金属Cu和Fe晶格结构与热力学性质的第一性原理计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在第一性原理的基础上,利用密度泛函理论及其微扰理论,采用广义梯度近似(GGA)和TM赝势的方法。研究了过渡金属Cu的声子谱和态密度,以及其在298.15K下熵,格林艾森参数,等体热容等热力学函数并与实验值作了对比与分析。通过分析金属铜的能量最优路径与晶格振动之间的关系,提出了固体-液体之间的相变机理,以及直接导出过渡金属的熔化温度Tm静力学方法。与实验结果相比,本文的熔化温度压力曲线比分子动力学的模拟结果更接近实验值。
     利用一般梯度近似(GGA)和修改后的TM赝势的第一性原理计算方法。研究了过渡金属铁不同晶相结构下(δ-bcc、γ-fcc、α-bcc、ε-hcp)的电子能带结构和态密度,以及各晶相在298.15K下的热容,熵等热力学函数并与实验值作了相应的对比与分析。(1)计算了多晶相金属Fe的在γ-fcc晶相下的能量变化曲线,并直接用静力学方法导出γ-Fe的熔化温度与压强(0~200GPa)的关系。与金刚石压砧实验的结果相比符合的很好。(2)通过分析金属铁δ-bcc相结构下的能量的最优路径与晶格振动之间的关系,提出了固体-液体之间的相变机理。计算表明了δ-Fe的温度与压强曲线在1~5.2GPa中必须考虑体积功对系统总能的影响。(3)在计算多晶相金属Fe能量变化曲线过程中必须考虑亚壳层电子3s23P6对最外层价电子的影响。
Based on the first-principles, employing the density functional theory and it's perturbation theory, and the methods of generalized gradient approximation (GGA) and TM pseudo-potential. This thesis studies the phonon spectrum and density of states for the transition metal Cu, and its thermodynamic functions such as entropy, Gruneisen parameter and in the condition of298.15K and compares it with that of the experimental data as well. By analyzing the relationship between the energy optimization path and lattice vibration of Cu, this paper presents the phase transition mechanism as per the nature of solid-liquid phase and introduces the static method to derive the melting temperature of transition metals. Compared with that of the experiment, the melting temperature pressure curve in this paper is more favorable than the result of molecular dynamic simulation.
     By employing the first-principles of generalized gradient approximation (GGA) and the modified TM pseudo-potential this thesis furthermore analyzes the electronic band structure and density of states for the transition metal Fe in different crystalline structures(8-bcc、γ-fcc、α-bcc、ε-hcp), and its thermodynamic functions such as heat capacity and entropy in the condition of298.15K and compares it with that of the experimental data as well.(1) The energy curves of this polycrystalline phase Fe in the condition of y-fcc crystalline phase is calculated. The relationship between the melting temperature and pressure (0-200GPa) of y-Fe is derived by static method, which fits well compared with that of the diamond anvil cell.(2) By analyzing the relationship between the energy optimization path and lattice vibration of Fe in the condition of8-bcc phase, this paper proposes the phase transition mechanism for the nature of solid-liquid phase. The calculation indicates that the impact of volume to the total energy system should be taken into consideration when the temperature and pressure of δ-Fe is1~5.2GPa.(3) In the calculation of the energy curves of polycrystalline phase Fe, the impact of the inner shell electron on the outermost shell3s23P6should also be taken into consideration.
引文
[1]孙博等,Fe在高压下第一性原理计算的芯态与价态划分[J]物理学报2006-55(12)
    [2]http://baike.baidu.com/view/4649.htm
    [3]Soderlind P, MoriartyJ A, WillsJ M 1996 Phys.Rev.B 53 14063
    [4]Wasserman E,Stixrude L 1996 Phys. Rev. B.53 8269
    [5]Moroni E G, Kresse G, HafnerJ 1997 Phys. Rev. B 56 15629
    [6]W. J. Nellis, J. A. Moriarty, A. C. Mitchell, M. Ross, R. G. Dandrea, N. W. Ashcroft, N. C. Holmes, G. R. Gathers 1988 Phys. Rev. Lett 60 1414
    [7]H.K. Mao, P. M. Bell, J. W. Shaner, D. J. Steinberg 1978,J. Appl. Phys 49 3276
    [8]Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, J. D. Kress 2001 Phys. Rev. B 63 224106
    [9]Marvin Ross, Reinhard Boehler, Daniel Errandonea 2007 Phys. Rev. B 76 184117
    [10]A. B. Belomoshko, R. Ahuja. O. Eeiksson, B. Johansson 2000 Phys. Rev. B 61 3838
    [11]Blazej Grabowski, Tilmann Hickel, Jorg Neugebauer 2007 Phys. Rev. B 76 024309
    [12]Sven P. Rudin, M. D. Jones, C. W. Greeff, R. C. Albers 2002 Phys. Rev. B 65 235114
    [13]Byeong-Joo Lee, Jae-Hyeok Shim, M. I. Baskes 2003 Phys. Rev. B 68 144112
    [14]N.Singh 1999 Physica B.269 211-220
    [15]ShiQuan Feng, XinLu Cheng 2011 Computational Materials Science 50 3110-3113
    [16]H. Eshet, R. Z. Khaliullin, T. D.Kuhne, J. Behler, M. Parrinello 2010 Phys. Rev. B 81 184107
    [17]Hagai Eshet, Rustam Z.Khaliullin, Thomas D.Kuhne, Jorg Behler, Michele Parrinello 2011 arXiv:1110.2031E [Condensed Matter-Materials Science]
    [18]孙博等,Fe的结构与物性及其压力效应的第一性原理计算[J]物理学报2007-56(03)
    [19]R. Boehler,Nature 363,534(1993)
    [20]D. Alfe, G. D. Price, and M. J. Gillan, The melting curve of iron from quantum mechanics calculations. (2004) J. Phys. Chem. Solids 65,1573 -1580
    [21]D. Alfe, M. J. Gillan, and G. D. Price, Nature 401,462 (1999)
    [22]A. B. Belonoshko, R. Ahuja, and B. Johansson, Physi. Rev. Lett. 84,.3638-3641 (2000)
    [23]A. Laio, G. L. Bernard, G. L. Chiarotti et al., Science 287,1027 (2000)
    [24 Laio A,Bernard S, Chiarotti GL,Scandolo S,Tosatti E 2000 Scince 287 1027
    [25]Shen G, Mao H K, Hemley R J, Duffy T S, Rivers M L 1998 Geophys. Res. Lett. 25373
    [26]Andrault D,Fuquet G, Kunz M, VisocekasJ, Hausermann D 1997 Scince 278 831
    [27]Saxena. S. K., Shen. G. And Lazor.P. (1993) Discovery of a new iron phase: Experimental evidence and implication for Earth's core. Science, 260,1312-1314
    [28]Saxena. S. K., Shen. G. And Lazor.P. (1994) Temperatures in Earth's core based on melting and phase transformation experiments on iron. Science 264,405-407
    [29]Saxena, S. K., Dubrovinsky, L.S., Haggvist, P., Cerenius, Y.,Shen, S., and Mao,H.K. (1995) Synchrotron x-ray study of iron at high pressure and temperture. Science, 269, 1703-1704
    [30]Dubrovinsky, L.S., Saxena, S. K.,and Lazor, P. (1997) X-ray study of iron with in situ heating at ultrahigh pressures. Geophysical Research Letters, 24, 1835-1938.
    [31]Dubrovinsky, L.S., Saxena, S. K.,and Lazor, P. (1998) Stability of β-iron: A new synchrotron X-ray study of heated iron at high pressure. European Journal of Mineralogy, 10, 43-47
    [32]Shen, G., Mao, H. K., and Hemkey. R. J. (1998) Melting and crystal structure of iron at high pressures and temperatures. Geoohysical Research Letters, 25, 373-376
    [33]Jeffrey H. Nguyen, Neil C. Holmes (2004) Melting of iron at the physical conditions of Earth's core. Nature,22,339-342
    [34]O. L. Anderson, D. G. Isaaak, V. E. Nelson (2003) The high-pressure melting temperature of hexagonal close-packed iron determined from thermal physicas. Journal of Physics and Chemistry of Solids.64, 2125-2131
    [35]S. K.Saxena and L. S. Dubrovinsky (2000) Iron phases at high pressures and temperatures: Phase transition and melting. American Mineralogist. 85,372-375
    [36]Lidunka Vocadlo, John Brodholt, Dario Alfe, Michael J. Gillan, Geoffrey D. Price (2000) Abinitio free energy calculations on the polymorphs of iron at core conditions. Physics of the Earth and Planetary Interiors, 117, 123-137
    [37]Anatoly B. Belonoshko, Rajeev Ahuja and Borje Johansson (2003) Stability of the body-centred-cubic phase of iron in the Earth's inner core. 424, 1032-1034
    [38]A.B.Belonoshko, R.Ahuja, and B. Johansson (2000) Quasi-Ab Initio Molecular Dynamic Study of Fe Melting, Physical Review Letters, 84,3638-3641
    [39]D. Alfe, G. Kresse, M. J. Gillan. (2000) Structure and dynamics of liquid iron under Earth's core conditions, Physical Review B 61,132-142
    [40]Luis Sandoval, Herbert M. Urbassek, and Peter Entel (2009) Solid-solid phase transitions and phonon softening in an embedded-atom method model for iron. Physical Review B 80,214108
    [41]S. Klotz and M. Braden. (2000) Phonon Dispersion of bcc Iron to 10 GPa. Physical Review Letters. 85,3209-3212
    [42]H. L.Zhang, S. Lu, M. P. J. Punkkinen, Q.-M. Hu, B. Johansson, and L. Vitos (2010) Static equation of state bcc iron. Phys. Rev. B 82,132409
    [43]F. Kormann, A. Dick, B. Grabowski, B. Hallstedt, T. Hickel, and J. Neugebauer 2008 Phys. Rev. B.78,033102
    [44]Pierre Toledano, Hannelore Katzke, Denis Machon (2010) Symmetry-induced collapse of ferromagnetism at the a-ephase transition in iron. J. Phys:Condens. Matter 22 466002
    [45]K.Colakoglu, G.Ugur, M. Cakmak, H. M. Tutuncu, (1999) The Lattice Dynamics of γ-Iron. Tr. J. of Physics,23,479-484
    [46]R. Iglesias, S. L. Palacios, (2007) Ab initio studies on the magnetic phase stability of iron. Acta Materialia. 55,5123-5127.
    [47]Kyle J. Caspersen, Adrian Lew, Michael Ortiz, and Emily A. Carter, (2004) Importance of Shear in the bcc- to-hcp Transformation in Iron. Physical Review Letters.93,115501
    [48]E.YuTonkov E.GPonyatasky Phase transformation of elements under High pressure [M] 2003
    [49]H. M. Strong, R. E. Tuft, R. E. Hanneman (1973) The Iron Fusion Curve and γ-d-liquid Triple Point. Metallurgical Transactions 4 2657-2661
    [50]Orson L. Anderson, Donald G. Isaak 2000 American Mineralogist 85 376-385
    [51]吴兴惠,项金钟.现代材料计算与设计教程.北京:电子工业出版社,2002,p.173.
    [52]Born M,Huang K.Dynamical Theory of Ctrstal Lattices.Oxford:Clarendon,1954
    [53]D.R.Hartree.Proc.Cam.Phil.Soc,24:89,1928.
    [54]V.Fock.Phys.Rev.B,75:012401,2007.
    [55]Chelikowsky J R,Louie S G.Quantum theory of real materials [M].Kluwer Academy Press,1989:1-11.
    [56]Tomas Proc L H. The calculation of atomic fields [J]. Cambridge Philosophy Society, 1927,23:542-545.
    [57]Fermi E. An method statistic par la determination diaconal proprietary dell atome. Accad.Naz.Lincei,1927,6:602-605.
    [58]Hobenberg, P,Kohn W.Inhomogeneous eletron gas[J].Physical Review B,1964,136:864-871.
    [59]Kohn W,Sham L J.self-consistent equations including exchange and correlation effects[J].Physical Review A,1965,140:1133~A1138.
    [60]阚二军,中国科技大学博士学位论文,(2008)
    [61]Kohn W and Sham L J, Quanutm Density Oscillations in an Inhomogeneous ElecrtonGas, Phys.Rev.1965,137:A1697-A17O5
    [62]D.M..Caperley and B.J.Alder, Phys. Rev. Lett.1980,45:566
    [63]T.P. Perdew and A. Zunger. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems.Phys.Rev.B.1981,23:5048.
    [64]P.Perdew,J.A.Chevary,S.H.Vosko,K.A.Jackson,M,R,Pederson,D.J.Singh,andC.Fio lhais.Atoms,molecules,solids and surfaces:Applications of the generalized gradient approximation for exchange and correlation.Phys.Rev.B.1992,46:6671.
    [65]J. P. Perdew, K. Burke, M. Ernzerholf. Generalized Gradient Approximation Made Simple.Phys.Rev.Lett.1996, 77:3865.
    [66]A.D.Becke. Phys. Rev. A,1988,38:3098.
    [67]舒瑜,陕西师范大学博士学位论文,(2010)
    [68]M.C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients.Rev.Mod.Phys.1992,64:1045.
    [69]聂耀庄,中南大学博士学位论文,(2007)
    [70]Hammann.D.R.Schluter.M,ChiangC. Norm-conserving Pseudopotentials. Phys.Rev.Lett, 1979;43:1494-1497.
    [71]Vanderbilt D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Phys.Rev.B,1990; 41(11):7892-7895.
    [72]Blochl P E.Jepsen O,Andersen O K.Improved tetrahedron method for Brillouin-zone integrations.Phys.Rev.B,1994;49(23):16223-16233.
    [73]Wang Z C. Thermodynamic and Statistics [M]. Beijing: High Education Press, 2003
    [74]经福谦,实验物态方程导引,科学出版社,1999年9月,北京
    [75]汪志诚2003 热力学·统计物理(第3版)(北京:高等教育出版社)p363
    [76]X. Gonze, J. M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G. M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J. Y. Raty, D. C. Allan 2002 Computational Materials Science 25 478-492
    [77]M. J. T.Oliveira, F. Nogueira, Generating relativistic pseudo-potentials with explicit incorporation of semi-core states using APE,the Atomic Pseudo-potentials Engine,Comp.Phys. Comm. 178, 524(2008).
    [78]N. W. Ashcroft, N. D. Mermin 1976 Solid State Physics (Saunders College, Philadelphia)
    [79]E. C. Svknsson, B. N. Brockhouse, J. M. Rowe (1967) Crystal Dynamics of Copper. Phys. Rev 155 619-632
    [80]Shklovskaya R. M, Arkhipov S. M, Isaenko L. I. J 1989 Inorganic Chemistry (Russian) 34 p258
    [81]C. Kittel 1996 Introductionto Solid State Physics, 7thed. (Wiley, New York)
    [82]V. L. Moruzzi, J. F. Janak, K. Schwarz 1988 Phys. Rev. B 37
    [83]Dwight E. Gray 1972 American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York)
    [84]A.T. Dinsdale 1991 CALPHAD:Comput.Coupling Phase Diagrams Thermochem.15 317
    [85]汪志诚2003热力学·统计物理(第3版)(北京:高等教育出版社)p399
    [86]Stefanie Japel, Beate Schwage, Reinhard Boehler, Marvin Ross 2005 Phys. Rev. Lett 95 167801
    [87]A. B. Belomoshko, R. Ahuja. O. Eeiksson, B. Johansson 2000 Phys. Rev. B 61 3838
    [88]强伟荣,黄整等,金属钒弹性波速与热力学函数的理论计算[J]原子与分子物理学报2008(25)821-826
    [89]V.L.Moruzzi etal.Calculated Electronic Properties of Metals (Pergamon, New York,1978)
    [90]Isaak, D.G. and Masuda, K. (1995) Elastic and viscoelastic properties of a iron at
    high temperatures. Journal of Geophysical Research, 100, 17,689-17,698.
    [91]Smithells Metals Reference Book, 7th ed.,edited by E.A.Brandes and G.B.Brook (Butterworth-Heinemann,Oxford,1992)
    [92]V.J.Minkiewicz,G.Shiran and R.Nathans.(1967) Phonon Dispersion Raelation for Iron. Physical Review, 162,528-531
    [93]H.C.Herper, E. Hoffmann, and P. Entel, (1999) Ab initio full-potential study of the structural and magnetic phase stability of iron. Physical Review B.60, 3839-3848.C
    [94]John P. Perdew, Kieron Burke, Matthias Ernzerhof 1996 Physical Review Letter 77 3865-3868
    [95]Jamieson, J. C. and Lawson, A. W. (1962) X-ray diffraction studies in the 100 kbar pressure range. J. Appl. Phys.,33,776-780
    [96]J.Zarestky and C.Stassis (1987) Lattice dynamics of y-Fe., Physical Review B.35,4500-4502
    [97]Marc Torrent, Francois Jollet, Francois Bottin, Gilles Zerah, Xavier Gonze. Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure. [J]. Computational Materials Science 42 (2008) 337-351
    [98]P. J. Stephens, F. J. Devlin, C. F. Chabalowski. et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Denstiy Functional Force Fields. [J]. J. Phys. Chem.,1994,98(45) 11623-11627
    [99]梁方艳,西南交通大学硕士学位论文,(2011)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700