Shh及其受体Ptc和Smo在胚胎期小鼠5-HT能尾端缝核核团及缝核脊髓束表达特点的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中枢神经系统有许多能传导特定信息的神经通路,这些神经通路通过轴突传导某种特定信息,如运动、视、听或感觉信息等。按神经信息的传导方向,神经通路可分为上行和下行两种。下行神经通路主要是由脑中的神经核团发出轴突并向脊髓尾端方向投射。缝核脊髓束(Raphespinal Tract, RST)是一条重要的下行神经通路,它由脑干的尾端缝核核团(Caudal Raphe Nuclei, CRN)发出并向脊髓尾端投射。因这些核团分泌5-羟色胺(5-HT)神经递质,故又称5-HT能神经元。我们以前的研究发现,5-HT能神经轴突在小鼠E11.5天时从CRN发出,E12.5-E16.5天,RST沿脊髓腹外侧投射至脊髓最尾端。Sonic hedgehog (Shh)是一种形成素,广泛参与胚胎期多种神经元的发育,主要表达在脊髓的底板,并可分泌到整个腹侧脊髓,调控脊髓腹侧神经元的发育。近年的研究表明,Shh也是一种神经轴突导向分子,控制一些神经轴突在发育期间的定向投射。本研究中,我们运用分子原位杂交技术,发现Shh mRNA表达在E12.5-E14.5天小鼠脊髓腹侧底板,并随着RST向尾端的投射而呈现出从头端到尾端梯度递减的表达特点。免疫组织化学法发现,Shh的受体Patched (Ptc)和Smoothened (Smo)也随着RST的投射而呈现出同的表达特点。E11.5天,Ptc在5-HT能CRN表达,但Smo却几乎不表达。E12.5-E14.5天,Ptc和Smo在5-HT能CRN及RST均有表达。我们的研究结果提示,Shh作为神经轴突导向分子,很有可能参与调控了5-HT能RST在脊髓中从头端向尾端的定向投射。
In the central nervous system, specific signals, such as motor, sensory, visual and auditory signals, are conducted by different nervous pathways. Raphespinal Tract (RST) is one of the most important descending nervous pathways, and its axons are originated from the caudal raphe nuclei (CRN) localized along the midline of the brain stem. The neurons in raphe nuclei are also called serotonergic neurons because they secrete neurotransmitter 5-hydroxytryptamine (5-HT). Our previous studies have found that serotonergic axons are originated from CRN at E11.5, and serotonergic RST axons descend through the ventral spinal cord from E12.5 to E16.5 in mice. Sonic hedgehog (Shh) is a kind of morphogen that is expressed in the floor plate of the spinal cord, and can be secreted to the whole ventral spinal cord at embryonic stages to regulate the development and migration of many neurons. Recent studies have shown that Shh also plays a role in guiding axons'directed projection as an axon guidance cue. In the present study, in situ hybridization or immunohistochemical method was employed to detect the expression patterns of Shh or its receptors patched (Ptc) and smoothened (Smo) along the anterior to posterior (A-P) axis of developing spinal cord. The expression of Shh could be detected in ventro-floor plate of the spinal cord of mice between E12.5 and E14.5, and showed a decrement expression pattern along the A-P axis as the projection progression of serotonergic RST to caudal end. The expression of Ptc could be detected in serotonergic CRN of mice at E1 1.5, however, the expression of Smo could not be detected at this stage. The expressions of both Ptc and Smo could be detected in serotonergic CRN and RST axons of mice between E12.5 and E14.5. Our findings strongly suggest that Shh, as an axon guidance cue, may be involved in guiding the serotonergic RST directed projection along the A-P axis of developing spinal cord.
引文
1. H.W. Steinbusch. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals[J].Neuroscience,1981,6(4):557-618.
    2. B.L. Jacobs and E.C. Azmitia. Structure and function of the brain serotonin system[J].Physiol Rev,1992,72(1):165-229.
    3. S. Liu and R.H. Nordlander. Growth cones and axon trajectories of the earliest descending serotonergic pathway of Xenopus[J].Neuroscience,1995,69(1):309-20.
    4. H. Sako, T. Kojima and N. Okado. Immunohistochemical study on the development of serotoninergic neurons in the chick:II. Distribution of cell bodies and fibers in the spinal cord[J].J Comp Neurol,1986,253(1):79-91.
    5. R.M. Bowker and L.C. Abbott. Quantitative re-evaluation of descending serotonergic and non-serotonergic projections from the medulla of the rodent:evidence for extensive co-existence of serotonin and peptides in the same spinally projecting neurons, but not from the nucleus raphe magnus[J].Brain Res,1990,512(1):15-25.
    6. C.G. Nebigil, D.S. Choi, A. Dierich, et al. Serotonin 2B receptor is required for heart development[J].Proc Natl Acad Sci U S A,2000,97(17):9508-13.
    7. C.G. Nebigil, P. Hickel, N. Messaddeq, et al. Ablation of serotonin 5-HT(2B) receptors in mice leads to abnormal cardiac structure and function[J].Circulation,2001,103(24):2973-9.
    8. M. Hynes and A. Rosenthal. Specification of dopaminergic and serotonergic neurons in the vertebrate CNS[J].Curr Opin Neurobiol,1999,9(1):26-36.
    9. J. Briscoe, L. Sussel, P. Serup, et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling[J].Nature,1999,398(6728):622-7.
    10. E.T. Pierce. Time of origin of neurons in the brain stem of the mouse[J].Prog Brain Res, 1973,40(0):53-65.
    11. A.R. Aitken and I. Tork. Early development of serotonin-containing neurons and pathways as seen in wholemount preparations of the fetal rat brain[J].J Comp Neurol,1988, 274(1):32-47.
    12. W. Ye, K. Shimamura, J.L. Rubenstein, et al. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate[J].Cell,1998,93(5):755-66.
    13. M.P. Matise, D.J. Epstein, H.L. Park, et al. Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system[J].Development,1998,125(15):2759-70.
    14. J. Briscoe, A. Pierani, T.M. Jessell, et al. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube[J].Cell,2000,101(4):435-45.
    15. K. Shimamura, D.J. Hartigan, S. Martinez, et al. Longitudinal organization of the anterior neural plate and neural tube[J].Development,1995,121(12):3923-33.
    16. A. Pattyn, A. Vallstedt, J.M. Dias, et al. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors[J].Genes Dev,2003,17(6):729-37.
    17. I. Pata, M. Studer, J.H. van Doorninck, et al. The transcription factor GATA3 is a downstream effector of Hoxbl specification in rhombomere 4[J].Development,1999, 126(23):5523-31.
    18. J.H. van Doorninck, J. van Der Wees, A. Karis, et al. GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei[J].J Neurosci,1999, 19(12):RC12.
    19. T. Hendricks, N. Francis, D. Fyodorov, et al. The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes[J].J Neurosci,1999,19(23):10348-56.
    20. R.L. Johnson and C.J. Tabin. Molecular models for vertebrate limb development[J].Cell, 1997,90(6):979-90.
    21. M.P. Smidt, C.H. Asbreuk, J.J. Cox, et al. A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmxlb[J].Nat Neurosci,2000, 3(4):337-41.
    22. L. Cheng, C.L. Chen, P. Luo, et al. Lmxlb, Pet-1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype[J].J Neurosci,2003,23(31):9961-7.
    23. N. Rajaofetra, F. Sandillon, M. Geffard, et al. Pre-and post-natal ontogeny of serotonergic projections to the rat spinal cord[J].J Neurosci Res,1989,22(3):305-21.
    24. B. Ballion, P. Branchereau, J. Chapron, et al. Ontogeny of descending serotonergic innervation and evidence for intraspinal 5-HT neurons in the mouse spinal cord[J].Brain Res Dev Brain Res,2002,137(1):81-8.
    25. L.V. Goodrich, R.L. Johnson, L. Milenkovic, et al. Conservation of the hedgehog/patched signaling pathway from flies to mice:induction of a mouse patched gene by Hedgehog[J].Genes Dev,1996,10(3):301-12.
    26. J. Alcedo, M. Ayzenzon, T. Von Ohlen, et al. The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal[J].Cell,1996, 86(2):221-32.
    27. M. Murone, A. Rosenthal and F.J. de Sauvage. Sonic hedgehog signaling by the patched-smoothened receptor complex[J].Curr Biol,1999,9(2):76-84.
    28. J.K. Chen, J. Taipale, K.E. Young, et al. Small molecule modulation of Smoothened activity[J].Proc Natl Acad Sci USA,2002,99(22):14071-6.
    29. M.J. Fietz, J.P. Concordet, R. Barbosa, et al. The hedgehog gene family in Drosophila and vertebrate development[J].Dev Suppl,1994,43-51.
    30. R.D. Riddle, R.L. Johnson, E. Laufer, et al. Sonic hedgehog mediates the polarizing activity oftheZPA[J].Cell,1993,75(7):1401-16.
    31. M. Hammerschmidt, A. Brook and A.P. McMahon. The world according to hedgehog[J].Trends Genet,1997,13(1):14-21.
    32. E. Marti, D.A. Bumcrot, R. Takada, et al. Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants[J].Nature,1995,375(6529):322-5.
    33. H. Roelink, J.A. Porter, C. Chiang, et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis[J].Cell,1995,81(3):445-55.
    34. C. Chiang, Y. Litingtung, E. Lee, et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function[J].Nature,1996,383(6599):407-13.
    35. J.E. Davies and R.H. Miller. Local sonic hedgehog signaling regulates oligodendrocyte precursor appearance in multiple ventricular zone domains in the chick metencephalon[J].Dev Biol,2001,233(2):513-25.
    36. D.M. Orentas, J.E. Hayes, K.L. Dyer, et al. Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors[J].Development,1999, 126(11):2419-29.
    37. R.H. Miller. Oligodendrocyte origins[J].Trends Neurosci,1996,19(3):92-6.
    38. P.D. Currie and P.W. Ingham. Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish[J].Nature,1996,382(6590):452-5.
    39. W. Herzog, X. Zeng, Z. Lele, et al. Adenohypophysis formation in the zebrafish and its dependence on sonic hedgehog[J].Dev Biol,2003,254(1):36-49.
    40. S. Scholpp, O. Wolf, M. Brand, et al. Hedgehog signalling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon[J].Development,2006, 133(5):855-64.
    41. H.R. Dassule, P. Lewis, M. Bei, et al. Sonic hedgehog regulates growth and morphogenesis of the tooth[J]. Development,2000,127(22):4775-85.
    42. S. Odent, T. Atti-Bitach, M. Blayau, et al. Expression of the Sonic hedgehog (SHH) gene during early human development and phenotypic expression of new mutations causing holoprosencephaly[J].Hum Mol Genet,1999,8(9):1683-9.
    43. A.M. Jensen and V.A. Wallace. Expression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina[J].Development,1997, 124(2):363-71.
    44. F. Trousse, E. Marti, P. Gruss, et al. Control of retinal ganglion cell axon growth:a new role for Sonic hedgehog[J].Development,2001,128(20):3927-36.
    45. F. Charron, E. Stein, J. Jeong, et al. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-l.in midline axon guidance[J].Cell,2003, 113(1):11-23.
    46. D. Bourikas, V. Pekarik, T. Baeriswyl, et al. Sonic hedgehog guides commissural axons along the longitudinal axis of the spinal cord[J].Nat Neurosci,2005,8(3):297-304.
    47. M.Tessier-Lavigne and C.S. Goodman. The molecular biology of axon guidance[J].Science, 1996,274(5290):1123-33.
    1. J. Gerhart.1998 Warkany lecture:signaling pathways in development[J].Teratology,1999, 60(4):226-39.
    2. R.L. Johnson and M.P. Scott. New players and puzzles in the Hedgehog signaling pathway[J].Curr Opin Genet Dev,1998,8(4):450-6.
    3. V. Marigo, D.J. Roberts, S.M. Lee, et al. Cloning, expression, and chromosomal location of SHH and IHH:two human homologues of the Drosophila segment polarity gene hedgehog[J].Genomics,1995,28(1):44-51.
    4. E.H. Villavicencio, D.O. Walterhouse and P.M. Iannaccone. The sonic hedgehog-patched-gli pathway in human development and disease[J].Am J Hum Genet,2000,67(5):1047-54.
    5. J.A. Porter, K.E. Young and P.A. Beachy. Cholesterol modification of hedgehog signaling proteins in animal development[J].Science,1996,274(5285):255-9.
    6. A.P. McMahon. More surprises in the Hedgehog signaling pathway[J].Cell,2000, 100(2):185-8.
    7. L.V. Goodrich and M.P. Scott. Hedgehog and patched in neural development and disease[J].Neuron,1998,21(6):1243-57.
    8. D. Kalderon. Transducing the hedgehog signal[J].Cell,2000,103(3):371-4.
    9. D. Carpenter, D.M. Stone, J. Brush, et al. Characterization of two patched receptors for the vertebrate hedgehog protein family[J].Proc Natl Acad Sci U S A,1998,95(23):13630-4.
    10. L.V. Goodrich, L. Milenkovic, K.M. Higgins, et al. Altered neural cell fates and medulloblastoma in mouse patched mutants[J].Science,1997,277(5329):1109-13.
    11. D.A. Bumcrot, R. Takada and A.P. McMahon. Proteolytic processing yields two secreted forms of sonic hedgehog[J].Mol Cell Biol,1995,15(4):2294-303.
    12. X. Zeng, J.A. Goetz, L.M. Suber, et al. A freely diffusible form of Sonic hedgehog mediates long-range signalling[J].Nature,2001,411(6838):716-20.
    13. H. Roelink, J.A. Porter, C. Chiang, et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis[J].Cell,1995,81(3):445-55.
    14. G. Bhardwaj, B. Murdoch, D. Wu, et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation[J].Nat Immunol,2001, 2(2):172-80.
    15. S. Liu, G. Dontu, I.D. Mantle, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells[J].Cancer Res,2006,66(12):6063-71.
    16. S. Ann and A.L. Joyner. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog[J].Nature,2005,437(7060):894-7.
    17. J. Xie, M. Murone, S.M. Luoh, et al. Activating Smoothened mutations in sporadic basal-cell carcinoma[J].Nature,1998,391 (6662):90-2.
    18. J.K. Chen, J. Taipale, K.E. Young, et al. Small molecule modulation of Smoothened activity [J].Proc Natl Acad Sci U S A,2002,99(22):14071-6.
    19. C. Chiang, Y. Litingtung, E. Lee, et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function[J].Nature,1996,383(6599):407-13.
    20. D.H. Rowitch, S.J. B, S.M. Lee, et al. Sonic hedgehog regulates proliferation and inhibits differentiation ofCNS precursor cells[J].J Neurosci,1999,19(20):8954-65.
    21. C.V. Pepicelli. P.M. Lewis and A.P. McMahon. Sonic hedgehog regulates branching morphogenesis in the mammalian lung[J].Curr Biol,1998,8(19):1083-6.
    22. R. Pola, L.E. Ling, M. Silver, et al. The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors[J].Nat Med,2001, 7(6):706-11.
    23. M. Tessier-Lavigne and C.S. Goodman. The molecular biology of axon guidance[J].Science, 1996,274(5290):1123-33.
    24. F. Trousse, E. Marti, P. Gruss, et al. Control of retinal ganglion cell axon growth:a new role for Sonic hedgehog[J].Development,2001,128(20):3927-36.
    25. F. Schnorrer and B.J. Dickson. Axon guidance:morphogens show the way[J].Curr Biol, 2004,14(1):R 19-21.
    26. S. Yoshikawa, R.D. McKinnon, M. Kokel, et al. Wnt-mediated axon guidance via the Drosophila Derailed receptor[J].Nature,2003,422(6932):583-8.
    27. F. Charron, E. Stein, J. Jeong, et al. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance[J].Cell,2003, 113(1):11-23.
    28. M. Murone, A. Rosenthal and F.J. de Sauvage. Sonic hedgehog signaling by the patched-smoothened receptor complex[J].Curr Biol,1999,9(2):76-84.
    29. A. Ruiz i Altaba. Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog[J].Development,1998,125(12):2203-12.
    30. Q. Ding, J. Motoyama, S. Gasca, et al. Diminished Sonic hedgehog signaling and lack of floor plate differentiation in GH2 mutant mice[J].Development,1998,125(14):2533-43.
    31. D. Bourikas, V. Pekarik, T. Baeriswyl, et al. Sonic hedgehog guides commissural axons along the longitudinal axis of the spinal cord[J].Nat Neurosci,2005,8(3):297-304.
    32. P.T. Yam, S.D. Langlois, S. Morin, et al. Sonic hedgehog guides axons through a noncanonical, Src-family-kinase-dependent signaling pathway[J].Neuron,2009, 62(3):349-62.
    33. A.I. Lyuksyutova, C.C. Lu, N. Milanesio, et al. Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling[J].Science,2003,302(5652):1984-8.
    34. Y. Liu, J. Shi, C.C. Lu, et al. Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract[J].Nat Neurosci,2005,8(9):1151-9.
    35. T.M. Jessell. Neuronal specification in the spinal cord:inductive signals and transcriptional codes[J].Nat Rev Genet,2000, 1(1):20-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700