Continuous Damage Model for load-response Estimation of Concrete. Cement and Concrete Research[J]. Pergamen Press, Ltd 1980, Vol.10:395~402.
    [26]D. Krajcinovio, G.U. Fonseka, The Continuous Damage Theory of Brittle Materials[J]. Journal of Applied Mechanics, ASME,1981, vol.48:809~815.
    [27]Supartono F, Sidoroff F.Anisotropic Damage modeling for Brittle elastic materials[J], Symposium of Franc-Poland,1984.
    [28]董毓利,谢和平,赵鹏,循环受压砼全过程声发射试验及其本构关系[J].试验力学,1996,11(2):216~221.
    [29]Sinha B P, Gerstle K H, Tulin L G Stress-Strain Relations for Concrete Under Cyclic Loading[J]. ACI Journal, February 1964,61(2):195~211.
    [30]Hsieh S S.A plastic-Fracture Model for Concrete[J]. Iternational Journal of Solids and Structures,1982, vol.18(3):181~197.
    [31]董毓利,谢和平,李世平,不同围压下混凝土受压弹塑性损伤本构模型的研究[J].煤炭学报,1996,21(3):265~270.
    [32]李杰,吴建营,混凝土弹塑性损伤本构模型的研究[J].土木工程学报,2005,38(9):14~27.
    [33]过镇海.混凝土的强度和变形-试验基础和本构关系[M].北京,清华大学出版社,
    1997.
    [34]Mehta P K.Building durable structures in the 21st century [J]. Concrete international. 2001(3),17~19
    [35]M. J. Shannag. High strength concrete containing natural poaolan and silica fume[J]. Cement&Concrete Composites,2000,22:399~406
    [36]H. Beshr, A. A. Almusallam, M. Maslehuddin. Effect of coarse aggregate quality on the mechanical properties of high strength concrete[J]. Construction and Building Materials, 2003,17:97~103
    [37]Handong Yan, Wei Sun, Huisu Chen. The effect of silica fume and steel fiber on the dynamic mechanical performance of high strength concrete[J]. Cement and Concrete Research,1999, 29:423~426
    [38]刘功科.一个新损伤变量的定义[J].生产一线,2009,87
    [39]李杰,张其云.混凝土随机损伤本构关系[J].同济大学学报,2001
    [40]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993
    [41]胡时胜,王道荣.冲击载荷下混凝土材料的动态本构关系[J].爆炸与冲击,2002,22(3):242~245.
    [42]过镇海.混凝土的强度和变形-试验基础和本构关系[M].北京:清华大学出版社,1997.
    [43]王勇威,蒲心诚,王志军.单轴压力下56.3~164.9MPa混凝土的应力-应变关系[J].建筑结构学报,2005,26(1):97~02
    [44]By J. Eibl and B. Schmidt-Hurtienne[J]. Journal of Engineering Mechanics. ACI Materials Journal. December 1999:1411-1420
    [45]Kandarpa S, Kirkner D J, Spencer B F.Stochastic damage model for brittle materials subjected to monotonic loading[J]. Journal of Engineering Mechanics,1996, (8):788~795.
    [46]LI Jie, LU Zhaohui, ZHANG Qiyun.A research on the stochastic damage constitutive model of concrete materials[J]. Proceeding of International Conference on Advances in Concrete and Structures.Bagneux:RILEM Publications,2003:44~51.
    [47]Tiantang Yu. Statistical Constitutive Model of Quasi-Brittle Materials[J]. Journal of Aerospace Engineering.2008:2624~2634.
    [48]F. V. Souza, D. H. Allen, Y.-R. Kim. Multiscale Model for predicting damage evolution in composites due to impact loading[J]. Composites Science and Technology,1996, (8): 788~795.
    [49]Yu Liu, Susanto Teng, and Chee-Kiong Soh. Three-Dimensional Damage Model for Concrete. Ⅱ: Verification[J]. Journal of Engineering Mechanics, January 2008,82~89.
    [50]Li Jie, Zhang Qiyun. The stochastic damage constitutional law of concrete[J]. Journal of Tong ji University,2001,29(10):1135~1141.(in Chinese)
    [51]J. Lemaitre. A continuous damage mechanics for ductile fracture [J], J. Eng. Mater. Tech, 107,83~89 (1985).
    [52]Yong-Ji Park. Mechanics Seismic Damage Model for Reinforced Concrete [J]. Journal of Structural Engineering, ASCE,1985,111(4):722~739
    [53]杜修力,欧进萍.建筑结构地震破坏评估模型[J].世界地震工程,1991,7(3):52~58
    [54]牛荻涛,任利杰.改进的钢筋混凝土双参数地震破坏模型[J].地震工程与工程振动,1996,16(4):44~54
    [55]刘伯权,白绍良.抗震结构的等效延性破坏准则及其子结构试验验证[J].地震工程与工程振动,1997,17(3):77~83
    [56]Krawinkler H, Zohrei M. Cumulative Damage in Steel Structures Subjected to Earthquake Ground Motions[J]. Computers & Structures,1983,16:531~541
    [57]Chai Y H. Energy-Based Linear Damage Model for High-Intensity Seismic Loading[J], Journal of Structural Engineering, ASCE,1995,121(5):857~864
    [58]Balkema A A. Challenges for Concrete in the Next Millennium[J], Volume 2, Rotterdam and Brookfield:851~864

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700