用户名: 密码: 验证码:
基于流固耦合的小型旋翼式机械内部水流特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国正在逐步推行供热体制改革,对热量表的需求量极大,目前大多数热量表都采用旋翼式基表测量流量,与国外产品相比,国产热量表在测试精度和可靠性方面还存在着一定的差距。为提高热量表的精度,应从基本理论入手研究热量表基表内部的水流特性,分析影响流量测量的相关因素。基于计算流体动力学(CFD)技术的数值计算是研究基表内水流特性的重要手段,与其他旋转机械相比,旋翼式热量表的特点是:1、基表内部水温变化大,要求在5℃—95℃的温度范围内能够准确测量流量;2、热量表机芯采用塑料材料制造,塑料的刚度、强度较小,热膨胀系数大,并且随温度的升高强度和刚度下降,在高温、大流量水流的冲击下,热量表内部薄弱部位的弹性变形会影响基表内部的水流特性和流量测量特性;3、旋翼式基表的叶轮旋转速度取决于水流特性,是数值计算方法需要求解的变量之一。以上特点决定了旋翼式热量表应当采用流固耦合模型求解叶轮转速,分析其关键结构的弹性变形对水流特性的影响。
     本文采用流固耦合模型进行数值计算,在流体区域采用RNG k-ε湍流模型,分析基表内的水流特性;在结构区域采用有限元方法分析结构的受力和变形,采用ALE描述(任意拉格朗日一欧拉描述)处理固体和流体分界面的位移,流固耦合问题的求解采用迭代方式进行。采用流固耦合模型计算时,既考虑结构在水流冲击下的受力和变形,也考虑结构变形对流场产生的影响。流固耦合数值计算的结果需用实验来验证,实验在热量表专用实验台上进行,实验时利用称重法测量流过热量表的体积流量,采用无磁式信号采集方式测量叶轮旋转速度并算出仪表系数K。通过将数值计算方法得到的仪表系数K与测量值比较,可以验证数值计算的有效性。
     本文研究了双流束基表内部的水流特性。双流束基表内设置有分流片,使水流分成两束,从不同角度冲击叶轮,驱使其旋转。叶轮室和分流片的材料采用工程塑料MPPO制造。实验研究表明,双流束基表的K系数随着流量的增大而增大,并且在80℃的高水温下K系数随流量增大的程度大于25℃水温下的情况。采用数值计算对双流束基表内部的水流特性进行了分析,当不考虑固体结构的弹性变形时,数值计算结果显示双流束基表的K系数不随流量、水温变化,基本上是一个定值,与实验结果不符,表明不考虑固体结构变形的模型不符合实际情况。经分析发现,双流束基表的分流片是一个薄弱结构,所选用的MPPO材料的刚度、强度随温度的升高而下降,因此认为在大流量的冲击下分流片可能产生明显变形从而影响了基表的性能,在进行数值计算需考虑结构变形的影响。采用考虑结构弹性变形的流固耦合模型重新对基表内部的水流特性和流量测量性能进行研究后,数值计算结果表明,采用MPPO材料制造叶轮室并且分流片结构不合理时,在高温、大流量水流冲击下,分流片会产生明显变形,在80℃水温、5m~3/h的流量下,分流片的水平方向最大变形量可以达到0.948mm,分流片的变形改变了基表内部的水流特性,计算所得的仪表系数K随流量的增大而增大。由于MPPO的刚度随温度升高下降,导致在同样流量下高水温时分流片的变形量大于低水温的情况,相应地在高水温时K系数随流量的增加值大于低水温时的情况,这些计算结果与实验结果一致,表明分流片在大水流冲击下的变形对基表性能产生了较大影响。
     为改善双流束基表的性能,本文对分流片的结构进行了改进,增大了分流片的厚度,并改用弹性模量更大的PPS材料制造叶轮室和分流片。改进后,经流固耦合模型计算表明分流片的刚度得到了增强,分流片的弹性变形量很小已不足以影响基表的测量性能,K系数不再随温度和流量变化,基本保持为一常数。在此基础上,采用数值计算和实验相结合的方式研究了各种结构因素对基表性能的影响。研究结果表明,在进水口不安装格栅时,表前直管段长度大于10倍管径后,表前的旋流等不均匀流动的影响基本消失,完全可以保证热量表的测量精度;在进水口安装3×3mm规格的格栅后,表前只需安装4倍管径长度的直管段就能够保证测量精度;改变调节肋条的角度可以调整基表的K系数值,有利于调节不同基表的K系数,保持流量测量的一致性;叶片的数量以6片或者7片为佳,叶片数量少于5片叶轮旋转较慢,多于7片时叶轮转速增加不明显;叶轮室底部肋片的存在可以起到增强流量测量稳定性的作用。压力损失也是热量表标准中要求的一项指标,根据热量表标准的要求,20mm口径的热量表在额定流量下的压力损失不能大于25kPa。数值计算和实验均证实双流束基表的压力损失符合热量表标准中的要求,在入水口安装格栅后的压力损失为22.26kPa,实验结果与数值计算结果相差不大,表明数值计算是研究基表内部水流特性的有力工具。
     本文也对多流束基表内的水流特性进行了研究。多流束基表在叶轮室沿圆周方向布置了导流片,水流流过导流片后均匀冲击叶轮驱使叶轮快速旋转。叶轮室和导流片仍采用工程塑料MPPO制造。实验结果表明在水温不变时多流束基表的K系数随流量的变化很小,当水温变化时基表的K系数随水温升高而增大。采用数值计算的方法对多流束基表内部的流场进行了研究,当不考虑结构变形时计算结果显示基表的K系数不随水温变化,与实验结果不符。而采用考虑结构变形的流固耦合模型实施计算时计算所得的基表K系数随温度的变化关系与实验结果基本一致,说明结构变形影响了基表的性能。研究结果表明在高温时的热膨胀是导致多流束基表结构变形的主要原因,而水流的冲击引起的应力和变形都很小,可以忽略。叶轮室导流片的弹性变形导致多流束基表的K系数随温度的升高而增加,必须根据温度对K系数进行修正。
     采用数值计算与实验相结合的方式研究了多流束基表内部的水流特性和测量性能,研究表明多流束基表的性能非常稳定,在入水口不安装格栅时,基表前保留4倍管径长度的直管段就可以消除入口旋流的影响。数值计算和实验还表明多流束基表的压力损失较大,在额定流量下的压力损失达到了28.2kPa,超过了热量表标准中的要求,必须采取措施降低压力损失。为降低压力损失,设计了4个开泻压孔降低压力损失的方案,并采用数值计算对4个方案的降低压损的效果进行了研究,数值计算的结果表明,4个开孔方案都可以使压力损失降到25kPa以下,但在表前安装4倍管径长度的直管段、入水口存在旋流干扰的情况下,在背对入水管位置处开2×8mm长方形孔的方案可以保持测量的稳定性,该方案为最佳的开孔降低压力损失的方案。通过与实验结果相对比,证实了数值计算的可靠性。
     本文的研究给出了结构在水流冲击和热膨胀作用下变形并影响流场的流固耦合计算实例,采用数值计算的方法定量研究了分流片变形对基表测量性能的影响,所采用的模型和计算方法可以为类似问题提供参考和借鉴,具备一定理论意义。本文深入分析了小型旋翼式流量计内部的水流特性,详细研究了影响流量测量精度的各个结构因素,给出了确定的热量表安装条件,研究结果可以用来指导热量表的设计,减少热量表设计中的盲目性和开发成本,有着很强的实用价值。
With the reform of charge system of heating supply,the heat meter is used widely in China.Most heat meter use rotating-wing flux meter to measure flux. Compared with the foreign products,the technological level of the domestic heat meter is still quite low and can't measure flux accurately.In order to improve the measurement accuracy of heat meter,the flow characteristic of heat meter must be researched.Using Computational Fluid Dynamics to carry out numerical calculation is the main method of researching the flow characteristic.Compared with other rotating machinery,heat meter have own specialty:first,the water temperature scope of heat meter is 5-95℃,the heat meter should measure flux accurately while water temperature changes obviously.Secondly,the inner parts of heat meter are made by plastic material,the stiffness and strength of plastic material can decrease with the rising of temperature.The elastic deformation of inner structure can obviously influence the flow characteristic and performance of heat meter while flux and temperature reach the maximum.Thirdly,the impeller rotate speed is determined by flow and must be calculated by numerical calculation.According to flow characteristic of heat meter,the fluid structure interaction(FSI) model must be used while numerical calculation is carded out.
     The research uses FSI model to carry out numerical calculation.The ALE (arbitrary Lagrange -Euler) method is used to deal with the interface between the fluid and structure domain.FSI model is used to calculate the elastic deformation of structure and research how elastic deformation influences the flow characteristic of heat meter.The results of numerical calculation can be proved by experimental results, using non-magnetic method to measure the flux signal in special experimental instrument for heat meter and calculate the meter coefficient K.
     This paper designs a new type two flow-channel flow meter,a triangle deflector is located at the inlet,and it changes the direction of flow and divides the water flow into two parts.The water flows into the impeller cell and pushes the impeller to rotate. The impeller cell and deflector are made by MPPO material.Experimental results show meter coefficient K increase with the increasing of water flux,when water temperature is 80℃,the meter coefficient K increase more quickly than water temperature is 25℃with the increasing of water flux.The numerical calculation that elastic deformation is not considered is used to research the performance of two flow-channel flow meter,the calculated results show the meter coefficient K don't change when temperature and flux increase.The difference between calculated results and experimental results show the numerical model that elastic deformation is not considered can not reflect the real situation.According to the structure characteristic of two flow-channel flux meter,the deflector is weak and maybe be deformed obviously and influence the measure performance with the increasing the temperature and flow flux.So the FSI model that elastic deformation is considered is used to carry out numerical calculation to analyze the effect of elastic deformation of deflector on measure performance of heat meter.The calculation results of FSI model show the deflector deforms obviously as the water temperature and flux increase,the maximum horizontal deformation can reach 0.948mm while temperature is 80℃and flux is 5m~3/h.The deformation of deflector changes the flow characteristic and causes the meter coefficient K increases while flux increases.The stiffness of MPPO decreases while temperature rises,so the deformation of deflector is more obviously and the meter coefficient K increases more quickly when temperature rises.The results of experiments can prove the calculation results are valid and show the elastic deformation of deflector influence the performance of measure.
     In order to reduce the deformation of deflector,the thickness of deflector is increased and using PPS instead of MPPO produces impeller cell and deflector.The experiment and calculation results prove new structure and material of deflector improve the stiffness and the meter coefficient K don't change when flux and temperature changes.Based on the improved structure and material of deflector,the effects of structure element on performance of heat meter are researched.The experiment and calculation results show the length of straight tube located at the meter inlet should be 10 times as long as tube diameter for guarantee the measure accuracy when no screen is located at the inlet.While 3×3mm screen is located at the meter inlet,only 4D(D is the diameter of inlet) straight tube can guarantee the measure accuracy of heat meter.The researches also show the adjusting rib located at the top of impeller cell can adjust meter K;the optimal number of blade should be 6 or 7;the rib located at the bottom of impeller cell can stabilities the rotate speed of impeller.The pressure loss of two flow-channel heat meter is also researched,the pressure loss is 22.26kPa when screen is located at the inlet and flux is 2.5m~3/h.The pressure loss of two flow-channel meter can meet the requirement of heat meter standard.
     The paper design a multi-channel flow meter,the water flow is deflected 90°to enter impeller cell and push the impeller to rotate.Experiments show meter coefficient K increases while water temperature rises.The FSI model is used to research the flow characteristic of multi-channel flow meter,calculated results show thermo-expansion is main factor of influencing measure performance of multi-channel flow meter.Acceding to the calculated results,meter coefficient K must be revised while water temperature changes.
     Numerical and experimental method is used to research the flow characteristic and measure performance of multi-channel flow meter.The researches show the influence of swirl in inlet can be eliminated and measure accuracy can be guaranteed when the length of straight tube located an inlet is 4 times as long as tube diameter. Numerical and experimental researches prove the pressure loss of multi-channel reaches 28.2kPa,exceed 25kPa-the value required by heat meter standard.In order to reduce pressure loss,4 schemes are designed and researched by numerical calculation. Numerical calculation show drill a 2×8mm rectangle hole at the backside that can not be impacted by inlet flow is the best way to reduce pressure loss.The experimental results prove the calculation results are correct.
     The paper uses FSI model calculate the elastic deformation caused by thermo-expansion and water flow impact,analyses the effect of elastic deformation of structure on flow characteristic and measure performance.The model and calculation method used in this paper can provide reference for similar problem.This paper also researches the flow characteristic of rotating-wing heat meter,analyzes the key factor influence measure performance,and determines the install condition of heat meter. The results of this paper can direct the design and reduce development cost of heat meter.
引文
[1]王智超,狄洪发.供暖计量收费的现状与问题[J].区域供热,2002,(3):1-5
    [2]徐伟.住宅计量供热技术的发展、相关问题的思考及国内外供热计量与收费技术方案的比较[J].区域供热,2003,3:48-55
    [3]郭戈,杜红林,闫继宏,黄瑞.热能计量表的技术现状及展望[J].甘肃工业大学学报,2003,29(2):81-85
    [4]王树铎.供热计量仪表的前景[J].中国科技信息.2004,9:17-18
    [5]刘昕莹.采暖分户计量若干问题的探讨[J].沈阳建筑,2004,2:67-69
    [6]李军.热量表产品市场的发展现状与前景[J].建筑,2003,5:65-68
    [7]于国发.德国的热能计量[J].中国计量,2004,9:57-58
    [8]王树铎.关于我国热量表的历史、现状和发展[J].供热制冷,2005,5:65-67
    [9]R.M.E.Diamant.electronic heat meters[J].The Heating and Ventilating Engineer,1980,54(625):6-8
    [10]甄兰兰,沈昱明.热量表的热量计量原理及计算[J].自动化仪表,24(10):41-43
    [11]Kusui,S.;Nagai,T.An electronic integrating heat meter Instrumentation and Measurement[J],IEEE Transactions,1990,39(5):785-789
    [12]Moczar G.,Csubak T.,Varady P.Distributed measurement system for heat metering and control[J].Instrumentation and Measurement,IEEE Transactions,2002,51(4):691-694
    [13]Adunka,F.Testing heat meters with regard to quality assurance[J].Fuel and Energy Abstracts.1996,37(2):153
    [14]中华人民共和国国家计量检定规程热能表JJG225—2001.
    [15]余晓明,胡迪.多翼式离心空调通风机流场数值模拟与分析[J].流体机械,2007年第35卷第7期:15-19
    [16]李杨,欧阳华,杜朝辉.低压轴流风机周向弯曲叶片顶部间隙流动的数 值分析[J].动力工程,2006年10月第26卷第5期:707-711
    [17]李建锋,吕俊复.风机流场的数值模拟[J].流体机械,Vol 34,No.4,2004:10-14
    [18]李景银,黄靓,吕峰.带有进气箱的轴流风机性变化数值分析,Vol 28,Suppl.1,2007,7:161-164.
    [19]罗勇,王力军,马材芬.大型轴流式锅炉引风机进气箱改型实验研究[J].流体机械,Vol 27,No.11,1998,11:8-11
    [20]吴克启,赖焕新.复杂形状进气箱与叶轮一体的斜流风机内部湍流数值分析[J].工程热物理学报,Vol 19,No.3,1998,3:320-324
    [21]李新宏,何慧伟,宫武旗,黄淑鹃.离心通风机整机定常流动数值模拟[J].工程热物理学报,Voa 23,No.4,2002,7:453-456
    [22]刘正先,曹淑珍,谷传纲等.离心风机叶轮内三维湍流流场的数值计算与试验比较[J].流体机械,2000,28(4):10-12.
    [23]Yoon Jong2Hwan,Lee Sang2Joon,Stereoscopic PIV measurements of flow behind an isolated low2speed axial2fan[J].Experimental Thermal and Fluid Science,2004,28(8):791-802.
    [24]Corsini A,Rispoli F,The role of forward sweep in subsonic axial fan rotor aerodynamics at design and off2design operating conditions[C].Proceedings of the ASME Turbo Expo,2003:543-553.
    [25]M W Zhang,Y J Zhang,Y L Wu.Numerical Simulation for Centrifugal Blower with MRF Model and Solution Adaptive Feature[M].The Second Internatinal Symposium on Fluid Machinery and Fluid Engineering.China Science & Technology Press,2000:198-194
    [26]Wadia A R,Szucs P N,Crall D W.Inner Working of Aerodynamic Sweep[J]Journal of Turbomachinery,1998,120:671-6821
    [27]Hah C,Puterbaugh S L,Wadia A R.Control of Shock Structure and Second Flow Field Inide Transonic Com2 pressor Rotors Through Aerodynamic Sweep [A]ASMEPaper 1998,119:561-5621
    [28]Inoue M,Kuroumaru M,Furukawa M,et al.Controlled Endwall.Flow Blading for Multistage Axial CompressorRotor[A].ASME paper,1997,118:248-251
    [29]甘加业,薛永飞.混流泵叶轮内空化流动的数值计算[J].工程热物理学报,Vol 28,Suppl1,2007,7:165-168
    [30]李龙,王泽,胡荣霞,岑美.双向贯流泵装置水力性能的数值分析[J].农业机械学报,第38卷第1期,2007,1:76-79
    [31]成立,刘超,周济人,等.基于RNG湍流模型的双向泵站出水流道流动计算[J].水科学进展,2004,1(15):109-112.
    [32]汤方平,刘超,王国强,等.平面S形流道双向轴流泵装置水力模型研究[J].农业机械学报,2003,34(6):50-53.
    [33]成立,刘超,汤方平,等.对称翼型转轮双向泵装置紊流数值模拟与性能预测[J].农业机械学报,2004,35(5):78-81.
    [34]孟庆国,周盛.叶轮机械非定常流动研究进展[J].力学进展,1997,27(2):232-247
    [35]A K Singhal,H Y Li,M M Athavale.Mathematical Basis and Validation of the Full Cavitation Model[J].Journal of Fluid Engineering,2002,124:617-624
    [36]袁新.热力叶轮机械内部的全三维复杂流动数值模拟研究点滴[J].上海汽轮机,2000,1:12-19
    [37]Chen Hong-xun.Research on turbulent flow within the voetex pump[J].Journal of hydrodynamics.2004,Ser.B,16(6):701-707
    [38]Chima Rodrick V,Yokota Jeffrey W.Numerical Analysis of Three—Dimensional Viscous Internal Flows[J].AIAA Journal,1990,28(5):798-806.
    [39]Albert Ruprecht,Thomas Helmrich,Thomas Aschenbrenner,Ahomas Acherer.Simulation of Vortex Rope in a Turbine Draft Tube[A].Proceedings of the XXIST IAHR Symposium on Hydraulic Machinery and Systems[C].Lausanne:2002.9-12.
    [40]Kalitzin G,Wu X,Durbin P A.DNS of fully turbulentflow in a LPT passage [J].International Journal of Heat and Fluid Flow,2003,24:636-644.
    [41]周盛.叶轮机械流固耦合有关模型综述[J].燃气涡轮实验与研究,1995:1-7
    [42]邢景堂,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1): 19-38
    [43]Taylor C E,Currie I G,Pettigrew M J,et al.Vibration of tube bundles in two-phase cross flow part 3:turbulence induced excitation[J].ASME J of Pressure Vessel Technology,1989,111(10):488-500.
    [44]Blevins R D.Flow induced vibrations[M].New York,NY:van Nostrand Reinhold,2~(nd) Edition,1990.
    [45]Morand H J-P,Ohayon R.Fluid-Structure Interaction[J].John Wiley and Sons,Chichester(1995)
    [46]郭术义,陈举华.流固耦合应用研究进展[J].济南大学学报(自然科学版),2004,18(2):123-126.
    [47]Earl H Dowell,Kenneth C Hall.Modeling of fluid-structure interaction[J].Annual review of fluid mechanics,2001,33(1):445-489.
    [48]李迎,陈红岩,俞小莉.流固耦合仿真技术在发动机稳态传热计算中的应用.内燃机工程,28卷第4期,2007,8:19-22
    [49]任能,谷波.平翅片传热与流动特性的数值模拟[J].制冷与空调,Vol 6,No.4,2006,8:39-41.
    [50]SUN Xiaoying,WU Yue,SHEN Shi zhao.Numerical Simulation of Flows Around Long Span Flat Roof[J].Journal of Harbin Institute of Technology,2005,12(4):370-375.
    [51]MURA KAMI S.Overview of Turbulence Models Applied in CWE21997[J].J Wind Eng Ind Aerodyn,1998,74(6):1-24.
    [52]朱洪来,白象忠.流固耦合问题的描述方法及分类简化准则.工程力学,Vol 24,No.10,2007,10:92-99
    [53]唐铭.薄膜结构与风的流固耦合作用.辽宁工程技术大学学报,第25卷增刊,2006,6:157-159
    [54]沈世钊,武岳.膜结构风振响应中的流固耦合效应研究进展.建筑科学与工程学报,2006年3月第23卷第1期:1-9
    [55]Tomohiro Sawada,Toshiaki Hisada.Fluid-structure interaction analysis of the two-dimensional flag-in-wind problem by an interface-tracking ALE finite element method.Computers & Fluids 36,2007:136-146
    [56]Tezduyar T E,BehrM,Liou J.A new strategy for finite element computations involving moving boundaries and interfaces the deforming spatial domain space time procedure.The concept and the preliminary tests[J].Computer Methods inApp lied Mechanics and Engineering,1994,94:339-351
    [57]S.Sathe,R.Benney,R.Charles,E.Doucette,J.Miletti b,M.Senga,K.Stein,T.E.Tezduyar.Fluid-structure interaction modeling of complex parachute designs with the space-time finite element techniques.Computers & Fluids 36,2007:127-135
    [58]Sahu J,Cooper G,Benney R.32D parachute descent analysis using coup led CFD and structural codes[R].A IA4-95-1580,1995
    [59]Tezduyar T E.Computational mechanics in modeling of airdropsystems[C]Proceedings of the Israel Annual Conference on Aerospace Sciences,2001:21-22
    [60]杨青真,施永强,肖军,周新海.气固耦合振动叶栅非定常流动分析研究[J].应用力学学报,Vol 23,No.2,2006,6:167-171.
    [61]赵琳,胡江峰,刘振侠.流固耦合计算的应用研究[J].沈阳航空工业学院学报,Vol 23,No,4,2006,8:55-56
    [62]Connors H J.Fluidelastc vibration of tube array excited by cross flow.Flow induced vibration in heat exchangers[J],The American Society of Mechanical Engineers,NewYork.1970:42-56
    [63]Mittal S,Kumar V.Flow-Induced oscillations of two cylindersin tandem and staggered arrangements[J].Journal of fluids and structures,2001,15:717-736
    [64]Rottmann M,Popp K.Influence of upstream turbulence on the fluidelastic instability of a parallel triangular tube bundle[J].Journal of Fluids and Structures,2003,(18):595-612
    [65]Hassan M A,Weaver D S,Dokainish M A.A simulation of the turbulence response of heat exchanger tubes in lattice-bar supports[J].Journal of Fluids and Structures,2002,16(8):1145-1176
    [66]Weaver D S,Ziada S,Au-Yang M K,Chen S S,Paidoussis M P,Pettigrew M J.Flow-induced vibration in power and process plants components-Progress and prospects[J].ASME Journal of Pressure Vessel Technology,2000,122:339-348.
    [67]赵国桥.管道系统流固耦合振动分析[J].炼油设计,1995,25(3):49-53
    [68]杨青真,施永强,肖军,周新海.气固耦合振动叶栅非定常流动分析研究[J].应用力学学报,2006年6月第23卷第2期:167-171
    [69]王少波.弹性板在粘性流体中的耦合震动分析[J].机械工程学报,2004年7月第40卷第4期:63-66
    [70]Wissink J G.DNS of separating,low Reynolds number flow in turbine cascade with incoming wakes[J].International Journal of Heat and Fluid flow,2003,24:626-635.
    [71]Timon Rabczuk,Esteban Samaniego,Ted Belytschko.Simplified model for predicting impulsive loads on submerged structures to account for fluid-structure interaction.International Journal of Impact Engineering 34,2007:163-177
    [72]Kalro V,Tezduyar T E.3D computation of unsteady flow past a sphere with a parallel finite elementmethod[J].OceanographicLiterature Review,1998,45:602
    [73]Xing J T,P rice W G,Du Q H.Mixed finite element substructure-subdomain methods for the dynamical analysis of coupled fluid-solid interaction problems[J].Trans R.Soc Lond.A 354(1995):259-295
    [74]金琰,袁新.三维透平叶片扭转颤振问题的流固耦合数值研究[J].工程热物理学报,2004年1月第25卷第1期:41-44
    [75]李林凌,黄其柏.风机叶片气固耦合特性研究[J].流体机械,2006年34卷第4期:23-27
    [76]Williamson D R Implementation of a Fluid-Structure Interaction Formulation Using MSC/NASTRAN[R].TRW Space System,Redondo Beach,Calfornia 90277.
    [77]Kotake S.Random Vortex Shedding Noise of Airfoils[J].Journal of Sound and Vibration,1975,40:87-99.
    [78]Lee C,Chung M K,Kim Y K.A Prediction Model for the Vortex Shedding Noise from the Wake of an Airfoil or Axial Flow Fan Blades[J].Journal of Sound and Vibration,1993,164(2):327-336.
    [79]肖若富,王正伟.罗永要.轴流转浆式水轮机桨叶的动应力特性[J].清华大 学学报(自然科学版),2007年第11期:2014-2017
    [80]刘德民,杨萍.基于流固耦合的水轮机振动分析.水科学与工程技术[J],2007年第6期:29-32
    [81]党小建,梁武科,廖伟丽.水力机组流固耦合的数学模型[J].机械强度,2005年27卷6期:864-866
    [82]张立翔,王文全,姚激.混流式水轮机转轮叶片流激振动分析[J].工程力学,第24卷第8期,2007年8月:143-150
    [83]肖若富,王正伟,罗永要.基于流固耦合的混流式水轮机转轮静应力特性分析[J].水力发电学报,2007年6月第26卷第3期:120-123
    [84]肖若富,韦彩新,韩凤琴,陈秋.液固耦合对水轮机固定导叶振频振型的影响[J].华中科技大学学报,2001年4月第29卷第4期:85-87
    [85]梁权伟,王正伟,方源.考虑流固耦合的混流式水轮机转轮模态分析[J].水力发电学报,2004年6月第23卷第3期:116-120
    [86]Liu Zhenggang,Du Guangsheng.Research on fluid characteristic within rotating-wing heat meter[J].Journal of Hydrodynamics,Ser.B.2006,4,vol 18,No4:458-463.
    [87]杜广生,王宁,刘正刚.双流束旋翼式户用热量表的性能研究.仪器仪表学报,2006,9:1071-1074.
    [88]王宁.双流束旋翼式户用热量表的性能研究[M].硕士论文,山东大学,2005.
    [89]Du Guangsheng,Liu Zhenggang,Li Li,Fluid characteristic of rotary wing heat meter with single-chanenel.Journal of Hydrodynamics,Ser.B.2008,1,vol 20,No.1:101-107.
    [90]J.H.Ferziger,M.Peric.Computational Methods for Fluid Dynamics[M].Germany:Springer,2002.
    [91]Versteeg H K,Malalasekera W.An introduction to computational fluid dynamics[M].Berlin:Springer,1996:21-66
    [92]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997:1-2
    [93]鲁嘉华.计算流体力学与求解方法在叶轮机械中的应用[J].上海工程技术 大学学报,2003,17(1):16-21
    [94]孔珑.工程流体力学(第二版)[M].北京:水利电力出版社,1992:12,102-105
    [95]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004:1-4,13-16,18-22,25-26,75,126-129
    [96]王瑁成.有限单元法基本原理[M].第二版.北京:清华大学出版社,1997.
    [97]尹建民.X6135柴油机曲轴强度的三维有限元研究.内燃机工程,1997第2期:45-49
    [98]刘鸿文.材料力学(第三版)上册[M].北京:高等教育出版社,1992:1-35.
    [99]Kardestunger H.Finite Elementg Handbook[M].北京,科学出版社,1996
    [100]C.W.Hirt,A.A.Amsden,J.L.Cook.An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J].Journal of computational physics,1974,14(3):227-253.
    [101]蒋莉,沈孟育.求解流体与结构相互作用问题的ALE有限体积方法[J].水动力学研究与进展,2000,15(2):148-154
    [102]石安富,龚云表.工程塑料手册[M].上海科学技术出版社,2003.
    [103]梁国伟,蔡武昌.流量测量技术及仪表[M].北京:机械工业出版社,2002:15,184-187,201-204
    [104]苏彦勋,盛健,梁国伟.流量计量与测试[M].北京:中国计量出版社,1993:27-33
    [105]詹志杰.水表技术手册[M].北京:中国计量出版社,2004:19-20,92-95,212
    [106]梁在潮,梁利.肋条减阻[J].水动力学研究与进展,1999,A辑14(3):303-311

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700