聚乙二醇(PEG)作为绿色反应介质的若干有机反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿色化学已经成为21世纪学术领域和工业研究的中心话题,发展对环境友好、清洁的合成方法成是当今有机化学的目标之一,开发无毒无害的有机合成溶剂越来越引起大家的关注。
     聚乙二醇(PEG)和它的单甲醚化合物是一类价廉、热稳定性高、可循环使用、具备相转移性能并且无毒的介质。PEG在生物学上广泛应用于药物释放和生物偶合的诊断型工作,虽然目前不是一种广泛应用的溶剂介质,但是也有一些成功应用于各种各类化学反应的实例。本论文主要围绕以聚乙二醇为溶剂介质的绿色有机合成反应展开研究,主要内容和结果如下:
     1、研究了以PEG为介质的N-取代亚胺类化合物合成方法。亚胺类化合物是一种广泛应用于生物医药、合成化学和聚合物化学的重要化合物。本文采用两种方法合成该类化合物,一种是丁二酸酐、邻苯二甲酸酐和胺类的直接缩合,另一种是通过亚胺类杂环化合物和卤代物反应得到。两种方法都取得了较好的结果:具有反应时间短、产率高和操作简便等优点,聚乙二醇可以循环使用而不影响反应的效果。
     2、发明了一种以PEG为介质的酰胺直接合成法。本文研究了用芳香醛和芳香胺、脂肪胺在氧化剂条件下合成相应的酰胺类化合物的方法,筛选了多种氧化剂,最终选择了PEG-次氯酸钠和硫酸叔丁基氢铵这种氧化体系,使用该体系进行反应的结果较好,反应条件温和,易于操作,产率可观。
     3、研究了以PEG为介质的1,4-二氢吡啶类衍生物的合成方法。1,4-二氢吡啶类衍生物是应用于生物学和医学上的重要化合物,是制备多种药物的中间体。本文采用经典的三组分在PEG介质中进行Hantzsch反应,无需其他任何催化剂,反应的结果非常好,产率极高,易操作且PEG可以循环使用。
     4、研究了以PEG为介质的经典Michael加成反应合成p-胺基羰基、氰基化合物的方法,这两类化合物具有广泛的生物与药用活性。本文以PEG-400为反应介质,由苄胺、脂肪胺和芳香胺对α,β-不饱和羰基化合物、氰基化合物在室温下进行碳氮键的Michael加成。该方法的突出优点为:PEG作为相转移性溶剂既经济安全且环保可循环使用,反应条件温和,产率高。
Green chemistry is becoming a central issue in both academic and industrial research in the21st century, and the development of environmentally benign and clean synthetic procedures has become the goal of present day organic synthesis. Organic reactions without the use of harmful organic solvents are now of great interest in organic synthesis.
     PEG and its monomethyl ethers are inexpensive, thermally stable, recoverable, and nontoxic media for phase-transfer catalysts. PEG, a biologically acceptable polymer used extensively in drug delivery and in bioconjugates as tool for diagnostics, has hitherto not been widely used as a solvent medium but has been used as a support for various transformations. In this dissertation, we studied the green organic reaction by using PEG as the solvent medium, the content and results of the research as following:
     1. The synthesis of N-substituted imide by using PEG as the solvent medium. Imide derivatives are compounds of considerable interest due to their biological properties and their interest as intermediates in synthesis and in polymer chemistry. Two procedures were used to synthesis these imides:one is the directive condensation by the reactions of succinic anhydrides or phthalic anhydrides with amines;the other one is the substitution by the reaction of nitrogen heterocycles with halides, and both methods were easy-worked with excellent yields and short reaction times respectively, and PEG could be recyclable.
     2. A directly synthetic method of amides was explored. Amide derivatives are important compounds in organic synthesis and medical industry. They were obtained by directly oxidative of aromatic aldehydes with aromatic amines or aliphatic amines. The best oxidant system (PEG-NaOCl/Bu4NHSO4) was selected from several oxidant systems, the results of the reactions could get considerable yields, the reaction condition was mild and easy to work.
     3.1,4-Dihydropyridine derivatives exhibit a large range of biological activities. We explored a protocol by using Hantzsch condensation of ethyl (methyl) acetoacetate and aromatic aldehydes in PEG-400with ammonium acetate, this reaction needed not any other catalyst. The results were really excellent, high yields, PEG was recyclable.
     4. We developed an efficient and green approach to β-amino carbonyl and nitrile compounds which have attracted considerable attention in organic synthesis as to their wide range of biological activities and pharmacological properties. Room temperature Michael additions of various aliphatic and aromatic amines to α, β-unsaturated esters and acrylonitrile to form C-N bond in PEG-400which as a phase transfer solvent was economic, safe, and environment-friendly. Simple experimental procedure, mildness of the conversion, high yields, recyclable.
引文
1. Harris J M. Poly(ethylene glycol) Chemistry:Biotechnical and Biomedical Applications. New York:Plenum Press,1992.
    2. Starks C M, Liotta C L, Halpern M. Phase-Transfer Catalysis:Fundamentals Applications and Industrial Perspectives. New York:Chapman & Hall,1994,158.
    3. Hatti-Kaul R. Aqueous two-phase systems. A general overview. Mol. Biotechnol., 2001,19,269-277.
    4. Hatti-Kaul R. Aqueous Two-Phase systems. Methods and Protocols. Vol 11, NJ, Human Press,2000,411.
    5. Rogers R D, Eiteman M A. Aqueous Biphasic Separations:Biomolecules to Metal Ions. New York:Plenum Press,1995.
    6. Rogers R D, Seddon K R. Effect of Room Temperature Ionic Liquids as Replace-ments for Volatile Organic Solvents in Free Radical Polymerization. ACS Symposium Series,2002,818,125-133
    7. Harris J M. Polyethylene Glycol:Chemistry and Biological Application, Plenum Press, New York,1992, p.3;
    8. Harris J M. Poly(ethylene Glycol) Chemistry, Biotechnological and Biomedical Applications, ed. ACS Books, Washington, DC,1997.
    9. Kochi M. Green Reaction Media for Organic Synthesis, Blackwell, Oxford,2005, 1-187.
    10. Rogers R D, Bond A H, Aguinaga S, Reyes A. J. Am. Chem. Soc.,1992,114, 2967.
    11. Willauer H D, Huddleston J G, Rogers R D. Solvent Properties of Aqueous Biphasic Systems Composed of Polyethylene Glycol and Salt Characterized by the Free Energy of Transfer of a Methylene Group between the Phases and by a Linear Solvation Energy Relationship. Ind. Eng. Chem. Res.,2002,41, 2591-2601.
    12. Willauer H D, Huddleston J G, Rogers R D. Solute Partitioning in Aqueous Biphasic Systems Composed of Polyethylene Glycol and Salt:The Partitioning of Small Neutral Organic Species. Ind. Eng. Chem. Res.,2002,41,1892-1904.
    13. Huddleston J G, Willauer H D, Rogers R D. The solvatochromic properties, α, β, and π*, of PEG-salt aqueous biphasic systems. Phys. Chem. Chem. Phys.,2002, 4,4065-4070.
    14. Guo Z, Huddleston J G, Rogers R D, April G C. Reaction parameter effects on metal-salt-catalyzed aqueous biphasic pulping systems." Ind. Eng. Chem. Res., 2003,42,248-253.
    15. Chen J, Spear S K, Huddleston J G, Holbrey J D, Rogers R D. Application of polyethylene glycol-based aqueous biphasic reactive extraction to the catalytic oxidation of cyclic olefins. J. Chromatogr. B:Anal. Techn. Biomed., Life Sci., 2004,807,145-149.
    16. Chen J, Spear S K, Huddleston J G, Holbrey J D, Swatloski R P, Rogers R D. Application of poly(ethylene glycol)-based aqueous biphasic systems as reaction and reactive extraction media. Ind. Eng. Chem. Res.,2004,43,5358-5364
    17. Chen J, Spear S K, Huddleston J G, Rogers R D. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem.,2005,7, 64-82.
    18. Moody, M. L.; Willauer, H. D.; Griffin, S. T.; Huddleston, J. G.; Rogers, R. D. Solvent Property Characterization of Poly(ethylene glycol)/Dextran Aqueous Biphasic Systems Using the Free Energy of Transfer of a Methylene Group and a Linear Solvation Energy Relationship. Ind. Eng. Chem. Res.,2005,44, 3749-3760.
    19. Albertson P A. Partition of Cell Particles and Macromolecules.3rd ed, New York: Wiley,1986.
    20. Harris J M. Polyethylene Glycol Chemistry:Biotechnical and Biomedical Applications. New York and London:Plenum Press,1992.
    21. Naik S D, Doraiswamy L K. Phase transfer catalysis:Chemistry and engineering. AIChE J.,1998,44,612-646.
    22. Herold D A, Keil K, Bruns D E. Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochem Pharmacol,1989,38,13-11.
    23. Molineux G. Pegylation:engineering improved pharmaceuticals for enhanced degradation. Cancer Treat Rev,,2002,28,13-16.
    24. Bhadra D, Bhadra S, Jain P, Jain N K. Pegnology:a review of PEG-ylated systems. Pharmazie,2002,57,5-11.
    25. Hino M, Yamane T, Kuwaki T, Kono T, Kitagawa S, Tatsumi N. Successful treatment of pustulosis palmaris et plantaris with-NCBI. Int. J. Hematol,1998, 68,1-12.
    26. Roberts M J, Bentley M D, Harries J M. hydrophilic poly(ethylene oxide) B-blocks as a candidate for in situ forming hydrogel delivery systems for proteins. Adv. Drug. Deliv. Rev.,2002,54,99-134.
    27. Haimov A, Neumann R. Polyethylene glycol as a non-ionic liquid solvent for polyoxometalate catalyzed aerobic oxidation. Chem. Commum.,2002,876-877.
    28. Blanton J R. The Selective Reduction of Aldehydes Using Polyethylene Glycol-Sodium Borohydride Derivatives as Phase Transfer Reagents. Syn. Commun.,1997,27,2093-2012.
    29. Santaniello E, Manzocchi A, Sozzani P. Polyetylene Glycols as host solvents: applications to organic synthesis. Tetrahedron,1979,20,4581-4582.
    30. Kjellander R. Phase separation of non-ionic surfactant solutions. A treatment of the micellar interaction and form. J. Chem. Soc., Faraday Trans.2,1982,78, 2025-2042.
    31. Carlsson M, Hallen D, Linse P. Mixing enthalpy and phase separation in a poly(propylene oxide)-water system. J. Chem. Soc., Faraday Trans.,1995,91, 2081-2085.
    32. Karlstroem G A new model for upper and lower critical solution temperatures in polyethylene oxide) solutions. J. Phys. Chem.,1985,89(23):4962-4964.
    33. Zaslavsky B Y. Aqueous Two-Phase Partitioning:Physical Chemistry and Bioanalytical Applications. New York:Marcel Dekker,1995.
    34. Johansson H O, Karlstrom G, Tjerneldb F, Haynes Charles. Driving forces for phase separation and partitioning in aqueous two-phase systems. J. Chromatogr. B. Biomed. Appl.,1998,711,3-17.
    35. Guan Y, Treffry T E, Lilley T H. Application of a statistical geometrical theory to aqueous two-phase systems. J. Chromatogr. A.,668,31-45.
    36. Walter H, Johansson G. Aqueous Two-Phase System. New York:Academic Press, 1994(228).
    37. Gutowski K E, Broker G A, Willauer H D, Huddleston J. G, Swatloski R P, Holbrey J D, Rogers R. D. Controlling the Aqueous Miscibility of Ionic Liquids: Aqueous Biphasic Systems of Water-Miscible Ionic Liquids and Water-Structuring Salts for Recycle, Metathesis, and Separations. J. Am. Chem. Soc.,2003,125,6632-6633.
    38. Huddleston J G, Looney T K, Broker G A, Griffin S T, Spear S K, Rogers R D. Comparative Behavior of Poly(ethylene glycol) Hydrogels and Poly(ethylene glycol) Aqueous Biphasic Systems. Ind. Eng. Chem. Res.,2003,42,6088-6095.
    39. Eckert C A, Knutson B L, Debendetti P G. Supercritical Fluids as Solvents for Chemical and Materials processing. Nature,1996,383,313-318.
    40. Yalkowsky S H. Solubility and Solubilization in Aqueous Media. New York: Oxford University Press,1999.
    41. Yalkowsky S H, Banerjee S. Aqueous Solubility:Methods of Estimation for Organic Compounds, New York:Marcel Dekker,1992.
    42. Li C J, Chan T H. Organic syntheses using indium-mediated and catalyzed reactions in aqueous media. Tetrahedron,1999,55,11149-11176.
    43. Zaslavsky B Y, Borvskaya A A, Gulaeva N D, Miheeva L M. Physico-chemical features of solvent media in the phases of aqueous polymer two-phase systems. Biotechnol Bioeng.,1992,40,1-7.
    44. Reichardt C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev., 1994,94,2319-2358.
    45. Neumann R, Sasson Y. The Autoxidation of Nitroalkyl Aromatic Compounds in Base Catalyzed Phase Transfer Catalysis by Polyethylene Glycol under Ultrasonic Radiation. J. Chem. Soc. Chem. Commun.,1985616-617.
    46. Neumann R, Sasson Y. An Evaluation of Polyethylene Glycol as a Catalyst in Gas-Liquid Phase Transfer Catalysis:A Base Catalyzed Isomerization of Allylbenzene. Journal of Molecular Catalysis,1985,33,201-208.
    47. George W G, Deepa M G, Rose A S. Binding profiles for oligoethylene glycols and oligoethylene glycol monomethyl ethers and an assessment of their abilities to catalyze phase-transfer reactions. J. Org. Chem.,1983,48 (17):2837-2842.
    48. Sheftel V O. Indirect Food Additives and Polymers:Migration and Toxicology. Boca Raton:Lewis Publishers Inc,2000,1114.
    49. Leininger N F, Clontz R, Gainer J L, Kirwan D J. Polyethylene Glycol-Water and Polypropylene Glycol-Water Solutions as Benign Reaction Solvents. Chem. Eng. Commun.,2003,190,431-443.
    50. Sauvagnat B, Lamaty F, Lazaro R, Martinez J. Polyethylene glycol) as solvent and polymer support in the microwave assisted parallel synthesis of aminoacid derivatives. Tetrahedron Letters,2000,41,6371-6375.
    51. Chandrasekhar S, Narsihmulu C, Sultana S S, Reddy N R. Polyethylene glycol) (PEG) as a Reusable Solvent Medium for Organic Synthesis. Application in the Heck Reaction. Org. Lett.,2002,4,4399-4401.
    52. David J H, Philip G J. Liquid Poly(ethylene glycol) and Supercritical Carbon Dioxide:A Benign Biphasic Solvent System for Use and Recycling of Homogeneous Catalysts. J. Am. Chem. Soc.,2003,125 (19):5600-5601.
    53. Brett A R, Gareth W V, C L R, Scott J L. Solvent-free synthesis of calix[4]resorcinarenes. Green Chem.,2001,3,280-284.
    54. Santaniello E, Mathias L J, Carraher J R. Crown Ethers and Phase Transfer Catalysis in Polymer Science. New York:Plenum Press,1984,39.
    55. Badone D, Jommi G, Pagliarin R, Tavecchia P. Use of Polyethylene Glycol in the Synthesis of Alkyl Fluorides from Alkyl Sulfonates. Synthesis,1987,10, 920-921.
    56. Suzuki N, Azuma T, Kaneko Y, Izawa Y, Tomioka H, Nomoto T. Diazotization and Sandmeyer reactions of arylamines in poly(ethylene glycol)-methylene dichloride:usefulness of PEG in synthetic reactions. J. Chem. Soc., Perkin Trans. 1,1987,645-647.
    57. Vasudevan V N, Rajender S V. Microwave-accelerated Suzuki cross-coupling reaction in polyethylene glycol (PEG). Green Chem.,2001,3,146-148.
    58. Chandrasekhar S, Narsihmulu C, Sultana S S, Reddy N R. Osmium tetroxide in poly(ethylene glycol)(PEG):a recyclable reaction medium for rapid asymmetric dihydroxylation under Sharpless conditions. Chem. Commun.,2003,1716-1718.
    59. Wang X C, Zheng L, Li M G, Wei T B, Chen J C. Phase Transfer Catalyzed Syntheses of Diaryl 1,2-Phenylene Dioxydiacetates and N-Aryl-5-(2-Chlorophenyl)-2-Furamides. Synth. Commun.,2000,30(12): 2083-2089.
    60. Wang X, Wei T, Chen J, Li J. Phase Transfer Catalyzed Synthesis of N, N-Diaryl-1,2-phenylene Dioxydiacetamides. Synth. Commun.,1996,26, 2765-2773.
    61. Bartsch R A, Yang I W. Polyethylene glycol as a phase transfer catalyst for aryldiazonium salt reactions. Tetrahedron Letters,1979,20(27):2503-2504.
    62. Davidson R S, Patel A M, Safdar A. The application of ultrasound to the n-alkylation of amines using phase transfer catalysis. Tetrahedron Letters,1983, 24(52):5907-5910.
    63. Wei T B, Zhang Y M. Facile and effective synthesis of A-aryl-2-furancarboxamides derivatives under the co- ndition of phase transfer catalysis. Synth. Commun.,1999,29(17):2943-2947.
    64. Wei T B, Chen J H, Zhang Y M, Wang L L. Phase Transfer Catalyzed Synthesis of 1-Aryloxyacetyl-4-(5-aryl-2-furoyl)-thiosemicarbazide Derivatives. Synth. Commun.,1995,25(12):1885-1892.
    65. Kavitake B P, Salunkhe M M, Wadgaonkar P P. Efficient Method for Synthesis of Methylene Diesters Using Polyethylene Glycol as a Phase Transfer Catalyst. Synth. Commun.,1997,27(10):1703-1710.
    66. Harris J M, Hundley Nedra H, Shannon T G, Struck E C. Polyethylene glycols as soluble, recoverable, phase-transfer catalysts. J. Org. Chem.,1982,47 (24): 4789-4791.
    67. Zucchi C, Palyi G, Galamb V, Sampar-Szerencses E, MarkoL, Li P, Alper H. Cobalt-Catalyzed Carbonylation of Benzyl Halides Using Polyethylene Glycols as Phase-Transfer Catalysts. Organometallics,1996,15 (14):3222-3231.
    78. Kjellander R, Florin E. Water structure and changes in thermal stability of the system poly(ethylene oxide)-water. J. Chem. Soc., Faraday Trans.,1,1981,77, 2053-2077.
    69. Santaniello E, Fiecchi A, Manzocchi A, Ferraboschi P. Reductions of esters, acyl halides, alkyl halides, and sulfonate esters with sodium borohydride in polyethylene glycols:scope and limitation of the reaction. J. Org. Chem.,1983, 48 (18):3074-3077.
    70. Halpern M E. Phase-Transfer Catalysis:Mechanisms and Syntheses. Ed., Washington:ACS Symposium Series,1997,659.
    71. Neumann R, Sasson Y. The autoxidation of alkylnitroaromatic compounds in base-catalysed phase-transfer catalysis by polythylene glycol under ultrasonic radiation. J. Chem. Soc., Chem. Commun.,1985,616-617.
    72. Lee J T, Alper H. Lewis acid promoted, cobalt-catalyzed, and phase-transfer-catalyzed carbonylation of iodo arenes and iodo alkanes. Organometallics,1990,9(12):3064-3066.
    73. Neumann R, Sasson Y. Base-catalyzed autoxidation of weak carbon acids using polyethylene glycols as phase-transfer catalysts. J. Org. Chem.,1984,49(7): 1282-1284.
    74. Li P, Alper H. Poly(ethylene glycol) promoted reactions of vinylic dibromides. Dehydrohalogenation and palladium(0)-catalyzed formal oxidative homologation. J. Org. Chem.,1986,51(23):4354-4356.
    75. Wang C H, Alper H. Phase-transfer-catalyzed conversion of alkynes to lactones induced by manganese carbonyl complexes. J. Org. Chem.,1986,51(2): 273-275.
    76. Zupancic B G, Kokalj M. Catalytic activity of polyethylene glycols in the reduction of carbonyl compounds under phase-transfer catalyzed conditions. Synth. Commun.,1982,12,881-886.
    77. Neumann R, Sasson Y. An Evaluation of Polyethylene Glycol as a Catalyst in Gas-Liquid Phase Transfer Catalysis:A Base Catalyzed Isomerization of Allylbenzene. Journal of Molecular Catalysis,1985,33,201-208.
    78. Chandrasekhar S, Narsihmulu C, Chandrashekar G, Shyamsunder T. Pd/CaCO3 in liquid poly(ethylene glycol) (PEG):an easy and efficient recycle system for partial reduction of alkynes to cis-olefins under a hydrogen atmosphere. Tetrahedron Letters,2004,45 (2004):2421-2423.
    79. Liu R X, Cheng H Y, Wang Q, Wu C Y, Ming J, Xi C Y, Yu Y C, Cai S X, Zhao F Y, Arai M. Selective hydrogenation of unsaturated aldehydes in a poly(ethylene glycol)/compressed carbon dioxide biphasic system. Green Chem.,2008,10, 1082-1086.
    80. Chandrasekhar S, Narsihmulu C, Sultana S S, R N R. Osmium tetroxide in poly(ethylene glycol)(PEG):a recyclable reaction medium for rapid asymmetric dihydroxylation under Sharpless conditions. Chem. Commun.,2003,1716-1717.
    81. Santaniello E, Fiecchi A, Manzocchi A, Ferraboschi P. Reductions of esters, acyl halides, alkyl halides, and sulfonate esters with sodium borohydride in polyethylene glycols:scope and limitation of the reaction. J. Org. Chem.,1983, 48(18):3074-3077.
    82. Angeletti E, Tundo P, Venturello P. Gas-liquid phase-transfer synthesis of phenyl ethers and sulphides with carbonate as base and Carbowax as catalyst. J. Chem. Soc., Perkin Trans.,1,1982,1137-1141.
    83. Slaoui S, Goaller R L, Pierre J L, Luche J L. Activation nucleophile par les polyoxydes d'ethylene. Tetrahedron Letters,1982,23(16):1681-1684.
    84. Sun J, Yan C G. Facile Synthesis of Furfuryl Diethers via Solid—Liquid Phase Transfer System. Synth. Commun.,2002,32,1735-1739.
    85. Wei T B, Cheng J H, Wang X C, Zhang Y M. Phase transfer catalyzed synthesis of diaryl 1,4-phenylene deoxydiacetate. Synth. Commun.,1996,26(7):1447-1454.
    86. Okamoto M, Taniguchi Y. Wacker-type oxidation in vapor phase using a palladium-copper chloride catalyst in a liquid polymer medium supported on silica gel. Journal of Catalysis,2009,261(2009):195-200.
    87. Wang J Q, He L N, Miao C X. Polyethylene glycol radical-initiated oxidation of benzylic alcohols in compressed carbon dioxide. Green Chem.,2009,11,1013-1017.
    88. Hou Z S, Theyssen N, Leitner W. Palladium nanoparticles stabilised on PEG-modified silica as catalysts for the aerobic alcohol oxidation in supercritical carbon dioxide. Green Chem.,2007,9,127-132.
    89. Qiao R Z, Zhang Y, Hui X P, Xu P F, Zhang Z Y, Wang X Y, Wang Y L. A green route to the synthesis of azo compounds. Green Chem.,2001,3,186-188.
    90. Kumar R, Chaudhary P, Nimesh S, Chandra R. Polyethylene glycol as a non-ionic liquid solvent for Michael addition reaction of amines to conjugated alkenes. Green Chem.,2006,8,356-358.
    91. Kamal A, Reddy D R, Rajendar. A simple and green procedure for the conjugate addition of thiols to conjugated alkenes employing polyethylene glycol (PEG) as an efficient recyclable medium. Tetrahedron Letters,2005,46 (2005): 7951-7953.
    92. Firouzabadi H, Iranpoor N, Abbasi M. A facile generation of C-S bonds via one-pot, odourless and efficient thia-Michael addition reactions using alkyl, aryl or allyl halides, thiourea and electron-deficient alkenes in wet polyethylene glycol (PEG 200) under mild reaction conditions. Tetrahedron,2009,65(27): 5293-5301.
    93.丁益萍,丁一,沈宗旋,李斌,张雅文。聚乙二醇(400)中的不对称Baylis-Hillman反应。有机化学,2006,26(9):1306-1308.
    94. Chandrasekhar S, Narsihmulu C, Saritha B, Sultana S S. Poly(ethyleneglycol) (PEG):a rapid and recyclable reaction medium for the DABCO-catalyzed Baylis-Hillman reaction. Tetrahedron Letters,2004,45(2004):5865-5867.
    95. Chandrasekhar S, Saritha B, Jagadeshwar V, Narsihmulu C, Vijay D, Sarma D G, Jagadeesh B. Hydroxy-assisted catalyst-free Michael addition-dehydroxylation of Baylis-Hillman adducts in poly(ethylene glycol). Tetrahedron Letters,2006, 47(2006):2981-2984.
    96. Chandrasekhar S, Narsihmulu C, Reddy N R, Sultana S S. Asymmetric aldol reactions in poly(ethylene glycol) catalyzed by L-proline. Tetrahedron Letters, 2004,45(23):4581-4582.
    97. Chandrasekhar S, Reddy N Ramakrishna, Sultana S S, Narsihmulu C, Reddy K V. L-Proline catalysed asymmetric aldol reactions in PEG-400 as recyclable medium and transfer aldol reactions, Tetrahedron,2006,62(2-3):338-345.
    98. Andreae M R M, Davis A P. Heterogeneous catalysis of the asymmetric aldol reaction by solid-supported proline-terminated peptides. Tetrahedron: Asymmetry,2005,16(2005):2487-2492.
    99. Kumar M A, Stephen Babu M F, Srinivasulu K, Kiran Y B, Reddy C S. Polyethylene glycol in water:A simple and environment friendly media for Strecker reaction. Journal of Molecular Catalysis A:Chemical,2007,265(2007): 268-271.
    100. Chandrasekhar S, Narsihmulu C, Sultana S S, Reddy R N. Polyethylene glycol) (PEG) as a Reusable Solvent Medium for Organic Synthesis. Application in the Heck Reaction. Org. Lett.,2002,4(25):4399-4401.
    101. Luo C C, Zhang Y H, Wang Y G. Palladium nanoparticles in poly(ethyleneglycol) the efficient and recyclable catalyst for Heck reaction. Journal of Molecular Catalysis A:Chemical,2005,229,7-12.
    102. Jiang N, Ragauskas A J. Environmentally friendly synthesis of biaryls:Suzuki reaction of aryl bromides in water at low catalyst loadings. Tetrahedron Letters, 2006,47(2006):197-200.
    103. Kim J W, Kim J H, Lee D H, Lee Y S. Amphiphilic polymer supported N-heterocyclic carbene palladium complex for Suzuki cross-coupling reaction in water. Tetrahedron Letters,2006,47(2006):4745-4748.
    1. Da S A, Primofiore G, Da S F, Simorini F, La M C, Martinelli A, Boldrini E. Efficient Electrochemical Synthesis, Antimicrobial and Antiinflammatory Activity of 2-amino-5-substituted-1,3,4-oxadiazole Derivatives Eur. J. Med. Chem.,1996, 31,49-55.
    2. Langmuir M E, Yang J R, Moussa A M, Laura R, Lecompte K A. New naphthopyranone based fluorescent thiol probes. Tetrahedron Lett.,1995,36, 2989-3992.
    3. Mayer A, Neuenhofer S. Luminescen Labels--More than Just an Alternative to Radioisotopes.Angew. Chem., Int. Ed. Engl.1994,33,1044-1047.
    4. Zentz F, Hellio C, Valla A, De L B, Bremer G, Labia R. Antifouling activities on N-substituted imides:Antimicrobial activities and inhibition of Mytilus edulis phenoloxidase. Marine Biothechnology,2002,4,431-440.
    5. Ohkubo M, Nishimura T, Jona H, Honma T, Morishima H. Practical Synthesis of Indolopyrrolocarbazoles. Tetrahedron,1996,52,8099-8112.
    6. Reddy Y, Kondo S, Toru T, Cleno Y. Lewis Acid and Hexamethyldisilazane-Promoted Efficient Synthesis of N-Alkyl-and N-Arylimide Derivatives. J. Org. Chem.,1997,62,2652-2654.
    7. Iijima T, Suzuki N, Fukuda W, Tomoi M. Toughening of aromatic diamine-cured epoxy resins by modification with N-phenylmaleimide-styrene-p-hydroxystyrene terpolymers. J. Eur. Polym.,1995,31,775-783.
    8. Chapman J M, Vorstad P J, Cocolas G H, Hall I H. Hypolipidemic activity of phthalimide derivatives.2. N-phenylphthalimide and derivatives. J. Med. Chem., 1983,26,237-243.
    9. Hargreaves M K, Pritchard J G, Dave H R. Cyclic carboxylic Monoimides. Chem. Rev.,1970,70,439-469.
    10. Shibata Y, Sasaki K, Hashimoto Y, Iwasaki S. Phenylphthalimides with tumor necrosis factor alpha production-enhancing activity. Chem. Pharm. Bull.,1996,44, 156-162.
    11. Miyachi H, Azuma A, Ogasawara A, Uchimura Watanabe E N, Kobayashi Y, Kato F, Kato M, Hashimoto Y. Novel biological response modifiers:phthalimides with tumor necrosis factor-alpha production-regulating activity. J. Med. Chem., 1997,40,2858-2865.
    12. Vidal T, Petie A, Loupy A, Gedye R N. Re-examination of Microwave-Induced Synthesis of Phthalimides. Tetrahedron,2000,56,5473-5478.
    13. Lima L M, Castro P, Machado A L, Fraga C A M, Lugnier C, Mores V L G. Barrerio E J. Synthesis and anti-inflammatory activity of phthalimide derivatives, designed as new thalidomide analogues. Bioorg. Med. Chem.,2002.10, 3067-3073.
    14. Jayakumar R, Balaji R, Nanjundan S. Studies on copolymers of 2-(N-phthalimido) ethyl methacrylate with methyl methacrylate. Eur. Poly. J.,2000,36,1659-1666.
    15. Hargreaves M K, Pritchard J G, Dave H R. Cyclic carboxylic Monoimides. Chem. Rev.,1970,70,439-469.
    16. Blicq S, Danze P M, Dumur V, Formstecher P, Dautrevaux M. Inhibition of glucocorticoid receptor transformation, subunit dissociation, and temperature-dependent inactivation by various N-substituted maleimides. Biochem.,1988, 27,8436-8442;
    17. Bailleux V, Vallee L. Nuyts J P, Vamecq J J. Synthesis and anticonvulsant activity of some N-phenylphthalimides. Chem. Pharm. Bull.,1994,42, 1817-1821.
    18. Mhaske S B, Argade N P. Base-Induced Alcoholysis of N-Arylmaleimides:Facile in situ Oxa-Michael Addition to Alkyl Maleanilates:Two-Step One-Pot Rapid Access to Alkoxysuccinic Acids. Synthesis,2003,863-870.
    19. Chandrasekhar S, Padmaja N. B, Raza A. Solid Phase-Solid State Synthesis of N-alkyl Imides from Anhydrides. Synlett.,1999,1597-1599.
    20. Prapas A G. J. Org. Chem., An Efficient Protocol for the Synthesis of N-Alkyl-and N-Arylimides Using the Lewis Acidic Ionic Liquid Choline Chloride-2ZnCl2. 1959,24,388-345.
    21. Kaml A, Laxman E, Laxman N, Rao N V. Efficient One-Pot Synthesis of N-Substituted Phthalimides/Naphthalimides from Azides and Anhydrides by Iodotrimethylsilane. Tetrahedron Lett.,1998,39,8733-8734.
    22. Aubert M T, Farnier M, Guilard R. Reactivity of iminophosphoranes towards some symmetrical dicarbonyl dichlorides:Syntheses and mechanisms. Tetrahedron,1991,47,53-60.
    23. Walker M A. A High Yielding Synthesis of N-Alkyl Maleimides Using a Novel Modification of the Mitsunobu Reaction. J. Org. Chem.,1995,60,5352-5355.
    24. Bogdal D, Pielichowski J, Jaskot K. New Synthesis Method of N-Alkylation of Carbazole under Microwave Irradiation in Dry Media. Synth. Commum.,1997,27, 1553-1560.
    25. Mohri K, Suzuki K, Usui M, Isobe K, Tsuda Y. A Convenient Synthesis of Tertiary Amines by Alkylation of Secondary Amines with Alkyl Halides in the Presence of Potassium Hydride and Triethylamine. Chem. Pharm. Bull.,1995,43,159-161.
    26. Saulnier M G, Gribble G W. Modulating Reactivity and Diverting Selectivity in Palladium-Catalyzed Heteroaromatic Direct Arylation J. Org. Chem.1982,47, 757-761.
    27. Liu R, Zhang P, Gan T, Cook M J. Regiospecific Bromination 3-Methylindoles with NBS and Its Application to the Concise Synthesis of Optically Active Unusual Tryptophans Present in Marine Cyclic Peptides. J. Org. Chem.1997,62, 7447-7456.
    28. Kikugawa Y, Miyaka Y. Quaternary Ammonium Salts as Highly Efficient and Green Alkylating Agents for N-Alkylation of Azaheterocycles under Microwave Irradiation. Synthesis,1981,461-462.
    29. Heany H, Ley S V. N-alkylation of indole and pyrroles in dimethyl sulphoxide. J. Chem. Soc, Perkin Trans.1.1973,499-500.
    30.Jeong I Y, Lee W S, Goto S, Sano S, Shiro M. A new synthesis of 3-alkyl-l-isoindolinones. Tetrahedron,1998,54,14437-14454.
    31.Milgrom L R, Dempsey P J F, Yahioglu G.5,10,15,20-tetrakis(N-protected-imidazol-2-yl)porphyrins.Tetrahedron,1996,52,9877-9890.
    32. Lee D A, Hanaa I A, John C V. Polymer-supported alkyl azodicarboxylates for Mitsunobu reactions. J. Am. Chem. Soc.,1989,111,3973-3976.
    33. Rubotton G M, Chabala J C. N-Alkylindoles from the Alkylation of Sodium Indolide triamide:1-Benzylindoie. Org. Synth.,1974,54,60-62.
    34. Wayne C G, David J M. Phase-transfer alkylation of heterocycles in the presence of 18-crown-6 and potassium tert-butoxide. J. Org. Chem.,1980,45,3172-3176.
    35. Hayat S, Choudhary M I, Khan K M, Schumann W, Bayer E. CsF-Celite/Alkyl Halide/CH3CN Combination. Tetrahedron,2001,57,9951-9957.
    36. Chandrasekhar S, Takhi M, Uma G. Solvent Free N-Alkyl and N-Arylimides Preparation from Anhydrides Catalyzed by TaCls-Silica gel. Tetrahedron Lett., 1997,38,8089-8092.
    37. Le Z Chen G, Z C, Hu Y, Zheng Q G. Organic Reactions in Ionic liquids: N-Alkylation of Phthalimide and Several Nitrogen Heterocycles. Synthesis,2004, 208-212.
    38. Le Z G. Chen Z C, Hu Y, Zheng Q G. Organic Reactions in Ionic liquids:ionic liquid-promoted efficient synthesis of N-alkyl and N-arylimides. Synthesis,2004, 995-998;
    39. Le Z Chen G, Z C, Hu Y, Zheng Q G. Organic Reactions in Ionic liquids:ionic liquid-promoted efficient synthesis of N-Alkyl and N-Arylphthalimides. J. Heterocyclic. Chem.,2005,42,735-737.
    40. Dabiri M, Salehi P, Baghbanzadeha M, Shakouri M, Otokesha S, Ekrami T, Doosti R. Efficient and Eco-Friendly Synthesis of Dihydropyrimidinones, Bis(indolyl)-methanes, and N-Alkyl and N-Arylimides in Ionic Liquids. J. Iran. Chem. Soc., 2007,4(4):393-401.
    41. Alaa A M, Abdel A. Novel and versatile methodology for synthesis of cyclic imides and evaluation of their cytotoxic, DNA binding, apoptotic inducing activities and molecular modeling study. European Journal of Medicinal Chemistry,2007,42 (2007):614-626.
    42. Xie Y T, Houb R S, Wang H Min, Kang I J, Chen L C. An Efficient Protocol for the Synthesis of N-Alkyl-a nd N-Arylimides Using the Lewis Acidic Ionic Liquid Choline Chloride-2ZnCl2. Journal of the Chinese Chemical Society,2009,56, 839-842.
    43. Escudero M I, Kremenchuzky L D, Perillo I A, Cerecetto H, Blanco M M. Efficient Cesium Carbonate Promoted N-Alkylations of Aromatic Cyclic Imides Under Microwave Irradiation. Synthesis,2011,571-576.
    44. Langade M M. Efficient one pot synthesis of N-alkyl and N-aryl imides. Der Pharma Chemica.,2011,3(2):283-286.
    45. Vasudevan V N, Rajendra S V. Microwave-accelerated Suzuki cross-coupling reaction in polyethylene. Green Chem.,2001,3,146-148.
    46. Haimov A, Neumann R. Polyethylene glycol as a non-ionic liquid solvent for polyoxometalate catalyzed aerobic oxidation. Chem. Commun.,2002,876-877.
    47. Heiss L, Gais H J. Asymmetric hydrolysis of a meso-diester using pig liver esterase immobilised in hollow fibre ultrafiltration membrane. Tetrahedron Lett., 1995,36,3833-3836.
    48. Chandrasekar S, Narsihmulu C. Shameem S S. Reddy N R. Osmium tetroxide in poly(ethylene glycol)(PEG):a recyclable reaction medium for rapid asymmetric dihydroxylation under Sharpless conditions. Chem. Commun.,2003,1716-1717.
    49. Tanemura K, Suzuki T, Nishida Y, Horaguchi T. Aldol Condensation in Water Using Polyethylene Glycol 400. Chem. Lett.,2005,34.576-577.
    50. Kumar R. Chaudhary P, Nimesh S. Chandra R. Polyethylene glycol as a non-ionic liquid solvent for Michael addition reaction of amines to conjugated alkenes. Green Chem.,2006,8,356-358.
    51. Harris J M. Poly(ethylene Glycol) Chemistry, Biotechnological and Biomedical Applications, ed. Plenum Press, New York,1992, p3; Polyethylene Glycol: Chemistry and Biological Application, ACS Books, Washington, DC.1997.
    52. Dickerson T J, Reed N N, Janda K D. Soluble polymers as scaffolds for recover-able reagents and catalysts. Chem. Rev.,2002,102,3325-3344.
    1. Humphrey J M, Chamberlin A R. Chemical Synthesis of Natural Product Peptides: Coupling Methods for the Incorporation of Noncoded Amino Acids. Chem. Rev., 1997,97,2243-2266.
    2. Kang Y, Chung H, Kim J, Yoon Y.2-Acylpyridazin-3-ones:Novel Mild and Chemoselective Acylating Agents for Amines. Synthesis,2002,733-738.
    3. Azumaya I, Okamoto T, Imabeppu F, Takayanagi H. Simple and convenient synthesis of tertiary benzanilides using dichlorotriphenylphosphorane. Tetrahedron,2003,59,2325-2331.
    4. Wu X, Hu L. Efficient amidation from carboxylic acids and azides via selenocarboxylates:application to the coupling of amino acids and peptides with azides. J. Org. Chem.,2007,72,765-774.
    5. Daniel G, David B, Simon W. Microwave acceleration in DABAL-Me-mediated amide formation. Tetrahedron Lett.,2008,49,5687-5688.
    6. Teichert A, Jantos K, Harms K, Studer A. One-Pot Homolytic Aromatic Substitutions/HWE Olefinations under Microwave Conditions for the Formation of a Small Oxindole Library. Org. Lett.,2004,6,3477-3480.
    7. Naik S, Bhattacharjya G, Talukdar B, Patel B K. Chemoselective Acylation of Amines in Aqueous Media. Eur. J. Org. Chem.,2004,1254-1260.
    8. Shendage D M, Froehlich R, Haufe G. Highly Efficient Stereoconservative Amidation and Deamidation of α-Amino Acids. Org. Lett.,2004,6,3675-3678.
    9. Black D A, Arndtsen B A. General Approach to the Coupling of Organoindium Reagents with Imines via Copper Catalysis. Org. Lett.,2006,8,1991-1993.
    10. Katritzky A R, Cai C, Singh S K. Synthesis and bioassay of improved mosquito repellents predicted from chemical structure. J. Org. Chem.,2006,71,3375-3380.
    11. Fukuoka S, Ryang M, Tsutsumi S. Cobalt-catalyzed homocoupling of terminal alkynes:synthesis of 1,3-diynes. J. Org. Chem.,1971,36,2721-2721.
    12. Uozumi Y, Arii T, Watanabe T. Double carbonylation of aryl iodides with primary amines under atmosphericpressure conditions using the Pd/PPh3/DABCO/THF system. J. Org. Chem.,2001,66,5272-5274.
    13. Namayakkara P, Alper H. Asymmetric Synthesis of a-Aminoamides by Pd-Catalyzed Double Carbohydro-Amination. Chem. Commun.,2003, 2384-2385.
    14. Lin Y S, Alper H. A Novel Approach for the One-Pot Preparation of alpha-Amino. Angew. Chem., Int. Ed.,2001,40,779-781.
    15. Murahashi S I, Naota T, Saito E. Ruthenium-catalyzed amidation of nitriles with amines. A novel, facile route to amides and polyamides. J. Am. Chem. Soc.1986, 108,7846-7847.
    16. Cobley C J, van den Heuvel M, Abbadi A, de Vries J G. Platinum-Catalyzed Hydrolytic Amidation of Unactivated Nitriles. Tetrahedron Lett.,2000,41, 2467-2470.
    17. Tillack A, Rudloff I, Beller M. Catalytic Animation of Aldehydes to Amides. Eur. J. Org. Chem.,2001,523-528.
    18. Park S, Choi Y, Han H, Yang S. H, Chang, S. Rh-Catalyzed one-pot and practical transformation of aldoximes to amides. Chem. Commun.,2003,1936-1937.
    19. Owston N A, Parker A J, Williams J. M. Iridium Catalysed Conversion of Alcohols into Amides via Oximes. J. Org. Lett.,2007,9,73-75.
    20. Beller M, Cornils B, Frohning C D. Progress in hydroformylation and carbonylation. J. Mol. Catal. A:Chem.,1995,104,17-85.
    21. Ali B E, Tijani J. Synthesis of Bislactones Catalyzed by a Pd-dppb system. Appl. Organomet. Chem.,2003,17,921-931.
    22. Knapton D J, Meyer T Y. The Stereoselective and Catalytic One Pot Synthesis of a-Selanyl Acrylamides. Org. Lett.,2004,6,687-689.
    23. Uenoyama Y, Fukuyama T, Nobuta O, Matsubara H, Ryu I. Alkyne Carbonylation by Radicals:Tin-Radical-Catalyzed Synthesis of of α-Methylene Amides from 1-Alkynes, Carbon Monoxide, and Amines. Angew. Chem., Int. Ed., 2005,44,1075-1078.
    24. Zhang C, Jiao N. Cu-catalyzed Aerobic Oxidative Dehydrogenative Coupling of Anilines Leading to Aromatic Azo Compounds using Dioxygen as Oxidant. J. Am. Soc.,2010,132,28-29.
    25. Nilson B L, Kiessling L L, Raines R T. Staudinger ligation:A peptide from a thioester and azide. Org. Lett.,2000,2,1939-1941.
    26. Damkaci F, DeShong P. Stereoselective Synthesis of α- and β-Glycosylamide Derivatives from Glycopyranosyl Azides via Isoxazoline Intermediates. J. Am. Chem. Soc.,2003,125,4408-4409.
    27. Shangguan N, Katukojvala S, Greenberg R, Williams L. J. The Reaction of Thio Acids with Azides:A New Mechanism and New Synthetic Applications. J. Am. Chem. Soc.,2003,125,7754-7755.
    28. Merkx R, Brouwer A J, Rijkers D T S, Liskamp R M J. Highly efficient coupling of β-substituted aminoethane sulfonyl azides with thio acids, towards a new chemical ligation reaction. Org. Lett.,2005,7,1125-1128.
    29. Schmidt R F. Uber den Imin-Rest. Ber. Dtsch. Chem. Ges.,1924,57,704-706.
    30. Yao L, Aube J. Cation—π Control of Regiochemistry of Intramolecular Schmidt Reactions en Route to Bridged Bicyclic Lactams. J. Am. Chem. Soc.,2007,129, 2766-2767.
    31. Cho S H, Yoo E J, Bae I, Chang S. Copper-Catalyzed Hydrative Amide Synthesis with Terminal Alkyne, Sulfonyl Azide, and Water. J. Am. Chem. Soc.,2005,127, 16046-16047.
    32. Naota T, Murahashi S I. A Ruthenium-catalyzed, atom-economical synthesis of nitrogen heterocycles. Synlett.,1991,693-695.
    33. Chan W K, Ho C M, Wong M K, Che C M. Oxidative amide synthesis and N-terminal alpha-amino group ligation of peptides in aqueous medium. J. Am. Chem. Soc.,2006,128,14796-14797.
    34. Qian C W, Zhang X M, Zhang Y, Shen Q J. Heterobimetallic complexes of lanthanide and lithium metals with dianionic guanidinate ligands:Syntheses, structures and catalytic activity for amidation of aldehydes with amines. Organomet. Chem.,2010,695,747-752.
    35. Zhang L J, Su S P, Wu H P, Wang S W. Synthesis of amides through the Cannizzaro- type reaction catalyzed by lanthanide chlorides Tetrahedron,2009,65, 10022-10024.
    36. Seo S Y, Marks T J. Mild Amidation of Aldehydes with Amines Mediated by Lanthanide Catalysts, Org. Lett.,2008,10,317-319.
    37. Wang J F, Li J M, Xu F, Shen Q. Efficient Bimetallic Catalysts for Mild Amidation of Aldehydes with Amines. Adv. Synth. Catal.,2009,351,1363-1370.
    38. Wu Y J, Wang S W, Zhang L J, Yang G S, Zhu X C, Zhou Z H, Zhu H, Wu S H. Eur. J. Org. Chem.,2010,326-332.
    39. Annegret T, Ivo R, Matthias B. Catalytic Amination of Aldehydes to Amides. Eur. J. Org. Chem.,2001,523-528.
    40. Shie J, Fang J. Direct Conversion of Aldehydes to Amides, Tetrazoles, and Triazines in Aqueous Media by One-Pot Tandem Reactions. J. Org. Chem.,2003, 68,1158-1160.
    41. Marko I E, Mekhalfia A. Radical Mediated Oxidations in Organic Chemistry.3. An Efficient and Versatile Transformation of Aldehydes into Amides.Tetrahedron Letters,1990,31,7237-7240.
    42. Gao J, Wang G W. Direct Oxidative Amidation of Aldehydes with Anilines under Mechanical Milling Conditions. J. Org. Chem.,2008,73,2955-2958.
    43. Kekeli E K, Christian W. Phenanthro[1,10,9,8-cdefg]carbazole-containing copolymer for high performance thin-film transistors and polymer solar cells. Org. Lett.,2007,9,3426-3432.
    44. Harris J M. Polyethylene Glycol:Chemistry and Biological Application, Plenum Press, New York,1992, p.3;
    45. Harris J M. Poly(ethylene Glycol) Chemistry, Biotechnological and Biomedical Applications, ed. ACS Books, Washington, DC,1997.
    46. Kochi M. Green Reaction Media for Organic Synthesis, Blackwell, Oxford,2005, 1-187.
    1. Stout D M, Meyers A I. Recent Advances in the Chemistry of Dihydropyridines. Chem. Rev.,1982,82,223-243.
    2. Wei X Y, Rulledge A, Triggle D I. Pharmacologic and radioligand binding studies of 1,4-dihydropyridines in rat cardiac and vascular preparations:stereoselectivity and voltage dependence of antagonist and activator interactions. J. Mol. Pharmacol. 1989,35,541-552.
    3. Bossert F, Vater W.1,4-Dihydropyridines--a basis for developing new drugs. Med. Res. Rev.,1989,9,291-324.
    4. Mauzerat D, Westheimer F H. Microwave assisted synthesis of triazoloquinazolin-ones and benzimidazoquinazolinones. J. Am. Chem. Soc.,1955,77,2261-2264.
    5. Janis R R, Triggle D J. New developments in Ca2+- channel antagonistsJ. Med. Chem.,1983,26,775-784.
    6. Klusa V. Cerebrocrast, Neuroprotectant, cognition enhancer. Drugs Future,1995, 20,135-138.
    7. Bretzel R G, Bollen C C, Maeser E, Federlin K F. Nephroprotective Effects of Nitrendipine in Lypertensive Type Ⅰ and Type Ⅱ Diabetic Patients. Drugs Future, 1992,17,465-469.
    8. Atwal K S, Swanson B N, Unger S E, Floyd D M, Moreland S, Hedberg A, O'Reilly B C. Dihydropyrimidine calcium channel blockers.3.3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J. Med. Chem.,1991,34,806-811;
    9. Kappe, C. O. Biologically active dihydropyrimidones of the Biginelli-type-a literature survey. Eur. J. Med. Chem.,2000,35,1043-1052.
    10. Saunsins A, Duburs G. Synthesis of 1,4-Dihydropyridines by Cycloconden-sation Reactions. Heterocycles,1988,27,269-274.
    11. Bocker R H, Guenguerich F P. Additions and Corrections-Resolution of Aristeromycin Enantiomers. J. Med. Chem.,1986,28,1956-1961.
    12. Godfraid T, Miller R, Wibo M. Calcium Antagonism and Calcium Entry Blockade. Pharmacol. Rev.,1986,38,321-416.
    13. Mager P P, Coburn R A, Solo A J, Triggle D J, Rother H. QSAR, Diagnostic Statistics and Molecular Modelling of 1,4-Dihydropyridine Calcium Antagonists: A Difficult Road Ahead, Drug Des. Discovery,1992,8,273-281.
    14. Mannhold R, Jablonca B, Voigdt W, Schoenafinger K, Schravan K. Calcium-and Calmodulin-Antagonism of Elnadipine Derivatives:Comparative SAR Eur. J. Med.Chem.,1992,289-197.
    15. Bossert F, Meyer H, Wehinger H.4-Aryldihydropyridines, a new class of highly active calcium antagonists. Angew. Chem., Int. Ed. Engl.,1981,20,762-769.
    16. Nakayama H, Kasoaka Y. Chemical identification of binding sites for calcium channel antagonists. Heterocycles,1996,42,901-909.
    17. Gordeev M F, Patel D V, Gordon E M. Approaches to Combinatorial Synthesis of Heterocycles:A Solid-Phase Synthesis of 1,4-Dihydropyridines. J. Org. Chem., 1996,26,924-928.
    18. Buhler F R, Kiowski W J. Calcium antagonists in hypertension. Hypertens,1987, 5.S3-10.
    19. Reid J L, Meredith P A, Pasanisi F. J. Journal of Cardiovascular Pharmacology. Cardiovasc. Pharmacol.,1985,7, S18-20.
    20. Sawada Y, Kayakiri H, Abe Y, Mizutani T, Inamura N, Asano M, Hatori C, Aramori I, Oku T, Tanak H. Discovery of the first non-peptide full agonists for the human-NCBI. J. Med. Chem.,2004,47,2853-2863.
    21. Shan R, Velaskez C, Knaus E E. Syntheses, calcium channel Agonist□ Antagonist modulation activities, and nitric oxide release studies of Nitrooxyalkyl 1,4-Dihydro-2,6-dimethyl-3-nitro-4-(2,1,3-benzoxadiazol-4-yl)pyridine-5-carboxy late racemates, enantiomers, and diastereomers. J. Med. Chem.,2004,47, 254-261.
    22. Miri R, Javidnia K, Sarkarzadeh H, Hemmateenejad B. Synthesis, study of 3D structures, and pharmacological activities of lipophilic nitroimidazolyl-1, 4-dihydropyridines as calcium channel antagonist. Bioorg. Med. Chem. Lett., 2006,14,4842-4849.
    23. Xia J J, Wang G W. One-Pot Synthesis and Aromatization of 1,4-Dihydropyridines in Refluxing Water. Synthesis,2005,2379-2383.
    24. Heravi M M, Behbahani F K, Oskooie H A, Shoar R H. Catalytic aromatization of Hantzsch 1,4-dihydropyridines by ferric perchlorate in acetic acid. Tetrahedron Lett.,2005,46,2775-2777.
    25. Bagley M C, Lubinu M C. Microwave-Assisted Oxidative Aromatization of Hantzsch 1,4-Dihydro-pyridines using Manganese Dioxide. Synthesis,2006, 1283-1288.
    26. Adibi H, Hajipour A R. A Convenient and Efficient Protocol for Oxidative Aromatization of Hantzsch 1,4-Dihydropyridines Using Benzyltriphenylphos-phonium Peroxymonosulfate under Almost Neutral Reaction Conditions. Bioorg. Med. Chem. Lett.,2007,17,1008-1012.
    27. Itoh T, Nagata K, Miyazaki M, Ishikawa H, Kurihara A, Ohsawa A. A Selective Reductive Amination of Aldehydes by the Use of Hantzsch Dihydropyridines as Reductant. Tetrahedron,2004,60,6649-6655.
    28. Hantzsch A. Ueber die synthese piridinartiger verbindungen aus acetessigather und aldehydammoniak. Ann. Chem.,1882,215,1-91.
    29. Balalae S, Kowsari E. A novel one-pot synthesis of tetrasubstituted imidazoles under solvent-free conditions and microwave irradiation. Monatsh. Chem.,2001, 12,1551-1555.
    30. Agarval A, Chauhan P M S. Solid supported synthesis of structuarally diverse dihydropyrido[2,3-d]pyrimidines using microwave irradiation. Tetrahedron Lett., 2005,46,1345-1348.
    31. Kotharkar S A, Shinde D B. Microwave assisted synthesis of 1,4-dihydropyridines. Ukr. Bioorg. Acta.,2006,1,1-3.
    32. Li M, Guo W S, Wen L R, Li Y F, Yang H Z. One-pot synthesis of Biginelli and Hantzsch products catalyzed by non-toxic ionic liquid (BMImSac) and structural determination of two products. J. Mol. Catal. A:Chem.,2006,258,133-138.
    33. Sabitha G, Reddy G S, Reddy C S, Yadav J S. A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Tetrahedron Lett.,2003, 44,4129-4131.
    34. Wang L M, Sheng J, Zhang L, Han J W, Fan Z Y, Tian H, Qian C T. Facile Yb(OTf)3 Promoted One-pot Synthesis of Polyhydroquinoline Derivatives Through Hantzsch Reaction. Tetrahedron,2005,61,1539-1543.
    35. Donelson J L, Gibbs R A, De S K. An Efficient One-pot Synthesis of Polyhydroquinoline Derivatives Through the Hantzsch Four Component Condensation. J. Mol. Catal. A:Chem.,2006,256,309-311.
    36. Ko S, Sastry M N, Lin C, Yao C F. Molecular Iodine-catalyzed One-pot Synthesis of 4-Substituted-1,4-dihydropyridine Derivatives via Hantzsch Reaction. Tetrahedron Lett.,2005,46,5771-5774.
    37. Zolfigol M A, Salehi P, Khorramabadi-Zad A, shayegh M. A facile protocol for the synthesis of 4-aryl-1,4,7,8-tetrahydro-3,5-dimethyldipyrazolo[3,4-b:4',3'-e] pyridine derivatives by a Hantzsch-type reaction. J. Mol. Catal. A:Chem.,2006, 261,88-92.
    38. Chari M A, Syamasundar K. PEG400-Lithium Carbonate Catalyzed Synthesis of 1,4-Dihydropyridines under Solvent-free Conditions. Catal. Commum.,2005,6, 624-628.
    39. Maheswara M, Siddaiah V, Rao Y K, Tzeng Y M, Sridhar C. L-Proline as an Efficient Organo-Catalyst for the Synthesis of Polyhydroquinoline Via Multicomponent Hantzsch Reaction. J. Mol. Catal. A:Chem.,2006,260,179-180.
    40. Ko S, Yao C F. CAN (Ceric Ammonium Nitrate) Catalyze the One-pot Synthesis of Polyhydroquinoline via Hantzch Reaction. Tetrahedron,2006,62,7293-7299.
    41. Tewari N, Dwivedi N, Triphthi R P. Sulfonic acid-functionalized silica:a remarkably efficient heterogeneous reusable catalyst for the one-pot synthesis of 1,4-dihydropyridinesTetrahedron Lett.,2004,45,9011-9014.
    42. Lee J H. Synthesis of Hantsch 1,4-dihydropyridines by fermenting bakers'yeast. Tetrahedron Lett.,2005,46,7329-7330.
    43. Kumar A, Maurya R A. Synthesis of polydroquinoline derivatives through unsymmetric Hantzsch reaction using organocatalysts. Tetrahedron,2007,63, 1946-1952.
    44. Sharma G V M, Reddy K L, Lakshmi P S, Krishna P R.'In situ' Generated 'HCl' An Efficient Catalyst for Solvent-Free Hantzsch Reaction at Room Temperature: Synthesis of New Dihydropyridine Glycoconjugates. Synthesis,2006,1,55-58.
    45. Debache A, Boulcina Raouf, Belfaitah A, Rhouati S, Carboni Bertrand. One-Pot Synthesis of 1,4-Dihydropyridines via a Phenylboronic Acid Catalyzed Hantzsch Three-Component Reaction Synthesis of 1,4-Dihydropyridines. Synlett,2008,4, 509-512.
    46. Heravi M M, Bakhtiari K, Javadi N M, Bamoharramb F F, Saeedi M, Oskooie H A. K7[PWnCoO40]-catalyzed one-pot synthesis of polyhydroquinoline derivatives via the Hantzsch three component condensation. Journal of Molecular Catalysis A: Chemical,2007,264 (2007):50-52.
    47. Kumar A, Maurya R A. Efficient Synthesis of Hantzsch Esters and Polyhydro-quinoline Derivatives in Aqueous Micelles. Synlett,2008,6,883-885.
    48. Kochi M.Green Reaction Media for Organic Synthesis, ed. Blackwell, Oxford, 2005.
    49. Welton T. Solvents for Synthesis and Catalysis. Chem. Rev.,1999,99,2071-2084.
    50. Wasserscheid P, Keim W. Ionic Liquids—New "Solutions" for Transition Metal Catalysis. Angew. Chem., Int. Ed.,2000,39,3772-3789.
    51. Sheldon R. Catalytic reactions in ionic liquids. Chem. Commun.,2001, 2399-2407.
    52. Grieco P A, Organic Synthesis in Water; Blackie Academic and Professional, London,1998.
    53. Breslow R. Ace. Aquathermolysis:Reactions of Organic Compounds with Superheated Water. Chem. Res.,1991,24159-24164.
    54. Chandrasekar S, Narsihmulu C, Shameem S S, Reddy N R. Osmium tetroxide in poly(ethylene glycol) (PEG):A recyclable reaction medium for rapid asymmetric dihydroxylation under Sharpless conditions. Chem. Commun.,2003,1716-1726.
    55. Tanemura K, Suzuki T, Nishida Y, Horaguchi T. Aldol condensation in water using polyethylene glycol 400. Chem. Lett.,2005,34,576-577.
    56. Jain S L, Singhal S, Sain B. PEG-assisted solvent and catalyst free synthesis of 3, 4-dihydropyrimidinones under mild reaction conditions. Green Chem.,2007,9, 740-741.
    1. Hauser C R, Tetenbaum M. T. Conjugate Addition of Phenylacetic Acid and Derivatives with α,β-Unsaturated Carbonyl Compounds by Means of Sodium Amide. J. Org. Chem.,1958,23,1146-1149.
    2. Feuer H, Harmetz R. The Chemistry of Maleic Hydrazide. Ⅱ.1 The Course of the Michael-type Addition. J. Am. Chem. Soc.,1958,80,5877-5880.
    3. Bugman, Corett R. Basic Exchange Resins as Catalysts in the Michael Reaction. Ⅱ. J. Org. Chem.,23,1958,1507-1510.
    4. Anastas P T, Warner J C. Green Chemistry, Theory and Practice; Oxford University Press:Oxford,1998.
    5. Anastas P T, Williamson T C. Green Chemistry, Frontiers in Benign Chemical Synthesis and Processes. Eds.; Oxford University Press:Oxford,1998.
    6. Clark J, Macquarrie D. Handbook of Green Chemistry and Technology, Eds.; Blackwell Science:Oxford,2002.
    7. Eissen M, Metzger J O, Schmidt E, Schneidewind U.10 Years after Rio-Concepts on the Contribution of Chemistry to a Sustainable Development. Angew. Chem., Int. Ed.2002,41,414-436.
    8. Frackenpohl J, Arvidsson P I, Schreiber J V, Seebach D. The Outstanding Biological Stability of β- and γ- Peptides toward Proteolytic Enzymes:An In Vitro Investigation with Fifteen Peptidases. ChemBioChem,2001,2(6):445-455.
    9. Drey C N C. Chemistry and Biochemistry of the Amino Acids. Barrett G C. Ed, London:Chapman and Hall,1985.25-54.
    10. Chen I L, Chang K M, Miaw C L, Liao C H, Chen J J, Wang T C. Synthesis, antiproliferative, and antiplatelet activities of oxime- and amide-containing quinolin-2(1H)-one derivatives. Bioorg. Med. Chem.2007,15(20):6527-6534.
    11. Czajgucki Z, Andruszkiewicz R, Kamysz W. Structure activity relationship studies on the antimicrobial activity of novel edeine A and D analogues. J. Pept. Sci., 2006,12(10):653-662.
    12. Bewley C A, Faulkner D J. Lithistid Sponges:Star Performers or Hosts to the Stars. Angew. Chem., Int. Ed. Engl.,1998,37(16):2162-2178.
    13. Seebach D, Matthews J L. β-Peptides:a surprise at every turn. Chem. Commun., 1997,997(21):2015-2022.
    14. Berks A H. Preparations of two Pivotal intermediates for the synthesis of 1-β- methyl carbapenem antibiotics. Tetrahedron,1996,52(2):331-375.
    15. Preiml M, Hillmayer K, Klempier N. A new approach to β- amino acids: biotransformation of N-protected β-amino nitriles. Tetrahedron Lett.,2003,44(27): 5057-5059.
    16. Hayashi Y, Katada J, Harada T, Tachiki A, Iijima K, Takiguchi Y, Muramatsu M, Miyazaki H, Asari T, Okazaki T, Sato Y, Yasuda E, Yano M, Uno I, Ojima I. GPⅡb/Ⅲa Integrin Antagonists with the New Conformational Restriction Unit, Trisubstituted β-Amino Acid Derivatives, and a Substituted Benzamidine Structure. J. Med. Chem.,1998,41(13):2345-2360.
    17. Ishihara T, Mantani T, Konno T, Yamanaka H. Preparation of trifluoromethylated ynamines and their reactions with some electrophilic reagents. Tetrahedron,2006, 62(16):3783-3793.
    18. Nelson S G, Spencer K L, Cheung W S, Mamie S J. Divergent reaction pathways in amine additions to β-lactone eletrophiles. An application to β- peptide synthesis. Tetrahedron,2002,58(35):7081-7091.
    19. BenAyed T, Amiri H, ElGaied M M, Villieras J. Additon conjuguee d'amines primaries aux composes acryliques α-(1-hydroxy) alkyls:Nouvelles syntheses de β-et de y-lactames polyfonctionnels. Tetrahedron,1995,51(35):9633-9642.
    20. Perlmutter P. Conjugate Addition Reactions in Organic Synthesis. Oxford: Pergamon Press,1992.
    21. Chaudhuri M K, Hussain S, Kantam M L, Ncelima B. Boric acid:a novel and safe catalyst for aza-Michael reactions in water. Tetrahedron Lett.,2005,46(48): 8329-8331.
    22. Amore K M, Leadbeater N E, Miller T A, Schmink J R. Fast, easy, solvent-free, microwave-promoted Michael addition of anilines to α, β- unsaturated alkenes: synthesis of N-aryl functionalized β- amino esters and acids. Tetrahedron Lett., 2006,47(48):8583-8586.
    23. Reddy K R, Kumar N S. Cellulose-Supported Copper(0) Catalyst for Aza-Michael Addition. Synlett,2006,2246-2250.
    24. Fetterly B M, Jana N K, Verkade J G. [HP(HNCH2CH2)3N]NO3:an efficient homogeneous and solid-supported promoter for aza and thia-Michael reactions and for Strecker reactions. Tetrahedron,2006,62(2-3):440-456.
    25. Hashemi M M, Eftekhari-Sis B, Abdollahifar A, Khalili B. ZrOCl2·8H2O on montmorillonite K10 accelerated conjugate addition of amines to α,β-unsaturated alkenes under solvent-free conditions. Tetrahedron,2006,62(4):672-677.
    26. Kantam M L, Neeraja V, Kavita B, Neelima B, Chaudhuri M K, Hussain S. Cu(acac)2 Immobilized in Ionic Liquids:A Recoverable and Resuable Catalytic System for Aza-Michael Reactions. Adv. Synth. Catal.,2005,347(6):763-766.
    27. Kantam M L, Neelima B, Reddy Ch V. A recyclable protocol for aza-Michael addition of amines to α, β-unsaturated compounds using Cu-Al hydrotalcite. J. M. Catal. A:Chem.,2005,241(1-2):147-150.
    28. Azizi N, Saidi M R. LiClO4 Accelerated Michael addition of amines to α, β-unsaturated olefins under solvent-free conditions. Tetrahedron,2004,60(2): 383-387.
    29. Varala R, Alam M M, Adapa S R. Chemoselective Michael Type Addition of Aliphatic amines to α, β-Ethylenic Compounds Using Bismuth Triflate Catalyst. Synlett,2003,720-722.
    30. Wabnitz T C, Spencer J B. Highly efficient and stereoselective route to threo- and erythro-α-allylated α-fiuoro-β-hydroxy esters via radical allylation reaction. Tetrahedron Lett.,2002,43(19):3891-3894.
    31. Enders D, Muller S F, Raabe G, Runsink J. Asymmetric Synthesis of α-substituted P-Amino Sulfones by Aza-Michael Addition to Alkenyl Sulfones and Subsequent a-Alkylation. Eur. J. Org. Chem.,2000,2000(6):879-892.
    32. Bartoli G, Bosco M, Marcantoni E, Petrini M, Sambri L, Torregiani E. Conjugate Addition of Amines to α, β-Enones Peomoted by CeCl3-7H2O-NaI System Supported in Silica Gel. J. Org. Chem.,2001,66(26):9052-9055.
    33. Loh T P, Wei L L. Indium Trichloride-Catalyzed Conjugated Addition of Amines to α, β-Ethylenic Compounds in Water. Synlett,1998,975-976.
    34. Khan A T, Parvin T, Gazi S, Choudhury L H. Bromodimethylsulfonium bromide mediated Michael addition of amines to electron deficient alkenes. Tetrhedron Lett.,2007,48(22):3805-3808.
    35. Xu J M, Wu Q, Zhang Q Y, Zhang F, Lin X F. A Basic Ionic Liquid as Catalyst and Reaction Medium:A Rapid and Simple Procedure for Aza-Michael Addition reactions. Eur. J. Org. Chem.,2007,2007(11):1798-1802.
    36. Das B, Chowdhury N. Amberlyst-15:An efficient reusable heterogeneous catalyst for aza-Michael reactions under solvent-free conditions. J. M. Catal. A:Chem., 2007,263(1-2):212-215.
    37. Hussain S, Bharadwaj S K, Chaudhuri M K, Kalita H. Borax as an Efficient Metal-Free Catalyst for Heter-Michael Reactions in an Aqueous Medium. Eur. J. Org. Chem.,2007,2007(2):373-378.
    38. Leadbeater N E, Schmink J R. Use of a scientificmicrowave apparatus for rapid optimization of reaction conditions in a monomode function and then substrate screening in a multimode function. Tetrahedron,2007,63(29):6764-6773.
    39. Amore K M, Leadbeater N E, Miller T A, Schmink J R. Fast, easy, solvent-free, microwave-promoted Michael addition of anilines to α, β-unsaturated alkenes: synthesis of N-aryl functionalized β-amino esters and acids, Tetrahedron Lett., 2006,47(48):8583-8586.
    40. Shanbhag G V, Kumbar S M, Halligudi S B. Chemoselective synthesis of β-amino acid derivatives by hydroamination of activated olefins using ALSBA-15 catalyst prepared by post-synthetic treatment. J. M. Catal. A:Chem.,2008,284(1-2): 16-23.
    41. Alleti R, Oh W S, Perambuduru M, Ramana C V, Reddy V P. Imidazolium-based polymer supported gadolinium triflate as a heterogeneous recyclable Lewis acid catalyst for Michael additions. Tetrahedron Lett.,2008,49(21):3466-3470.
    42. Yeom C E, Kim M J, Kim B M. 1,8-Diazabicyclo[5.4.0]undec-7-ene(DBU)-promoted efficient and versatile aza-Michael addition. Tetrahedron,2007,63(4): 904-909.
    43. You L, Feng S, An R, Wang X, Bai D. Silica gel accelerated aza-Michael addition of amines to α, β-unsaturated amides. Tetrahedron Lett.,2008,49(35): 5147-5149.
    44. Chen X, She J, Shang Z C, Wu J, Zhang P Z. A Catalytic Method for Room-Temperature Michael Additions Using 12-Tungstophosphoric Acid as a Resuable Catalyst in Water. Synthesis,2008,3931-3936.
    45. Kumar R, Chaudhary P, Nimesh S, Chandra R. Polyethylene glycol as a non-ionic liquid solvent for Michael addition reaction of amines to conjugated alkenes. Green Chem.,2006,8,356-358.
    46. Kamal A, Reddy R D, Rajendar. A simple and green procedure for the conjugate addition of thiols to conjugated alkenes employing polyethylene glycol (PEG) as an efficient recyclable medium. Tetrahedron Lett.,2005,46 (22):7951-7953.
    47. Chandrasekhar S, Saritha B, Jagadeshwar V, Narsihmulu C, Vijay D, Sarmab G D, Jagadeeshb B. Hydroxy-assisted catalyst-free Michael addition-dehydroxylation of Baylis-Hillman adducts in poly(ethylene glycol). Tetrahedron Lett.,2006,47 (21):2981-2984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700