针刺对脑缺血再灌注模型大鼠损伤炎症相关机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     脑缺血性疾病属于中医“中风”范畴,针灸治疗脑出血和脑缺血导致的肢体功能障碍获得了肯定的临床疗效。根据针灸传统的经络理论,百会穴是人体督脉上的要穴,有醒脑开窍、益智的作用,可以调节心、脑血管系统功能,益智开慧;足三里为阳明胃经合穴,阳明为多气多血之经,同时与足太阴脾经互为表里关系。
     本研究依据经典中医经络腧穴理论,选择临床针刺“中风”有效且使用频率较高的百会穴、足三里穴,利用线栓法大鼠脑缺血模型(middle cerebral artery occlusion, MCAO),选择急性缺血性脑血管病“炎症“假说中分子靶标细胞间粘附分子-1(ICAM-1)及其“细胞外基质破坏”假说中的分子靶标基质金属蛋白酶-9(MMP-9)作为研究指标,探讨针刺对脑缺血再灌注的炎症损伤相关机制。
     实验方法
     以大鼠脑缺血模型为研究对象,采用随机区组设计将大鼠分为假手术、模型、电针、针刺、药物和针药组六个大组。其中电针、模型、假手术组按照再灌注后时间又分成12、24、48、72、96和144h 6个时间点;针刺、药物、针药组分成12、24、48、72h 4个时间点,每个时间点观察实验大鼠7只;另设空白对照大鼠7只。分别应用免疫组织化学技术和表面加强激光解析电离-飞行时间-质谱技术(SELDI-TOF-MS)等方法来对比分析针刺百会、足三里穴及百会单穴位后,中枢缺血脑区炎症损伤相关分子ICAM-1和MMP-9的表达和外周血中相关蛋白信号表达的差异。
     实验结果
     1.TTC染色结果显示:在脑组织大脑中动脉供血区,可以看到白色的梗死灶,和正常脑组织的鲜红色形成对比。在切取的五片脑片中,视交叉前后的脑片梗死灶较为稳定,符合大脑中动脉分布区。
     2.HE染色显示损伤区分布与TTC结果一致。梗死核心区病理损伤高峰时间出现在48h;72h后间质水肿减轻,大量小胶质细胞和胶原纤维增生,出现大量新生血管,144h小胶质细胞和胶原纤维增生最为明显。
     3.免疫组化染色:1)模型组MMP-9及ICAM-1成双峰形表达(第一峰在48h,第二个高峰在144h);2)电针组在脑缺血的急性期(48h内),可以明显下调MMP-9及ICAM-1在脑组织中的表达,但是仍高于假手术组和正常对照组;在损伤的修复期(96h),可上调MMP-9及ICAM-1的表达;3)在脑缺血再灌注损伤修复期,作为损伤修复信号的小胶质细胞和新生的神经元增多,模型组出现修复信号最早在96h,但电针组在72h时即可表达。
     4. SELDI质谱分析结果:质谱分析显示电针组和模型组比较,有明显蛋白差异信号峰107个(正向峰50个,负向峰57个)。其中12h组有11个,24h组有22个,48h组有7个,72h组有42个;96h组有22个,144h组有3个差异信号峰.。
     结论
     针刺百会、足三里穴治疗脑缺血炎症损伤的作用机制可能是通过局部调节MMP-9及ICAM-1的表达以及小胶质细胞和神经元的增生来实现的。针刺在脑缺血早期下调MMP-9及ICAM-1的表达,在晚期上调上述分子的表达,验证了针刺具有双向调节作用。
Cerebral infarction disease belongs to the concept of "Zhongfeng" in traditional chinease medicine. Many data indicates that, Chinese acupuncture have a novel effect on restoration of limb function after cerebral infarction and Cerebral Hemorrhage. According to traditional meridians and collaterals theory, "baihui" (Du Mai 20) is the acupoint where the body's Yang energy naturally converges. Also, it can regulate cerebral and vascular function, improve the intelligence. "Zusanli" (Stomach-36) is the He-Sea of stomach channel of foot yangming, which is rich in qi and blood and related to Spleen Meridian of Foot-Taiyin.
     Research objective:According to meridians and collaterals theory of traditional chinese medicine, our experiment choose the high frequency acupoints "Zusanli" and "Baihui " and the middle cerebral artery occlusion model on rats to explore its effect on the cerebral expression of inflammatory related molecular ICAM-1 and extracellular matrix destroy related molecular MMP-9 after cerebral ischemia-reperfusion injury in rats.
     Research methods:male SD rats was induced MCAO model,the rats was randomly divided into seven groups:sham group, model group,Electro-acupuncture at "Zusanli" and "Baihui " group, "Baihui " group, Nimodipime group, joint group with acupuncture and Nimodipime (EA+N group for short). Electro-acupuncture group, model group and sham group have six small groups according to different time points at 12,24,48,72,96 and 144 h; "Baihui " group, Nimodipime group, EA+N group each was divided into 12,24,48,72h 4 time points; besides, control group have 7 rats. We explored the expression of MMP-9 and ICAM-1 in rats brain tissue by immunohistochemistry staining; And the peripheral blood sample was analyzed by Surface Enhanced Laser Desorption Ionization-Time Of Flight-Mass Spectrometry technique to see the difference of protein expression pre-and post acupuncture therapy.
     Research results:
     1. TTC staining show that the core infarction area is white in colour, compared with the common red brain tissue. Among the five slices of brain, the slices around optic chiasma area had the most stable infarction region.
     2. HE staining show the pathological lesion is consistent with the TTC staining results. The lesion reached the peak at 48th hour in the infarct core area; until the 72th hour, the cerebral interstitial oedema was alleviated. Also many glial cells and collagen fibers proliferated. Up to 144h, the proliferation of glial cells and collagen fibers was the most obvious.
     3. Immunohistochemistry staining:1) the expression of MMP-9 and ICAM-1 exhibited a double-peak profile at the 48th and the 144th hours; 2) electro-acupuncture group can down-regulate the expression of MMP-9 and ICAM-1 in brain tissue at the time point of 48h, but the lever was still above the the level of sham goup and the control group; while at the time point of 144h, the therapy had the opposing effect; 3) at the functional recovery stage,the newborn glial cells and neurons which presented the signal of restoration proliferated. In model group the signal appears at 96h, while in electro-acupuncture group was 24h earier.
     4. SELDI analsis indicates that there are 107 significant different protein peak and trough between electro-acupuncture and model group (50 peak and 57 trough). Among all these 107,11 were in 12h group; 22 in 24h group; 7 in 48h group; 42 in 72h group; 22 in 96 group and 3 in 144h group.
     Research conclusions: Acupuncture at the acupoints of'Zusanli" and "Baihui " may have good effect on the inflammatory related injury after brain infarction by upregulating and down-regulating the expression of MMP-9、ICAM-1、the proliferation of glial cells and neurons. It showed that acupuncture had the dual regulated effect.
引文
[1]Dale N, Frenguelli B G. Release of adenosine and ATP during ischemia and epilepsy.[J]. Curr Neuropharmacol,2009,7(3):160-179.
    [2]Ying W, Xiong Z G. Oxidative Stress and NAD(+) in Ischemic Brain Injury: Current Advances and Future Perspectives.[J]. Curr Med Chem,2010.
    [3]Chao X D, Fei F, Fei Z. The Role of Excitatory Amino Acid Transporters in Cerebral Ischemia.[J]. Neurochem Res,2010.
    [4]Cuenca-Lopez M D, Brea D, Segura T, et al. Inflammation as a therapeutic agent in cerebral infarction:cellular inflammatory response and inflammatory mediators[J]. Rev Neurol,2010,50(6):349-359.
    [5]Broughton B R, Reutens D C, Sobey C G. Apoptotic mechanisms after cerebral ischemia.[J]. Stroke,2009,40(5):e331-e339.
    [6]Hickey W F. Basic principles of immunological surveillance of the normal central nervous system.[J]. Glia,2001,36(2):118-124.
    [7]Brabb T, von Dassow P, Ordonez N, et al. In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity.[J]. J Exp Med,2000, 192(6):871-880.
    [8]Becher B, Bechmann I, Greter M. Antigen presentation in autoimmunity and CNS inflammation:how T lymphocytes recognize the brain.[J]. J Mol Med,2006,84(7): 532-543.
    [9]Hickey W F. Migration of hematogenous cells through the blood-brain barrier and the initiation of CNS inflammation.[J]. Brain Pathol,1991,1(2):97-105.
    [10]Zheng Z, Yenari M A. Post-ischemic inflammation:molecular mechanisms and therapeutic implications.[J]. Neurol Res,2004,26(8):884-892.
    [11]Asahi M, Wang X, Mori T, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia[J]. Journal of Neuroscience,2001,21(19):7724-7732.
    [12]Wang X, Lee S R, Arai K, et al. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator[J]. Nature Medicine,2003,9(10): 1313-1317.
    [13]Lo E H, Dalkara T, Moskowitz M A. Mechanisms, challenges and opportunities in stroke.[J]. Nat Rev Neurosci,2003,4(5):399-415.
    [14]Sicard K M, Fisher M. Animal models of focal brain ischemia.[J]. Exp Transl Stroke Med,2009,1:7.
    [15]潘娅,戴桃李,杨琼,等.耳针和阿尼西坦对血管性痴呆大鼠海马长时程增强的影响[J].临床神经电生理学杂志,2009(3):131-134.
    [16]姜雪梅,原林,张学全,等.针刺对大鼠局部筋膜和脊髓细胞外信号调节激酶1/2和P38丝裂酶原活化蛋白激酶信号通路的影响[J].中国康复医学杂志,2009(11):973-976.
    [17]吴文忠,李忠仁.脑缺血氧化应激损伤的针刺拮抗作用研究[J].南京中医药大学学报,2009,25(6):478-480.
    [18]Ren X J, Ma H F, Wang X N, et al. Effect of acupuncture on serum lipid and cerebral neurogrowth factor levels in hyperlipemia rats with concurrent cerebral ischemia[J]. Zhen Ci Yan Jiu,2007,32(1):24-28.
    [19]Yi W, Xu N G, Wang G B. Experimental study on effects of electro-acupuncture in improving synaptic plasticity in focal cerebral ischemia rats[J]. Zhongguo Zhong Xi Yi Jie He Za Zhi,2006,26(8):710-714.
    [20]李建生,王冬,方建,等.不同剂量大黄苷元影响脑缺血大鼠血栓形成及血小板和凝血功能:与阿司匹林及尼莫地平的效应比较[J].中国临床康复,2005,9(21):142-144.
    [21]Longa E Z, Weinstein P R, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke,1989,20(1):84-91.
    [22]Bederson J B, Pitts L H, Tsuji M. Rat middle cerebral artery occlusion:Evaluation of the model and development of a neurologic examination[J]. Stroke,1986,17(3): 472-476.
    [23]张涓,刘邦民,黄国钧.脑栓通注射液对电凝法致局灶性脑缺血大鼠炎症反应的影响[J].中药药理与临床,2008,24(1):61-63.
    [24]杨渊,郭瑞友,等.光化学诱导老年大鼠局灶性脑梗塞模型的研究[J].中国老年学杂志,2001,21(1):35-38.
    [25]金荣,赵育梅,徐超.用微动脉夹夹闭法制作局灶性脑缺血/再灌注模型[J].中华神经外科杂志,2006,22(4):254-256.
    [26]Kudo M, Aoyama A, Ichimori S, et al. An animal model of cerebral infarction. Homologous blood clot emboli in rats.[J]. Stroke,1982,13(4):505-508.
    [27]Macrae I M, Robinson M J, Graham D I, et al. Endothelin-1-induced reductions in cerebral blood flow:dose dependency, time course, and neuropathological consequences.[J]. J Cereb Blood Flow Metab,1993,13(2):276-284.
    [28]郑景辉,杜鹏程,指导池建淮,等.大鼠线栓法局灶性脑缺血术后行为学评价[J].甘肃中医,2007,20(4):53-55.
    [29]钟乐,王霞,余小河,等.新生大鼠缺氧缺血性脑损伤后的远期行为学测试[J]. 中国当代儿科杂志,2005,7(3):245-248.
    [30]王志强,张小宁,姜涛,等.脑梗死大鼠神经功能缺损评分与脑梗死体积的相关性研究[J].中国临床神经科学,2008,16(4):394-399.
    [31]Joshi C N, Jain S K, Murthy P S. An optimized triphenyltetrazolium chloride method for identification of cerebral infarcts.[J]. Brain Res Brain Res Protoc,2004, 13(1):11-17.
    [32]姚小梅,王纪佐,王永明,等.大鼠局灶性脑缺血再灌注模型的建立及其组织形态改变[J].天津医科大学学报,2003,9(3):315-317.
    [33]Del Z G. Inflammation and the neurovascular unit in the setting of focal cerebral ischemia.[J]. Neuroscience,2009,158(3):972-982.
    [34]Rosenberg G A, Estrada E Y, Dencoff J E. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain[J]. Stroke, 1998,29(10):2189-2195.
    [35]Zhao B Q, Wang S, Kim H Y, et al. Role of matrix metalloproteinases in delayed cortical responses after stroke[J]. Nature Medicine,2006,12(4):441-445.
    [36]Yang Y, Estrada E Y, Thompson J F, et al. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat[J]. Journal of Cerebral Blood Flow and Metabolism,2007,27(4):697-709.
    [37]Zhang L, Cheng X R, Chen R Y, et al. Protective effect of effective composite of Chinese medicine prescription naodesheng against focal cerebral ischemia in rats.[J]. Chin J Integr Med,2009,15(5):377-383.
    [38]刘玉珍,蒋戈利,韩景献,等.电针对局灶性脑缺血大鼠细胞间黏附分子-1表达禾白细胞浸润的影响[J].中国康复医学杂志,2007,22(2):122-124.
    [39]毛庆菊,李厚秀,孔立红,等.电针对脑缺血再灌注大鼠脑微血管内皮细胞间黏附分子-1和P-选择素表达的影响[J].中华物理医学与康复杂志,2007,29(11):734-737.
    [40]Mergenthaler P, Dirnagl U, Meisel A. Pathophysiology of stroke:Lessons from animal models[J]. Metabolic Brain Disease,2004,19(3-4):151-167.
    [41]Yagi K, Kitazato K T, Uno M, et al. Edaravone, a free radical scavenger, inhibits MMP-9-related brain hemorrhage in rats treated with tissue plasminogen activator.[J]. Stroke; a journal of cerebral circulation,2009,40(2):626-631.
    [42]Chang R C, Chiu K, Ho Y S, et al. Modulation of neuroimmune responses on glia in the central nervous system:implication in therapeutic intervention against neuroinflammation.[J]. Cell Mol Immunol,2009,6(5):317-326.
    [43]Sun D, Wekerle H. la-restricted encephalitogenic T lymphocytes mediating EAE lyse autoantigen-presenting astrocytes.[J]. Nature,1986,320(6057):70-72.
    [44]Fan L, Young P R, Barone F C, et al. Experimental brain injury induces differential expression of tumor necrosis factor-alpha mRNA in the CNS.[J]. Brain Res Mol Brain Res,1996,36(2):287-291.
    [45]Rostworowski M, Balasingam V, Chabot S, et al. Astrogliosis in the neonatal and adult murine brain post-trauma:elevation of inflammatory cytokines and the lack of requirement for endogenous interferon-gamma.[J]. J Neurosci,1997,17(10):3664-3674.
    [46]Floresco S B. Dopaminergic regulation of limbic-striatal interplay.[J]. J Psychiatry Neurosci,2007,32(6):400-411.
    [47]Suzuki K, Kumanogoh A, Kikutani H. Semaphorins and their receptors in immune cell interactions.[J]. Nat Immunol,2008,9(1):17-23.
    [48]高扬,洪礼传,孔祥茜,等.免疫源性IL-1在神经免疫调节网络传入通路中的作用[J].中国神经免疫学和神经病学杂志,2009,16(3):161-165.
    [49]Quan N, Banks W A. Brain-immune communication pathways.[J]. Brain Behav Immun,2007,21(6):727-735.
    [50]Dirnagl U, Schwab J M. Brain-immune interactions in acute and chronic brain disorders.[J]. Neuroscience,2009,158(3):969-971.
    [1]Del Z G. Inflammation and the neurovascular unit in the setting of focal cerebral ischemia[J]. Neuroscience,2009,158(3):972-982.
    [2]Watanabe H, Abe H, Takeuchi S, et al. Protective effect of microglial conditioning medium on neuronal damage induced by glutamate[J]. Neurosci Lett,2000,289(1): 53-56.
    [3]Schroeter M, Jander S, Huitinga I, et al. Phagocytic response in photochemically induced infarction of rat cerebral cortex. The role of resident microglia[J]. Stroke,1997, 28(2):382-386.
    [4]Stevens S L, Bao J, Hollis J, et al. The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice[J]. Brain Res, 2002,932(1-2):110-119.
    [5]Stevens S L, Bao J, Hollis J, et al. The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice[J]. Brain Res, 2002,932(1-2):110-119.
    [6]Zheng Z, Yenari M A. Post-ischemic inflammation:molecular mechanisms and therapeutic implications[J]. Neurol Res,2004,26(8):884-892.
    [7]Li G Z, Zhong D, Yang L M, et al. Expression of interleukin-17 in ischemic brain tissue[J]. Scand J Immunol,2005,62(5):481-486.
    [8]Davies C A, Loddick S A, Toulmond S, et al. The progression and topographic distribution of interleukin-lbeta expression after permanent middle cerebral artery occlusion in the rat[J]. J Cereb Blood Flow Metab,1999,19(1):87-98.
    [9]Clark W M, Rinker L G, Lessov N S, et al. Lack of interleukin-6 expression is not protective against focal central nervous system ischemia[J]. Stroke,2000,31(7): 1715-1720.
    [10]Murakami Y, Saito K, Hara A, et al. Increases in tumor necrosis factor-alpha following transient global cerebral ischemia do not contribute to neuron death in mouse hippocampus[J]. J Neurochem,2005,93(6):1616-1622.
    [11]Offner H, Subramanian S, Parker S M, et al. Experimental stroke induces massive, rapid activation of the peripheral immune system[J]. J Cereb Blood Flow Metab,2006, 26(5):654-665.
    [12]Zhang R L, Chopp M, Zaloga C, et al. The temporal profiles of ICAM-1 protein and mRNA expression after transient MCA occlusion in the rat[J]. Brain Res,1995,682(1-2): 182-188.
    [13]Kelly M A, Shuaib A, Todd K G. Matrix metalloproteinase activation and blood-brain barrier breakdown following thrombolysis[J]. Exp Neurol,2006,200(1): 38-49.
    [14]Pfefferkorn T, Rosenberg G A. Closure of the blood-brain barrier by matrix metalloproteinase inhibition reduces rtPA-mediated mortality in cerebral ischemia with delayed reperfusion[J]. Stroke,2003,34(8):2025-2030.
    [15]Gidday J M, Gasche Y G, Copin J C, et al. Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia[J]. Am J Physiol Heart Circ Physiol,2005,289(2): H558-H568.
    [16]Garau A, Bertini R, Colotta F, et al. Neuroprotection with the CXCL8 inhibitor repertaxin in transient brain ischemia[J]. Cytokine,2005,30(3):125-131.
    [17]Vemuganti R, Dempsey R J, Bowen K K. Inhibition of intercellular adhesion molecule-1 protein expression by antisense oligonucleotides is neuroprotective after transient middle cerebral artery occlusion in rat[J]. Stroke,2004,35(1):179-184.
    [18]Khan M, Jatana M, Elango C, et al. Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke[J]. Nitric Oxide,2006,15(2):114-124.
    [19]Justicia C, Martin A, Rojas S, et al. Anti-VCAM-1 antibodies did not protect against ischemic damage either in rats or in mice[J]. J Cereb Blood Flow Metab,2006,26(3): 421-432.
    [20]郭永明,梁宪如,杜元灏,等.醒脑开窍针法对局灶性脑缺血大鼠脑组织及血清IL-1p含量的影响[J].上海针灸杂志,2004(8):35-37.
    [21]孔立红,刘胜洪,毛娟娟,等。电针对脑缺血大鼠NF-KB及TNF-a表达的影响[J]中国康复医学杂志,2009(8):711-714.
    [1]Wang X, Lee S R, Arai K, et al. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator[J]. Nature Medicine,2003,9(10): 1313-1317.
    [2]Lo E H, Dalkara T, Moskowitz M A. Mechanisms, challenges and opportunities in stroke.[J]. Nat Rev Neurosci,2003,4(5):399-415.
    [3]Rosell A, Ortega-Aznar A, Alvarez-Sabin J, et al. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke.[J]. Stroke, 2006,37(6):1399-1406.
    [4]Xue M, Yong V W. Matrix metalloproteinases in intracerebral hemorrhage[J]. Neurological Research,2008,30(8):775-782.
    [5]Anthony D C, Ferguson B, Matyzak M K, et al. Differential matrix metalloproteinase expression in cases of multiple sclerosis and stroke.[J]. Neuropathol Appl Neurobiol,1997,23(5):406-415.
    [6]Zhao B Q, Wang S, Kim H Y, et al. Role of matrix metalloproteinases in delayed cortical responses after stroke[J]. Nature Medicine,2006,12(4):441-445.
    [7]Yagi K, Kitazato K T, Uno M, et al. Edaravone, a free radical scavenger, inhibits MMP-9-related brain hemorrhage in rats treated with tissue plasminogen activator. [J]. Stroke; a journal of cerebral circulation,2009,40(2):626-631.
    [8]Wang G, Guo Q, Hossain M, et al. Bone marrow-derived cells are the major source of MMP-9 contributing to blood-brain barrier dysfunction and infarct formation after ischemic stroke in mice.[J]. Brain Res,2009,1294:183-192.
    [9]Nagase H. Activation mechanisms of matrix metalloproteinases.[J]. Biol Chem, 1997,378(3-4):151-160.
    [10]Asahi M, Wang X, Mori T, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia[J]. Journal of Neuroscience,2001,21(19):7724-7732.
    [11]Justicia C, Panes J, Sole S, et al. Neutrophil Infiltration Increases Matrix Metalloproteinase-9 in the Ischemic Brain after Occlusion/Reperfusion of the Middle Cerebral Artery in Rats[J]. Journal of Cerebral Blood Flow and Metabolism,2003, 23(12):1430-1440.
    [12]Justicia C, Panes J, Sole S, et al. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats.[J]. J Cereb Blood Flow Metab,2003,23(12):1430-1440.
    [13]Planas A M, Sole S, Justicia C, et al. E stimation of gelatinase content in rat brain:effect of focal ischemia.[J]. Biochem Biophys Res Commun,2000,278(3):803-807.
    [14]Garcia J H, Liu K F, Yoshida Y, et al. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat).[J]. Am J Pathol,1994,144(1):188-199.
    [15]Helbecque N, Hermant X, Cottel D, et al. The role of matrix metalloproteinase-9 in dementia.[J]. Neurosci Lett,2003,350(3):181-183.
    [16]周敏,黄绍光,万欢英,等.中国南方汉族人MMP-9基因多态性与COPD易感性的关系[J].上海第二医科大学学报,2004,24(2):81-84.
    [17]唐礼江,陈晓锋,朱敏,等.基质金属蛋白酶-9基因多态性与急性冠状动脉综合征的关联研究[J].中华医学遗传学杂志,2005,22(3):313-316.
    [18]Libby P. Changing concepts of atherogenesis.[J]. J Intern Med,2000,247(3): 349-358.
    [19]Castellanos M, Leira R, Serena J, et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke[J]. Stroke,2003,34(1): 40-45.
    [20]Montaner J, Alvarez-Sabin J, Molina C A, et al. Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke.[J]. Stroke, 2001,32(12):2762-2767.
    [21]Tejima E, Zhao B Q, Tsuji K, et al. Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage.[J]. J Cereb Blood Flow Metab, 2007,27(3):460-468.
    [22]Greene J, Wang M, Liu Y E, et al. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4.[J]. J Biol Chem,1996,271(48):30375-30380.
    [23]Ostrowski R P, Jadhav V, Chen W, et al. Reduced matrix metalloproteinase-9 activity and cell death after global ischemia in the brain preconditioned with hyperbaric oxygen.[J]. Acta neurochirurgica. Supplement,2010,106:47-49.
    [24]Yang Y, Candelario-Jalil E, Thompson J F, et al. Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia[J]. Journal of Neurochemistry,2010,112(1):134-149.
    [25]Cunningham L A, Wetzel M, Rosenberg G A. Multiple roles for MMPs and TIMPs in cerebral ischemia.[J]. Glia,2005,50(4):329-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700