混凝土在干湿循环与硫酸盐侵蚀双重因素作用下的损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土的耐久性研究具有广泛而深远的意义,从材料角度研究混凝土耐久性主要针对混凝土耐腐蚀、抗冻、碳化及耐钢筋锈蚀等问题,实际环境中混凝土腐蚀常常不是单一的状态,环境中其他的因素对腐蚀有或多或少的影响,研究时要考虑多因素损伤的混凝土性能分析。海工建筑及水工混凝土结构中均会发生混凝土干湿循环破坏,海平面附近的混凝土最易破坏,硫酸盐侵蚀是混凝土化学侵蚀中最广泛普通的形式,结合两种侵蚀对混凝土劣化研究有重要的理论和工程实践意义。
     本文主要研究硫酸盐侵蚀和干湿循环损伤共同作用下对混凝土的宏观损伤规律,将三种不同水灰比的混凝土试件(W/C=0.4、0.55、0.7)分组放在四种不同的浸泡环境中,清水以及Na_2SO_4%=3.0%、5.0%和8.0%的硫酸盐溶液,采用单因素硫酸盐侵蚀和干湿循环与盐侵蚀双因素试验对比宏观力学性能劣化,并建立基于动弹性模量Ed的累积损伤演化模型。
     混凝土性能的劣化是微观结构形态演化在宏观上的反映,所以本文结合相应微观试验来分析干湿循环和盐侵蚀的损伤机理以及不同水灰比试件在不同硫酸钠浓度溶液中盐侵蚀和干湿循环腐蚀双因素的交互叠加效应。微观试验主要针对硫酸盐主要侵蚀产物钙矾石晶体的生长,利用XRD中K值法定量分析不同工况下试件中钙矾石生长量变化规律,并利用ESEM对其微观孔隙结构变化进行观察,分析固相侵蚀结晶物的生长形态、膨胀特性等。
     本文的宏观与微观试验研究得出了一些初步结论,硫酸钠溶液常温浸泡440天的侵蚀试验结果表明硫酸盐侵蚀过程是长期缓慢的过程,Ed演化规律一般是前期密实增强—平缓—缓慢下降,混凝土试件处在负损伤阶段。在干湿循环与盐侵蚀共同作用过程中干湿循环损伤和盐侵蚀有一定的超叠加效应,浓度越高超叠加效应越明显,在叠加效应中硫酸盐侵蚀对混凝土的劣化起主要作用。
     对应的不同水灰比损伤量D的损伤演化模型也可以反映出干湿循环和盐浸泡损伤过程的差别,三种水灰比混凝土的损伤演化规律类似,均可以用二次多项式来拟合,公式D = A+BT+CT~2,损伤变化基本上是缓慢至加速增长,一般浓度越高损伤变化速度越快,水灰比对损伤变化的影响不大。
     微观试验结果表明双因素作用环境中E的含量比浸泡中的要多一些,水灰比较小的可达到1.6%~2.0%,水灰比大的可达到3.0%左右,基本上是大幅增长—相对平缓的趋势,水灰比较大的试件,这种前后变化差异更明显。通过ESEM等微观测试手段发现,干湿循环与硫酸钠侵蚀作用下混凝土的破坏主要是盐析晶和侵蚀产物的体积膨胀造成裂缝的扩展,水灰比越大,内部界面处裂隙开展越迅速。硫酸盐化学侵蚀产物主要是钙矾石晶体,通过ESEM对微观侵蚀晶体生长形态进行观察分析,有微晶态和簇状辐射的针状等不同形态,水灰比较大试件中,针状钙矾石带密集成簇生长在孔缝中,干湿循环中局部浓度较高处有石膏侵蚀物存在,也有明显的硫酸盐物理侵蚀,在内部及表面析出Na_2SO_4等结晶物。两种损伤机理受到材料结构、空间环境和介质浓度等多种因素的影响,需要进一步综合研究。
The durability of concrete involves resistance to corrosion, frost, carbonation, stress corrosion and so on in material subject have much extended and far-reaching meaning to be studied. However, in practice, several deterioration mechanisms exist in erosion environment, other factors have more or less infection to cauterization. Therefore, it is necessary to study the properties of the concrete subjected to more deterioration mechanisms. In seaside architecture and water conservancy, the degradation of concrete construction usually is the result of dry and wet cycles, and the concrete of sea level nearby is breached much easy. The sulfate attack is a extensive erosion of physical and chemical attack, combined with dry and wet cycles attack to be studied to avail significative reference on deterioration theory and practice of concrete construction.
     The macro-mechanical damage performance of concrete subjected to drying–wetting cycles and sodium sulfate attack in solution were investigated in this paper. Three water-cement ratio(0.4,0.55,0.7) of concrete specimens were placed in four different sulfate erosion solutions, 0%, 3%, 5% and 8% sodium sulfate concentration respectively. Compare and contrast single sulfate immersed test with sulfate attack& drying-wetting cycles double factors test, and the evolution damage model of the relative dynamic modulus of elasticity (Ed) of concrete is proposed based on continuum damage mechanics.
     For the degradation of concrete is a reflection of the micro damage mechanics, the micro-experiments include two contents, the one is the analysis of quantitative evolution of Ettringite vs. erosion time measured with the method of K value approximate calculation in XRD (X-Radial Diffraction), the second is observing the formation and growth law of Ettringite, sodium sulfate crystal etc. corrosive crystals and the evolution of concrete micro-structure in sulfate&D/W erosion in situation by ESEM (Environment Scan Electron Microscope).
     There are several conclusions in macro and micro aspects of sulfate&D/W erosion tests. The results of single sulfate immersed 440d test indicate the sulfate erosion is a chronically process and the evolution of Ed submit to early enhancing consistency, keeping and descending further, corresponding with the negative damage mechanics of concrete in test phase. There are certain interaction effect between the action of drying–wetting cycles and sulfate attack., especially in the high concentration solution. The degradation of concrete priority to sulfate attack.
     The distinctions of damage performance of concrete in sulfate&drying-wetting cycles tests are revealed by the different evolution damage models. The damage evolution equation of three differenr W/C concrete is fit in same curve, the expression is D = A+BT+CT~2, the change of damage slowly , and then the trend of accelerated increase later, the higher concentration the faster change, the W/C has small effect on damage.
     In the micro-experiments, the quantity of Ettringite in sulfate&frost tests is more than sulfate immersion, and improve obviously early till keeping later. The content range is 1.6% ~2.0% in small W/C ratio concrete and 3.0% in bigger. The effect of sulfate concentration and the interfacial crack extend rapidity along with the ratio increasing in ESEM. The primary corrosive crystal is ettringite to sodium sulfate attack, it have several different growth modality in different interspaces, the gelatinous crystals and fascicular crystals are also observed in small ratio micro- structure specimens, and that, a large volume of the minuteness needle crystals exist in broad voids or cracks in big W/C ratio specimens, and gypsum crystals also exist in high sulfate ion local. Furthermore, the physical erosion of Na_2SO_4 crystal inside or exterior of concrete also is distinct in sulfate&drying-wetting cycles circumstance. The significant influence of material configuration, void circumstance, and erosion medium etc. to the two damage mechanisms is complicated and need to be investigated farther.
引文
[1]胡洋清,张启美等.混凝土耐久性研究与工程应用手册.北京:中国科技文化出版社,2005.
    [2]Steven H.Kosmatka等,混凝土设计与控制,重庆大学出版社,2005.
    [3] How to Make Today’s Concrete Durable for Tomorrow. The Instruction of Civil Engineers, London, 1985.
    [4]王媛利,姚燕.重点工程混凝土耐久性的研究与工程应用,北京:中国建材工业出版社,2001.
    [5]徐学东.现有混凝土铁路和桥梁的耐久性问题.第五届全国混凝土耐久性学术交流会论文集,大连.2000(11):47~53.
    [6]牛狄涛著.混凝土结构耐久性与寿命预测.北京:科学出版社,2003.
    [7]赵铁军著.混凝土渗透性.北京:科学出版社,2005.
    [8] S.Mindess, J.F.Young, D.Darwin, Concrete, 2nd ed., Pearson Education,吴科如等译,北京:化学工业出版社,2004.8.
    [9]卫军,张晓玲.混凝土结构耐久性的研究现状和发展方向.低温建筑技术,2003(2):1~4.
    [10]卢木.混凝土耐久性的研究现状和发展方向.工业建筑,1997(5):1~6.
    [11] P.K.Metha. Concrete technology at the crossroads—problems and opportunities. Concrete Technology, Past, Present, and Future. Mohan Malhotra Symp.,ed. P.K.Metha. ACI Special Publ.SP-144,1994:1~30.
    [12]张亚梅,陈胜霞,高岳毅,浸-烘循环作用下橡胶水泥混凝土的性能研究,建筑材料学报,2005(12):665~671.
    [13]张春玲,水工混凝土建筑物的冻融破坏与防治,黑龙江水专学报,2004.9:127~129.
    [14]张文渊,沿海地区水工建筑物混凝土的腐蚀与防护措施,工程质量,2002.2:45~48.
    [15] Steven H. Kosmatka, Beatrix Kerkhoff, William C. Panarese, 14th ed, Design and Control of Cincrete Mixtures, Portland Cement Association, Skoie, Illinois, U.S.A,钱觉时,唐祖全,卢忠远,王智译,重庆大学出版社,2005.6.
    [16]吕林女,何永佳,丁庆军,胡曙光,混凝土的硫酸盐侵蚀机理及其影响因素,焦作工学院学报(自然科学版),22(6)2003.11:465~468.
    [17] Sommer .H,高性能混凝土的耐久性,冯乃谦等译,北京:科学出版社,1998.3:95.
    [18]游宝坤,席耀忠,钙矾石的物理化学性能与混凝土的耐久性,中国建材科技,2002.3:13~18.
    [19] Paul D. Tennis, Hamlin M. Jennings,A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes,Cement and Concrete Research,Pergamon, 2000.7:855 ~ 863.
    [20] P.W.Brown,J.Am.Ceram.Soc.76,1993,2971.
    [21]彭加惠,楼宗汉,钙矾石形成机理的研究,硅酸盐学报,2000,28(6):511~515.
    [22] P. Kumar. Mehta,混凝土的结构性能与材料.祝永年译.上海:同济大学出版社, 1991:94~95.
    [23]Sadananda Sahu, Niels Thaulow, Delayed ettringite formation in Swedish concrete railroad ties,Cement and Concrete Research 34 (2004):1675~1681.
    [24] M. Collepardi,A state-of-the-art review on delayed ettringite attack on concrete,Cement & Concrete Composites 25 (2003):401~407.
    [25] R. Barbarulo, H. Peycelona, S. Prene, J. Marchand,Delayed ettringite formation symptoms on mortars induced by high temperature due to cement heat of hydration or late thermal cycle,Cement and Concrete Research 35 (2005):125~131.
    [26] S.O. Ekolu, M.D.A. Thomas, R.D. Hooton,Pessimum effect of externally applied chlorides on expansion due to delayed ettringite formation: Proposed mechanism,Cement and Concrete Research 36 (2006) 688~696.
    [27]莫祥银,卢都友,国内外延迟性钙矾石反应研究进展及评述.混凝土,2000.7.
    [28]薛君矸,吴中伟,膨胀和自应力水泥及其应用,北京:中国建筑工业出版社,1985.7: 421~435.
    [29] Axel Norlund Christensen, Torben R. Jensen, and Jonathan C. Hanson, Formation of ettringite, Ca6Al2(SO4)3(OH)12·26H2O、AFt、and monosulfate, Ca4Al2O6(SO4)·14H2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide—calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction, Journal of Solid State Chemistry 177,2004:1944~1951.
    [30]杨南如等.钙矾石的形成条件与稳定性.硅酸盐学报,1984 , (6) :155~158.
    [31] Rafael Talero,Performance of metakaolin and Portland cements in ettringite formation as determined by ASTM C 452-68: kinetic and morphological differences,Cement and Concrete Research 35 (2005):1269~1284.
    [32]石云兴等,钙矾石的形成和稳定条件,混凝土,2000.8: 15~19.
    [33]王智,郑洪伟,钙矾石形成与稳定及对材料性能影响的综述,混凝土,2002 . (6):44~47
    [34] F. Goetz-Neunhoeffer, J. Neubauer, P. Schwesig, Mineralogical characteristics of Ettringites synthesized from solutions and suspensions, Cement and Concrete Research 36 (2006):65~70.
    [35]申春妮,杨德斌,方祥位,张涛,混凝土硫酸盐侵蚀试验方法研究,四川建筑科学研究,2005.4:103~106.
    [36]亢景富,混凝土硫酸盐侵蚀研究中的几个基本问题,混凝土,1995:9~18.
    [37] Essam A. Kishar, Hydration reaction of tricalciumaluminate in different systems,Cement and Concrete Research 35 (2005):1638~1640.
    [38]梁咏宁,硫酸盐侵蚀环境因素对混凝土性能退化的影响,中国矿业大学学报,2005.7.34(4):452~457.
    [39] Denise A. Silva, Paulo J.M ,The influence of polymers on the hydration of portland cement phases analyzed by soft X-ray transmission microscopy, Cement and Concrete Research 36 (2006):1501~1507.
    [40] N.N. Naik, A.C. Jupe, S.R. Stock,Sulfate attack monitored by microCT and EDXRD: Influence of cement type, water-to-cement ratio, and aggregate,Cement and Concrete Research 36 (2006) :144 ~159.
    [41] Paul Brown, R.D. Hooton, Boyd Clark,Microstructural changes in concretes with sulfate exposure,Cement & Concrete Composites 26 (2004): 993~999.
    [42] Kazuko Haga, Masahito Shibata, Michihiko Hironaga, Change in pore structure and composition of hardened cement paste during the process of dissolution, Cement and Concrete Research 35 (2005) :943~950.
    [43] K.H. Khayat, A. Tagnit-Hamou, N. Petrov,Performance of concrete wharves constructed between 1901 and 1928 at the Port of Montreal,Cement and Concrete Research 35 (2005): 226~232.
    [44] Tanapon Phenrat, Taha F. Marhaba, Manaskorn Rachakornkij, A SEM and X-ray study for investigation of solidified/stabilized arsenic–iron hydroxide sludge, Journal of Hazardous Materials B118, 2005: 185~195.
    [45]游宝坤,李乃珍,膨胀剂及其补偿收缩混凝土,北京:中国建材工业出版社,2005.1.
    [46] Moore AE, Taylor H F W,Crystal structure of ettringite, Acta cryst B, 1970,(26):386~393.
    [47] A.M. Codya, H. Lee, R.D. Codya, P.G. Sprya,The effects of chemical environment on the nucleation,growth, and stability of ettringite [Ca3Al(OH)6]2(SO4)3·26H2O,Cement and Concrete Research 34 (2004): 869~881.
    [48] Q. Zhou, E.E. Lachowski, F.P. Glasser, Metaettringite a decomposition product of ettringite, Cement and Concrete Research 34 (2004):703~710.
    [49] P.K. Mehta, Mechanism of expansion associated with ettringite formation, Cem. Concr. Res.1973.3:1~ 6.
    [50] M.D. Cohen, Theories of expansion in sulfoaluminate-type expansive cements: Schools of thought, Cem. Concr. Res. 13 (1983): 809~818.
    [51] D.A. Silva, P.J.M. Monteiro , Analysis of C3A hydration using soft X-rays transmission microscopy:Effect of EVA copolymer,Cement and Concrete Research 35 (2005): 2026 ~2032.
    [52]龙世宗,邬燕蓉,王俊春,固相反应合成钙矾石.硅酸盐学报,1995.4,23(4):234~238.
    [53]吴宗道,钙矾石的显微形貌,中国建材科技,1995.8:9~16.
    [54]薛君矸,论形成钙矾石相的膨胀,硅酸盐学报,1984.12:252~256.
    [55]席耀中,近年来水泥化学新进展---第九届国际水泥化学会议,硅酸盐学报,1993,21(6):577~588.
    [56] E. A .lvarez-Ayuso, H.W. Nugteren,Synthesis of ettringite: a way to deal with the acid wastewaters of aluminium anodising industry,Water Research 39 (2005):65~72.
    [57]王善拔等,碱对硫铝酸盐水泥膨胀性能的影响,硅酸盐学报,1986.9.
    [58] I. BiCzok. Concrete Corrosion Concrete Protection. Chemical Publishing.New York, 1967.
    [59] My.Y. Benarchid, J. Rogez, A. Diouri, A. Boukhari, J. Aride Formation and hydraulic behavior of chromium–phosphorus doped calcium sulfoaluminate cement, Thermochimica Acta 433,2005:183~186.
    [60] C. Tashiro, J.Oba, K.Akama, The effect of several heavy metal oxides on the formation of ettringite and the microsture of hardened ettringite, Cement and Concrete Research, V9(3),1979.5:303~309.
    [61] Tanapon Phenrat, Taha F. Marhaba, Manaskorn Rachakornkij, A SEM and X-ray study for investigation of solidified/stabilized arsenic–iron hydroxide sludge, Journal of Hazardous Materials B118, 2005:185~195.
    [62] Klemm, Waldemar A., Ettringite and Oxyanion-Substituted Ettringite-Their Characterization and Applications in the Fixation of Heavy Metals, A Synthesis of the Literature, Research and Development Bulletin RD116,Portland Cement Association, 1998: 80~84.
    [63] C.D.Lawrence, Mortar expensions due to delayed ettringite and formation, effect of curing period and temperature, Cement and Concrete Research,1995, 25(4):903~907.
    [64] Michael R. Hartmana, Steven K. Bradyb, Ronald Berliner, The evolution of structural changes in ettringite during thermal decomposition, Journal of Solid State Chemistry 179 (2006) :1259~1272.
    [65]李清海,湿热养护硫铝酸盐水泥混凝土的强度及微结构,建筑材料学报,2004.3, 7(1):28~34.
    [66] Maria Chrysochoou, Dimitris Dermatas, Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: Literature review and experimental study, Journal of Hazardous Materials 136 (2006) :20~33.
    [67] Denise A. Silva,Paulo J.M.,The influence of polymers on the hydration of portland cement phases analyzed by soft X-ray transmission microscopy,Cement and Concrete Research 36 (2006): 1501~1507.
    [68] Y. Shao, C.J. Lynsdale’, C.D. Lawrence, DETERIORATION OF HEAT-CURED MORTARS DUE TO THE COMBINED EFFECT OF DELAYED ETTRINGITE FORMATION AND FREEZE/THAW CYCLES, Cement and Concrete Research, Vol. 27, No. 11, 1997:1761~1771.
    [69] Peiming W, Odler. Progress of hydration as determined by SEM on polished clinker surfaces. Proceedings of the 12th International Conference on Cement Microscopy, Vancouver, 1990: 382~386.
    [70] G. Rajasekaran,Sulphate attack and ettringite formation in the lime and cement stabilized marine clays,Ocean Engineering 32 (2005):1133~1159.
    [71] Etsuo Sakaia, Yasuyuki Nikaidob, Takumi Itoha, Masaki Daimona,Ettringite formation and microstructure of rapid hardening cement, Cement and Concrete Research 34 (2004): 1669~1673.
    [72] Peiyu Yan, Feng Zheng, Jiang Peng, Relationship between delayed ettringite formation and delayed expansion in massive shrinkage-compensating concrete, Cement & Concrete Composites 26 (2004): 687~693.
    [73] A.M. Codya, , H. Leeb, R.D. Codya, The effects of chemical environment on the nucleation, growth, and stability of ettringite [Ca3Al(OH)6]2(SO4)3·26H2O, Cement and Concrete Research 34 (2004) :869~881.
    [74]高礼雄,姚燕等,水泥混凝土抗硫酸盐侵蚀试验方法探讨,混凝土,2004(10):12~17.
    [75]乔宏霞,何忠茂,刘翠兰,粉煤灰混凝土在硫酸盐环境中的动弹性模量研究,粉煤灰综合利用,2006.1:6~8.
    [76]赵铁军,混凝土渗透性,科学出版社,2006.
    [77]李淑进,赵铁军,吴科如,混凝土渗透性与微观结构关系的研究,混凝土与水泥制品,2004.4:6~8.
    [78] Robert D.Cody ,Anita M.Cody ,Reduction of Concrete Deterioration by Ettringite Using Crystal Grovth Inhibition Techtliqlles. Final Report ,2001.
    [79] G.M.Idom,J.Skaluy,Rapid test of concrete expansivity due to intemal sulfate attack,ACI Materials Journal,1993:383.
    [80] G.M.Idom,J.Skaluy,Rapid test of concrete expansivity due to intemal sulfate attack,ACI Materials Journal,1993:383.
    [81]邹瑞珍等,钙矾石热稳定性与碳化率关系研究,河北轻化工工程学院学报,1995:64~67.
    [82] Rapha,Tixier,Modeling of Damage in cement based materials subjected to external sulphate attack,Comparision with experiments .Journal of Materials in Civil Engineering, 2003:314~322.
    [83] B.J. Mohra, H. Nankob, K.E. Kurtisa*,Durability of thermomechanical pulp fiber-cement composites to wet/dry cycling,Cement and Concrete Research 35(2005) :1646~1649.
    [84] C. Alonso, C. Andrade, C. Argiz and B. Malric,Na2PO3F as inhibitor of corroding reinforcement in carbonated concrete,Cement and Concrete Research (1996):405~415.
    [85] M. Sahmaran , T.K. Erdem, I.O. Yaman,Sulfate resistance of plain and blended cements exposed to wetting–drying and heating–cooling environments,Construction and Building Materials 21 (2007):1771~1778.
    [86] A. Yague, S. Valls, E. Vazquez, F. Albareda,Durability of concrete with addition of dry sludge from waste water treatment plants, Cement and Concrete Research 35 (2005):1064~1073.
    [87]C.D. Atis, F. O zcan, A. K?l?c , O. Karahan, C. Bilim, M.H. Severcan,Influence of dry and wet curing conditions on compressive strength of silica fume concrete,Building and Environment 40 (2005):1678~1683.
    [88]张伟勤,刘连新,代大虎,混凝土在卤水、淡水中的干湿循环腐蚀试验研究,青海大学学报(自然科学版),2006.4:25~29.
    [89]郑秀华,郭永志,张宝生,轻集料混凝土抗硫酸盐侵蚀性能的研究,混凝土,2005.3:49~52.
    [90]张磊,混凝土在硫酸盐与冻融双因素作用下的复合损伤研究,2007.5:48.
    [91]李玉华,徐风广,水泥水化物中钙矾石的X射线定量分析,光谱实验室,2003.5(20/3)334~338.
    [92]沈春玉,储刚,X射线衍射定量相分析新方法,分析测试学报,2003.11(22/6):80~84.
    [93]单小兵,张其土,X射线K值法在水泥物相中的应用,理化检验-物理分册,2002.8:342~346.
    [94]李淑平,大颗粒无水硫酸钠结晶工艺及数学模型研究,2001.3:16~18.
    [95]侯景鹏,史巍,刘华新,损伤力学在混凝土强度分析中的应用,东北电力学院学报,2000.6 (20/2):34~38.
    [96]封伯昊,张立翔,李桂青,混凝土损伤研究综述,昆明理工大学学报,2001.6(26/3):21~30.
    [97]尹双增,断裂损伤理论及应用,清华大学出版社,1992.12.
    [98]王振波,混凝土温度损伤模型研究,河海大学,2001.10:41~42.
    [99]余寿文,冯西桥,损伤力学,北京清华大学出版社,1997.
    [100]余红发,孙伟,普通混凝土在盐湖环境中的抗卤水冻蚀性与破坏机理研究,硅酸盐学报,2003.8(31/8):763~769.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700