BC_2N的高压相变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Phase Transition of BC_2N under High Pressure
  • 作者:林鹏
  • 论文级别:硕士
  • 学科专业名称:凝聚态物理
  • 学位年度:2008
  • 导师:高春晓
  • 学科代码:070205
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-05-01
摘要
本文采用原位高压及同步辐射能量色散X光射线衍射技术,对BC_2N样品进行了高压相变及其物理特性的研究。
     实验结果表明:BC_2N发生了从六角层状结构到六方纤锌矿结构的相变。这是以前文献没有提到BC_2N的新相。对样品XRD谱的指标化和分析表明:相变发生在11.6GPa到14.9GPa之间。在1.4GPa到11.6GpaBC_2N样品以六角层状结构存在。在14.9GPa到30.0GPa间BC_2N样品是以层状结构和纤锌矿结构共同存在。此外,在得到BC_2N发生结构相变的基础上,计算了六角层状结构、六方纤锌矿结构的晶格常数和轴压缩量等物理特性参量,以及通过布里奇曼方程计算出六方纤锌矿结构BC_2N的模量。
     六方纤锌矿结构的存在为BCN相图添加了新的成员,实验数据分析结果说明了BC_2N具备超硬材料的特性。
In recently years, the theory and synthesized experiment research of BC2N– a kind of expected new super-hard materials, have made significant achievements.
     In theoretical aspects: Cohen proposed three possible atomic array model of BC2N in 1989. Tateyama calculated the possible transition from h- BC2N to c BC2N under high temperature and high pressure conditions. Mattesini and S.F.Mater using first-principles pseudopotential method to further explore the possibility existence of cubic BC2N structure. They made two structural model, one is similar to the cubic diamond structure; another is similar to the hexagonal diamond structure.
     In experimental aspects: Sasaki and Bartlett used BCl3、CH3CH as raw materials and made the access to the component of h-BC2N product through the CVD device; Qinghua W synthesized the high-purity h-BC2N under the conditions of 5.55 G Pa and 1500°C. Vladimr. L. Solozhenko using laser heating produced the cubic phase of the BC2N from h-BC2N in the diamond anvil; Yanshan University in cooperation with the State Key Laboratory of super-hard materials of Jilin University used Ca3B2N2 as catalyzer to get the hexagonal phase and the cubic phase BCN compounds. The lattice constant of the hexagonal phase are: a=0.2506 nm; c= 0.6657nm, the cubic lattice constant is 0.3596 nm.
     However, in the present study, the most phases of synthesized BC2N compounds are limited in hexagonal and cubic structure. The purpose of the present work is to clarify the crystal structure of the high-pressure phase formed by the room-temperature compression of BC2N.
     In our experiment, we find a phase transition from h- BC2N to the wurtzite structure of BC2N. The transition is incompletely. h-BC2N transform to wurtzite structure occurs at the pressure between 11.636GPa and 14.903GPa based on the analysis of the corresponding XRD spectrum. In addition, we calculate the lattice parameters, the equation of state and the compressibility of the c-axis for both phases. Also we use Brich-Murnaghan equation of state to calculate the bulk modulus K0 of wBC2N.
     We have noticed that the h (002) which is the strongest line and h(101), the second strongest line at the pressure of 1.4410GPa still exist when the wurtzite phase come out and we could not get a pure diffraction profile of the high-pressure phase, this may be due to the incomplete transformation to w-BC2N in the experiment. It may have a highly imperfect structure and consists of very small crystals. Also, it is impure due to contamination by other polymorphs. In our work, the peaks corresponding to the two phase are indexed completely as 100, 002, 110 and 103 lines in the XRD spectrum at the pressure of 30.030GPa
     It is obvious to find out from the compressibility of the c-axis that they exhibit different pressure dependence. The h-BC2N is somewhat more compressible than w-BC2N, mainly because of the low-density structure of the former and the close-packed structure of the latter. As it follows from the pressure dependence of c/a ratio, the w-BC2N structure is more compressible along the c axis (c/a) decreases from an initial value of 1.6559 at the pressure of 14.903GPa toward 1.6505 at 30.030GPa). Thus, with increasing pressure (under 30.030GPa in our experiment) the value of is c/a gradually close to the ideal ratio of 1.633 for a hexagonal close-packed structure, this should be accompanied by the increase in the phase stability of wurtzitie structure. From the analysis of the XRD spectrum, the ratio of c/a and the value of d-spacing we get the conclusion that the wurtzite phase gradually becomes stable as the pressure increased in the range of 30.030GPa.
     We use Brich’s finite-strain formalism to fit the elastic pressure-volume data to a Brich-Murnaghan equation of state which expressed pressure (P) as an expansion in strain (f): P=3K_0 f (1+2f)~(5/2)[1+ af+ bf~2]
     The parameters of the fit is K0=275±26GPa. The value of bulk modulus calculated for w-BC2N is very close to c- BC2N (K 0=282±15GPa).
     The result indicates this phase has the same property in compressibility, which also means that BC2N will have a very important apply in many domains as the third-generation super-hard materials.
引文
[1] A. Jaraman, Rev. mod.Phys. 55(1983) 65
    [2] J. C. Jamieson, A. W. Lawson, N. D. Nachtrieb, Rev.Sci. Instrum.30(1959)1016
    [3] 池元斌,《高压物理》,吉林大学超硬材料国家重点实验室
    [4] 张流, 《地震地质论文集》, 天津科学技术出版社
    [5] C. T. Michael, Tectonophysics. 136(1987)27
    [6] C. H. Scholzch, Geol. Rund. 77(1988)319
    [7] D. Lockner, Rock Mech. Min. Sci. 30(1988)883
    [8] 小川浩史等, 《食品工业》, 34(1991)20
    [9] 沈仁权等, 《基础生物化学》, 科技出版社
    [10] 《高压物理讲义》, 吉林大学原子与分子物理研究所
    [11] A. W. Lawson and T. Y. Tang, Rev. Sci. Instrum. 21, 815 (1950)
    [12] J. C. Jamieson, A. W. Lawson and N. D. Nachtrieb, Rev. Sci. Instrum. 30,1016 (1959)
    [13] C. E. Weir, E. R. Lippincott, A. Van Valkburg and E. N. Bunting, J. Res. Natl. Bur. Stand., Sec. A 63, 55 (1959)
    [14] A. Van Valkburg, Conference Internationale Sur-ies-Hautes Pressions, Le- Creusot, Saone-et-Loire, France, 1965
    [15] H. K. Mao and P. M. Bell, Science 200, 1145 (1978)
    [16] R. A. Forman, G. J. Piermarini, J. D. Barnet and S. Block, Science 176, 284 (1972)
    [17] J. D. Barnet, S. Block and G. J. Piermarini, Rev. Sci. Instrum. 44, 1(1973)
    [18] G. J. Piermarini, S. Block, Rev. Sci. Instrum. 46, 973 (1975)
    [19] G. J. Piermarini, S. Block, J. D. Barnet and R. A. Forman, J. Appl. Phys. 46, 2774 (1975)
    [20] R. A. Noack and W. B. Holzapfel, in High Pressure Science and Technology, edited by K. D. Timmerhaus and M. S. Barbar (Plenum, New York), Vol. 1, p. 748
    [21] H. K. Mao and P. M. Bell, Science 191, 851 (1976)
    [22] H. K. Mao and P. M. Bell, in Carnegie Institution of Washington Year Book 77, 904 (1978)
    [23] A. L. Ruoff, in High Pressure Science and Technology, edited by K. D. Timmerhaus and M. S. Barber (Plenum, New York), Vol. 1, p. 754
    [24] V. E. Bean, S. Akimoto, P. M. Bell, S. Block, W. B. Holzapfel, J. C. Jamieson, M. H. Manghnani, M. F. Nicol, G. J. Piermarini and S. M. Stishov, in High Pressure in Research and Industry, Proceedings of the 8th AIRAPTConference, Uppsala, edited by C. M. Beckman, T. Johannisson and L. Tegner (ISBN, Swedan), Vol. I, p. 144
    [25] G. J. Piermarini, S. Block, and J. S. Barnet, J. Appl. Phys. 44, 5377 (1973)
    [26] H. K. Mao, A. Mao and P. M. Bell, Abstract of the 8th AIRAPT Conference, Uppsala, edited by C. M. Beckman, T. Johannisson and L. Tegner (ISBN, Swedan), Vol. II, p. 453
    [27] D. H. Liebenberg, Phys. Lett. A. 73, 74 (1979)
    [28] R. J. Wijingaarden, I. F. Silvera, High Pressure Science and Technology. 1(1980)157
    [29] K. R. Hirsch, W. B. Holzapfel, Rev. Sci. Instrum. 52(1981)52
    [30] P. M. Bell, H. K. Mao, J. Xu, J. Geophys. Res. Jamieson Volume(1985)1889
    [31] G. J. Piermarini and C. E. Weir, J. Res. Natl. Bur. Stand., Sec. A. 65, 325 (1962)
    [32] C. E. Weir, S. Block and G. J. Piermarini, J. Res. Natl. Bur. Stand., Sec. A. 69, 275 (1965)
    [33] L. Merrill and W. A. Bassett, Rev. Sci. Instrum. 45, 290 (1974)
    [34] R. M. Hazen and L. W. Finger, Rev. Sci. Instrum. 52, 75 (1981)
    [35] H. K. Mao and P. M. Bell, in Carnegie Institution of Washington Year Book 79, 409 (1980)
    [36] R. Keller and W. B. Holzapfel, Rev. Sci. Instrum. 48, 517 (1977)
    [37] W. Denner, W. Dieterich, H. Schulz, R. Keller and W. B. Holzapfel, Rev. Sci. Instrum. 49, 775 (1978)
    [38] B. Buras, J. Staun, S. Olsen, L. Gerward, G. Will and E. Hinze, J. Appl. Crystallogr. 10, 431 (1977)
    [39] E. F. Skelton, I. Spain, S. C. Yu, C. Y. Liu and E. R. Carpenter, Jr., Rev. Sci. Instrum. 48, 879 (1977)
    [40] A. L. Ruoff and M. A.Baublitz, Jr., in Physics of Solids Under High Pressure, edited by J. S. Schilling and R. N. Schelton (North-Holland, Amsterdam), p. 81, 1981
    [41] M. A. Baublitz, V. Arnold and A. L. Ruoff, Rev. Sci. Instrum. 52, 1616 (1981)
    [42] I. L. Spain, S. B. Qadri, C. S. Menoni, A. W. Webb and E. F. Skelton, in Physics of Solids Under High Pressure, edited by J. S. Schilling and R. N. Schelton (North-Holland, Amsterdam), p.73, 1981
    [43] M. H. Manghnani, E. F. Skelton, L. C. Ming, J. C. Jamieson, S. Qadri, D. Schiferl and J. Balogh, in Physics of Solids Under High Pressure, edited by J. S. Schilling and R. N. Schelton (North-Holland, Amsterdam), p.47, 1981
    [44] Y. Fujii, O. Shimomura, K. Takemura, S. Hoshino and S. Minomura, J. Appl. Crystallogr. 13, 284 (1980)
    [45] J. W. Brasch, A. J. Melveger and E. R. Lippincott, Chem. Phys. Lett. 2, 99 (1968)
    [46] D. M. Adams, S. J. Payne and K. M. Martin, Appl. Spectrosc. 27, 377 (1973)
    [47] B. Batlogg and J. P. Remeika, Phys. Rev. Lett. 45, 1126 (1980)
    [48] A. Blacha, M. Cardona, N. E. Christensen, S. Ves and H. Oyerhof, Solid State Commun. 43, 183 (1982)
    [49] P. Y. Yu and B. Welber, Solid State Commun. 25, 209 (1978)
    [50] D. Olego, M. Cardona and H. M?ller, Phys. Rev. B. 33, 894 (1980)
    [51] F. E. Huggins, H. K. Mao and D. Virgo, in Carnegie Institution of Washington Year Book 74, 405 (1975)
    [52] 矿物岩石地球化学通报. 23(2004)
    [53] 祝向平、秦善,《同步辐射在矿物高压结构研究中的作用》
    [54] 游长江,卢雪芳,杨国强,钻石对顶砧(DAC)高压产生技术及在高压条件下光物理和光化学研究. 197-2031(2002)
    [55] M. L. Cohen, Phys. Rev. B, 32,(1985),1988
    [56] A. Y. Liu, M. L. Cohen, Science 245, (1989), 841
    [57] Bundy F. P, Hall H. T. Strong, H. M, Nature,1955,176,51
    [58] Liander H. A SEAJ, 1955, 28, 97
    [59] Liander H. Ind Diamond Rev, 1980, 412
    [60] Wentorf R.H. J. Chem Phys, 1957,26,956
    [61] Bidzian A R, Niemyski T, Oppenheimer S, Khim Svyaz Polumetall, 1972, 362
    [62] He J L, Tian Y J, Yu D L, J. the Chinese ceramic Society 30,51(2002)
    [63] M. L. Cohen, Y. Miyamoto, S. G. Louie, Phys. Rev. B,52, 14971(1995)
    [64] Y. Tateyama, T. Ogitsu, K. Kusakabe, Phys. Rev. B,55,10161(1995)
    [65] M. Kawaguchi. B/C/N Materials Based on the Graphite Network. Adv. Mater., 1997, 9, 8:615-625
    [66] R. Q. Zhang, K. S. Chan, H. F. Cheung, et al. Appl. Phys. Lett., 1999, 75: 2259-2261
    [67] M. Mattesini,S. F. Matar, First-principles characterisation of new ternary hetero-diamond BC2N phases. Matar, Comput. Mater. Sci., 2001,20:107-119
    [68]M.Mattesini, S.F.Matar, Search for ultra-hard materials: theoretical characterization of novel
    [69] Hong Sun, Seung-Hoon Jhi, David Roundy, Marvin L. Cohen, Phys. Rev. B,64,094108(2001)
    [70] R. Q.Zhang, K. S. Chan, H. F.Cheung,S. T. Lee Appl.75,15
    [71]V. L. Solozhenko,V. Z Turkevich and Tadao Sato, J. Am. Ceram. Soc1997, 80(l2) ,3329
    [72]Vladimir L. Solozhenko, Denis Andrault, Guillaume Fiquet, Appl. 78, 10(2001)
    [73] G. Lavaetz, Phys. Rev. B 5, 4039(1972)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700