空间柔性结构振动拉索控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间柔性结构的振动控制是航天结构研究的重要领域。本文理论和实验研究了大型空间柔性结构主动拉索改造的可行性和结构振动抑制的有效性,并分析了主动拉索振动控制中自身稳定性问题。
     本文首先对带拉索的航天大柔性结构进行了分类,并探讨了主动拉索改造的可行性。为了解决如何选择已有拉索进行主动拉索改造问题,本文引入了量化指标-可控Grammian因子来衡量拉索改造后的可控性。在一个中心刚体带两对称柔性附件的常见航天器模型主动拉索改造方案择优问题上,通过计算四种改造方案的可控Grammian因子,找出了最为理想的改造方案。
     在主动拉索改造之中,为了不影响结构原来的构形,本文提出一种无预紧力的主动拉索控制方式。同时考虑到其力驱动元件输出力有限,则主动拉索控制器是一个单边饱和非线性作动器。本文采用一种分段非二次型性能指标,推导了带单边饱和约束最优控制方法,并证明了带有状态观测器的最优控制的稳定性。气浮台上卫星模型实验验证了文章所提的主动拉索方法及最优控制律的设计。
     本文针对难以准确数学建模的复杂空间柔性结构,利用主动拉索上的拉力变化进行反馈,通过控制主动拉索端部位移来增加结构阻尼从而抑制结构振动。本文提出了两种控制算法:比例积分控制算法和力反馈微分控制算法。这两种方法均不需要受控结构的数学模型,同时控制算法不存在控制溢出,且均能显著增加结构的阻尼。JPL-MPI缩尺模型上的数值仿真结果表明两种控制算法均能显著抑制结构振动。
     主动拉索具有良好的控制性能。但在振动控制中主动拉索上是一个时变的力,当拉索横向受到干扰之后容易产生自激振动。本文建立了主动拉索横向振动的动力学模型,通过约束参数法解析给出了拉索物理参数与稳定区域的关系,并采用绝对节点坐标有限元法对解析得到的稳定区域进行验证。有限元仿真结果与理论分析结果能较好地吻合。因此,解析结果能有效指导主动拉索设计,可以避免控制中拉索自身不稳定问题。
The vibration control of the flexible space structure (FSS) is an important field in aerospace research. This paper focuses in exploiting the potential of the cables in the structures, in which the cable acts as active tendons, and researches on the feasibility of the active tendons to suppress the vibration of the FSS by both analytical and experimental approaches, and analyzes the stability of the active tendon in vibration suppression.
     First, the FSS with cables is introduced systematically. The feasibility of substituting active tendon for some existing cables on the FSS is discussed. The controllability grammian factor is adopted to quantitatively evaluate the controllability of the active tendons. The generic spacecraft model with a central rigid body and two flexible appendages is used to study the proposed method. Four installation methods of active cables are introduced and the controllability grammian factors are used to determine the optimal one.
     Non-preloaded tendons are adopted to attenuate the vibration of the FSS. Non-preloaded tendons do not deteriorate the configuration of the FSS, but the non-preloaded tendon, which can only provide pulling force, is a unilateral non-linearity actuator. In addition, the force saturation property caused by limited power of the controller adds the complexity to the controller design. As a result, a piecewise cost function is introduced to derive the optimal control law, and the stability of the control law with the acceleration feedback is discussed. The verification experiment on a pneumatic suspension table demonstrates the effectiveness of the proposed non-preloaded tendon and the control law for vibration suppression of flexible spacecraft, though the actuator can only work in half a vibration cycle due to its unilateral character.
     In order to control the vibrations of complex FSS with active tendon, the force on the preloaded tendon of the FSS is adopted to act as feedback signals and the tip movement of the active tendon is used to active displacement. A proportional-integral force feedback algorithm and a differential force feedback control algorithm are presented to increase the damping of the FSS. The two control algorithms, which require no structure model, can provide high damping ratio for the space structure. The stability of the control system is then shown. The simulation results on the structure similar to JPL-MPI demonstrate the effectiveness of the proposed algorithms for vibration control of the space structure.
     The active tendon has excellent performance for the vibration suppression of the FSS. But the time-varying force on the cables may cause self-excitation vibration, which will deteriorate the effectiveness of the control system. Therefore, the stability of the active tendon should be evaluated before controller design. The governing equation of the cable is derived to discuss the analytical relationship between the stable region and the physical parameters of the tendon by the method of strained parameters. The absolute nodal co-ordinate formation finite element method (FEM) is adopted to verify the stable region derived from the above analytical method. The simulation results of the FEM show that the analytical result can be used to direct the design of the active tendon to avoid the instability.
引文
[1] Likins P W. Dynamics and controlf of flexible space vehicles, Nasa, TR-32-1329, 1970.
    [2] Modi V J. Attitude dynamics of statellite with appendages – a brief review. Journal of Spacecraft and Rocket, 1974, 11:743-751.
    [3] 曲广吉, 航天动力学工程. 北京: 中国科学技术出版社, 2000.
    [4] 王其政, 刘斌, 宋文斌. 航天事故与动力学环境预示和控制技术研究述评. 环境技术, 1995, 4:1-6.
    [5] Polidan R S. Hubble space telescope overview. AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, 1991, 5.
    [6] Foster C L, Tinker M L, Nurre G S, et al. Solar-array-induced disturbance of the Hubble space telescope pointing system. Journal of Spacecraft and Rockets, 1995, 32(4): 634-644.
    [7] Thornton E A, Kim Y A. Thermally induced bending vibrations of a flexible rolled-up solar array. Journal of Spacecraft and Rockets, 1993, 30(4): 438-448.
    [8] Thornton E A, Kim Y A. Thermally induced bending vibrations of a flexible rolled-up solar array. Collection of Technical Papers - AIAA/ASME Structures, Structural Dynamics and Materials Conference, 1993, 4: 2138-2150
    [9] 黄文虎, 王心清, 张景绘, 等. 航天结构振动控制的若干新进展. 力学进展, 1997, 27(1): 5-18.
    [10] 牟全臣, 黄文虎, 郑钢铁, 等. 航天结构主、被动一体化振动控制技术的研究现状和进展. 应用力学学报, 2001, 18(3): 1-8.
    [11] 吕刚, 李俊宝, 陆峰, 等. 粘弹性阻尼器动力设计及其应用的试验研究. 实验力学,1998, 13(2):190-196.
    [12] 吕刚, 陆峰, 李俊宝, 等. 桁架结构的阻尼设计. 振动工程学报, 1998, 11(2):144-161.
    [13] 常业军, 程文瀼, 苏毅. 黏弹性消能支撑的研究与设计. 东南大学学报: 自然科学版, 2004, 34(1): 85-88.
    [14] Onoda J, Sano T, Minesugi K. Passive damping of truss vibration using preloaded joint backlash. AIAA Journal, 1995, 33(7):1335-1341.
    [15] Prucz J, Reddy A D, Rehfield L W, et al. EXPERIMENTAL CHARACTERIZATION OF PASSIVELY DAMPED JOINTS FOR SPACE STRUCTURES. Journal of Spacecraft and Rockets, 1986, 23(6):568-575.
    [16] Prucz J. ANALYSIS OF DESIGN TRADEOFFS FOR PASSIVELY DAMPED STRUCTURAL JOINTS. Journal of Spacecraft and Rockets, 1986, 23(6):576-584.
    [17] Wilson J F, Davis L P. VISCOUS DAMPED SPACE STRUCTURE FOR REDUCED JITTER. NASA Conference Publication, 1987, p 233-243.
    [18] Wilson J F, Davis L P. VERY HIGH DAMPING IN LARGE SPACE STRUCTURES. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, 1987, 5:167-171.
    [19] 王聪, 牟权臣, 姜兴谓, 等. 一类约束阻尼结构动力学建模和应用. 强度和环境, 2001, 1:20-25.
    [20] Johnson C D, Kienholz D A. FINITE ELEMENT PREDICTION OF DAMPING IN STRUCTURES WITH CONSTRAINED VISCOELASTIC LAYERS. AIAA Journal, 1982, 20(9):1284-1290.
    [21] Imaino W, Harrison J C. Comment on constrained layer damping structures with low viscoelastic modulus. Journal of Sound and Vibration, 1991,149(2):354-359.
    [22] Zheng H A, Pau G S, Wang Y Y. A comparative study on optimization of constrained layer damping treatment for structural vibration control. Thin-Walled Structures, 2006, 44(8):886-896.
    [23] Van V A W, Verpoest I, Ko F K. Sandwich-fabric panels as spacers in a constrained layer structural damping application. Composites Part B: Engineering, 2001, 32(1): 11-19.
    [24] Liu Y, Wang K W. Active-passive hybrid constrained layer for structural damping augmentation. Journal of Vibration and Acoustics, Transactions of the ASME, 2000, 122(3):254-262.
    [25] Veley D E, Rao S S. Optimal design of structures with active constrained-layer damping. Proceedings of SPIE - The International Society for Optical Engineering, 1995, 2445: 98-109.
    [26] Miller D W, Crawley E F. Theoretical and experimental investigation of space-realizable inertial actuation for passive and active structural control. Journal of Guidance, Control, and Dynamics, 1988, 11(5):449-458.
    [27] Miller D W, Crawley E F, Ward B A. INERTIAL ACTUATOR DESIGN FOR MAXIMUM PASSIVE AND ACTIVE ENERGY DISSIPATION IN FLEXIBLE SPACE STRUCTURES. Collection of Technical Papers - AIAA/ASME/ASCE/AHS Structures, Structural Dynamics & Materials, 1985, 2:536-544.
    [28] Longman R W, Akogyeram R, Hutton A, et al. Trade-offs between feedback, feedforward, and repetitive control for systems subject to periodic disturbances. Advances in the Astronautical Sciences, 2001, 108:1281-1300.
    [29] Won C C. Piezoelectric transformer. Journal of Guidance, Control, andDynamics, 1994, 18(1): 96-101.
    [30] Ferri A A, Heck B S. Analytical investigation of damping enhancement using active and passive structural joints. Journal of Guidance, control, and Dynamics. 1992, 15(5): 1258-1264.
    [31] Ferri A A, Heck B S, Active and passive joints for damping augmentation of large space structures. Proceedings of the American Control Conference, 1990, p 2978-2983.
    [32] Lane J S, Ferri A A. Optimal control of a semi-active, frictionally damped joint. Proceedings of the American Control Conference, 1992, 4:2754-2759.
    [33] Gaul L, Lenz J, Sachau D. Active damping of space structures by contact pressure control in joints. Proceedings of the International Modal Analysis Conference - IMAC, 1997, 1:202-208.
    [34] Gaul L, Lenz J, Sachau D. Active damping of space structures by contact pressure control in joints. Mechanics of Structures and Machines, 1998, 26(1): 81-100.
    [35] Akdogan E K, Allahverdi M, Safari A. Piezoelectric composites for sensor and actuator applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(5):746-775.
    [36] Bianc G B, Mandurino P, Colombo F. Piezoelectric sensor-actuator control device Proceedings of SPIE - The International Society for Optical Engineering, 2001, 4540: 342-353.
    [37] Luck R, Stiffler A K. Piezoelectric relations for sensor and actuator applications. American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC, Symposium on Mechatronics, 1993, 50:193-199.
    [38] Holmes J, Pearce D, Button T. Novel piezoelectric structures for sensor andactuator applications Ferroelectrics, 1999, 224(1-4):21-28.
    [39] Baudry M, Micheau P, Berry A. Decentralized harmonic active vibration control of a flexible plate using piezoelectric actuator-sensor pairs. Journal of the Acoustical Society of America, 2006, 119(1):262-277.
    [40] Tan P, Tong L. Identification of delamination in a composite beam using integrated piezoelectric sensor/actuator layer. Composite Structures, 2004, 66(1-4): 391-398.
    [41] Stavroulakis G E, Foutsitzi G, Hadjigeoxgiou E. Design and robust optimal control of smart beams with application on vibrations suppression[J] Advances in Engineering Software, 2005, 36: 806-813.
    [42] 陈勇, 陶宝祺, 刘果, 等. 压电复合材料薄壳结构振动主动控制, 压电与声光, 1998, 20(4):228-232.
    [43] 瞿伟廉, 李卓球, 姜德生, 等. 智能材料—结构系统在土木工程中的应用[J], 地震工程与工程振动, 1999, 19(3): 87 -95.
    [44] 瞿伟廉, 陈朝晖, 徐幼麟. 压电材料智能摩擦阻尼器对高耸钢塔结构风振反应的半主动控制, 地震工程与工程振动, 2000, 20(1):94-99.
    [45] Zhong-sheng L, Liyong T, Da-jun W. Vibration control of plates using discretely distributed piezoelectric quasi-modal actuators/sensors. AIAA Journal, 2001, 39(9): 1766-1772.
    [46] Shaw J. Adaptive vibration control by using magnetostrictive actuator. Journal of Intelligent Material Systems and Structures, 1998, 9(2):87-94
    [47] Jones L, Garcia E. Self-sensing magnetostrictive actuator for vibration suppression. Journal of Guidance, Control, and Dynamics, 1996, 19(3):713-715
    [48] Anjanappa M, Bi J. Theoretical and experimental study of magnetostrictive mini-actuators. Smart Materials and Structures, 1994, 2(3): 83-91.
    [49] 顾仲权, 朱金才, 彭福军, 等. 磁致伸缩材料作动器在振动主动控制中的应用研究, 振动工程学报, 1998, 11(4): 381-388.
    [50] 盖玉先, 李旦, 董申, 振动主动控制中电磁作动器动态特性的研究. 高技术通讯, 2001, 6:76-78.
    [51] 欧阳光耀, 施引. 磁致伸缩材料及其作动器设计. 海军工程大学学报. 1998,82(01):44 -48.
    [52] Zho H M, Zheng X J, Zhou Y H. Active vibration control of nonlinear giant magnetostrictive actuators. Smart Materials and Structures, 2006, 15(3):792-798.
    [53] 姜德生, Richard C(美). 智能材料器件结构与应用[M]. 武汉: 武汉工业大学出版社, 2000.
    [54] Baz A I, McCoy J. Active vibration control of flexible beams using shaped memory actuators. Journal of Sound and Vibration, 1990, 140:437-456.
    [55] Choi S B, Hwang J H, Structural vibration control using shape memory actuators. Journal of Sound and Vibration, 2000, 231(4):1168-1174.
    [56] Choi S B, Cheong Ch Ch. Vibration control of a flexible beam using shape memory alloy actuators. Journal of Guidance, Control, and Dynamics, 1996, 19(5):1178-1180.
    [57] Maclean B J, Patterson G J, Misra M S. Modeling of a shape memory integrated actuator for vibration control of large space structures. Journal of Intelligent Material Systems and Structures, 1991, 2(1): 72-94.
    [58] Liang C, Rogers C A. Design of shape memory alloy springs with application in vibration control. Journal of Vibration and Acoustics, 1993, 115:97-117.
    [59] Flatau A B, Hall D L, Schlesselman J M. Magnetostrictive vibration control systems, Journal of Intelligent Material Systems and Structures. 1993, 4(4):560-565.
    [60] Onoda J, Minesugi K. Semiactive vibration suppression by variable-damping members. AIAA Journal, 1996, 34(2):355-361.
    [61] Herzog R, Active versus passive vibration absorbers. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1994, 116(3):367-371.
    [62] Abe M, Igusa T. Semi-active dynamic vibration absorbers for controlling transient response. Journal of Sound and Vibration, 1996, 198(5):547-569.
    [63] Thompson A G, Effect of tyre damping on the performance of vibration absorbers in active suspension. Journal of Sound and Vibration, 1989, 133(3):457-465.
    [64] Bhatta P A, Sinha A. discrete-time, optimal, active vibration absorber. Journal of Sound and Vibration, 2003, 268(1):201-208.
    [65] Jalili N, Knowles I V, David W. Structural vibration control using an active resonator absorber: Modeling and control implementation. Smart Materials and Structures, 2004, 13(5):998-1005.
    [66] Igusa T, Xu K. Vibration control using multiple tuned mass dampers. Journal of Sound and Vibration, 1994, 175(4). 491-503
    [67] Yang J N, Giannopolous F. Active control and stability of cable-stayed bridge, ASCE J Eng Mech Div. 1979, 105(4). 677-694.
    [68] Yang J N, Giannopolous F. Active control of two-cable-stayed bridge ASCE J Eng Mech Div. 1979, 105(5). 795-810.
    [69] Murotsu Y, Okubo H, Terui F. Low-authority control of large space structures by using a tendon control system. Journal of Guidance, Control, and Dynamics, 1989, 12(2): 264-272.
    [70] Murotsu Y, Okubo H, Senda K. Identification of a tendon control system for flexible space structures. Journal of Guidance, Control, and Dynamics, 1991, 14(4): 743-750.
    [71] Kimura J, Harada S, Saeki M. Proposal of a parallel supporting damper with tendon and robust control system design, IEEE Conference on Control Applications - Proceedings, 1999, 2: 1412-1417.
    [72] Lu J, Thorp J S, Aubert B H, et al. Optimal tendon configuration of a tendon control system for a flexible structure. Journal of Guidance, Control, and Dynamics, 1994, 17(1): 161-169.
    [73] Lu J, Thorp J S, Aubert B H, et al. Optimal tendon placement of a tendon control system for large flexible structures. Proceedings of the IEEE Conference on Decision and Control Including The Symposium on Adaptive Processes, 1990, 5: 2582-2587.
    [74] Preumont A, Achkire Y. Active damping of structures with guy cables. Journal of Guidance, Control, and Dynamics, Vol.20, Mar-Apr, 1997, 320-326
    [75] Preumont A, Bossens F. Active tendon control of vibration of truss structures: theory and experiments. Journal of Intelligent Material Systems and Structures, 2000, 11:91-99.
    [76] Preumont A, Achkire Y, Bossens F. Active tendon control of large trusses. AIAA Journal, Vol.38, 2000, 493-498.
    [77] Preumont A, Bossens F. Active tendon control of cable-stayed bridges: Theory and implementation. Proceedings of SPIE - The International Society for Optical Engineering, 2002, 4753: 663-669.
    [78] Preumont A, Achkire Y, Bossens F. Active tendon control of large trusses. Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference, 1998, 1: 850-855.
    [79] Achkire Y, Preumont A, Active tendon control of cable-stayed bridges. Earthquake Engineering & Structural Dynamics, 1996, 25(6): 585-597.
    [80] Achkire Y, Preumont A. Experiment of active control of a cable using a piezoelectric active tendon collocated with a force sensor. European Journal of Mechanical and Environmental Engineering, 1995, 40(3): 139-145.
    [81] Preumont A, Bossens F. Active tendon control of cable-stayed bridges, Proceedings of SPIE - The International Society for Optical Engineering, 2000, 3988: 188-198.
    [82] Bossens F, Preumont A. Active tendon control of cable-stayed bridges: A large-scale demonstration. Earthquake Engineering and Structural Dynamics, 2001, 30(7): 961-979.
    [83] Achkire Y, Preumont A. Optical measurement of cable and string vibration, Proceedings of SPIE - The International Society for Optical Engineering, 1996, 2868: 540-549.
    [84] Achkire Y, Preumont A. Optical measurement of cable and string vibration, Shock and Vibration, 1998, 5(3): 171-179.
    [85] Achkire Y, Bossens F, Preumont A. Active damping and flutter control of cable-stayed bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 913-921.
    [86] Bossens F, Preumont A, Auperin M, et al. Active control of civil structures: Theoretical and experimental study. Proceedings of the International Modal Analysis Conference - IMAC, 2001 1: 524-530.
    [87] Yuse K, Kikushima Y. Development and experimental consideration of SMA/CFRP actuator for vibration control, Sensors and Actuators, A: Physical,2005, 122(1): 99-107.
    [88] Kwan A S K. A pantographic deployable mast. PhD thesis, University of Cambridge, Cambridge, UK, 1991.
    [89] 陈务军, 张淑君. 空间可展结构体系与分析导论. 北京: 中国宇航出版社, 2006:1-74.
    [90] 王天舒, 孔宪仁, 王本利. 太阳帆板绳索联动同步机构的机理和功能分析. 宇航学报, 2000, 21(3):29-34.
    [91] Miura K, Furuya H, Suzuki K. Variable geometry truss and its application to deployable truss and space crane arm. Acta Astronautica 1985, 12(7/8):599–607.
    [92] You Z. Deployable structures for masts and reflector antennas. PhD thesis, University of Cambridge, Cambridge, UK, 1994.
    [93] AEC-Able Engineering Company, Inc. http://www.aec-able.com (April 15, 2007).
    [94] Greschik G, Park K C, Natori M. Unfurling of a rolled-up strip into a helically curved tube. Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 1994, 3:1285-1298.
    [95] 张淑杰. 空间可展珩架结构的设计及热分析. 杭州: 浙江大学, 2001.
    [96] 张淑杰. 空间实验室半刚性太阳电池阵展开机构设计及热-结构耦合分析, 上海: 上海航天技术研究院, 2004.
    [97] Webb J E. Deployable lattice column. United States Patent 3,486,279. Filed 30 November 1967, Granted 30 December 1969.
    [98] Wertz J R, and Larson W J. Eds. Space Mission Analysis and Design, third ed. Space Technology Series. Microcosm Press and Kluwer Academic Publishers, El Segundo, CA, USA and Dordrecht, The Netherlands, 1999.
    [99] Pellegrino S. Large retractable appendages in spacecraft. Journal of Spacecraft and Rockets. 1995, 32(6):1006-1014.
    [100] Mikulas M M, Thomson M. State of the art and technology needs for large space structures, vol. 1: New and Projected Aeronautical and Space Systems, Design Concepts, and Loads of Flight-Vehicle Materials, Structures, and Dynamics—Assessment and Future Directions. ASME, New York, 1994, ch. 3, pp. 173–238.
    [101] Kitamura T, Okazaki K, Natori M, et al. DEVELOPMENT OF A 'HINGELESS MAST' AND ITS APPLICATIONS. Acta Astronautica, 1988, 17(3):341-346.
    [102] Eiden M, Brunner O, Stavrinidis C. DEPLOYMENT ANALYSIS OF THE OLYMPUS ASTROMAST AND COMPARISON WITH TEST MEASUREMENTS. Journal of Spacecraft and Rockets, 1987, 24(1):63-68.
    [103] Eiden M, Brunner O, Stavrinidis C. DEPLOYMENT ANALYSIS OF THE OLYMPUS ASTROMAST AND COMPARISON WITH TEST MEASUREMENTS. Collection of Technical Papers - AIAA/ASME/ASCE/AHS Structures, Structural Dynamics & Materials Co, 1985, 1:325-332.
    [104] Eiden M, Brunner O, Stavrinidis C. DEPLOYMENT ANALYSIS OF THE OLYMPUS ASTROMAST AND COMPARISON WITH TEST MEASUREMENTS. European Space Agency, (Special Publication) ESA SP, 1984, 1:357-363.
    [105] Love A W. Some highlights in reflector antenna development. Radio Science 1976, 11(8-9):671–684.
    [106] Campbell T G, Bailey M C, Belvin W K. DEVELOPMENT OF THE 15-METER HOOP COLUMN DEPLOYABLE ANTENNA SYSTEM WITH STRUCTURAL AND ELECTROMAGNETIC PERFORMANCE RESULTS.AIAA Paper, 1986:444-458.
    [107] Campbell T G, Bailey M C, Belvin W K. DEVELOPMENT OF THE 15-METER HOOP COLUMN DEPLOYABLE ANTENNA SYSTEM WITH FINAL STRUCTURAL AND ELECTROMAGNETIC PERFORMANCE RESULTS. Acta Astronautica, 1988, 17(1): 69-77.
    [108] Roederer A G, Rahmat-Samii Y. Unfurable satellite antennas: a review. Annales des T’el’ecommunications 1989, 44(9-10):475-488.
    [109] Belvin W K. Quasistatic shape adjustment of a 15-meter-diameter space antenna. Journal of Spacecraft and Rockets, 1989, 26(3):129-136.
    [110] Agrawal P K, Anderson M S, Michael F. PRELIMINARY DESIGN OF LARGE REFLECTORS WITH FLAT FACETS. IEEE Transactions on Antennas and Propagation, 1981, 4:688-694.
    [111] Mitsugi J, Yasaka T, Miura K. Shape control of the tension truss antenna. AIAA Journal, 1990, 28(2):316-322.
    [112] Miura K, Miyazaki Y. Concept of the tension truss antenna. AIAA Journal, 1990, 28(6):1098-1104.
    [113] Takano T, Miura K, Natori M. Deployable antenna with 10-m maximum diameter for space use IEEE Transactions on Antennas and Propagation, 2004, 52(1):2-11.
    [114] Miura K. Concepts of deployable space structures. International Journal of Space Structures, 1993, 8(1-2):3-16.
    [115] Belvin W K, Edighoffer H H. 15 METER HOOP-COLUMN ANTENNA DYNAMICS: TEST AND ANALYSIS. NASA Conference Publication, 1986, 1:167-185.
    [116] Belvin W K, Edighoffer H H. Quasistatic shape adjustment of a15-meter-diameter space antenna. Journal of Spacecraft and Rockets, 1989, 26(3):129-136.
    [117] Mitsugi J, Yasaka T, Miura K. Shape control of the tension truss antenna. AIAA Journal, 1990, 28(2):316-322.
    [118] Mitsugi J, Yasaka T. Deployable modular mesh antenna. Concept and feasibility. Proceedings of the International Symposium on Space Technology and Science, 1990, p 599.
    [119] Mitsugi J, Yasaka T. Deployable modular mesh antenna and its surface adjustment. International Journal of Space Structures, 1993, 8(1-2): 53-61.
    [120] You Z, Pellegrino S. Cable-stiffened pantographic deployable structures. Part 2: Mesh reflector. AIAA Journal, 1997, 35(8):1348-1355.
    [121] Kwan A S K, You Z, Pellegrino S. Active and passive cable elements in deployable/retractable masts. International Journal of Space Structures, 1993, 8(1-2): 29- 40.
    [122] Onoda J. Two-dimensional deployable truss structures for space applications. Journal of Spacecraft and Rockets, 1988, 25(2):109-116.
    [123] Takamatsu K A, Onoda J. New deployable truss concepts for large antenna structures or solar concentrators. Journal of Spacecraft and Rockets, 1991, 28(3):330-338.
    [124] Onoda J, Fu D Y, Minesugi K. Two-dimensional deployable hexapod truss. Journal of Spacecraft and Rockets, 1996, 33(3):416-421.
    [125] TRW, Inc, TRW-built Astro-mesh reflector deployed aboard Thuraya spacecraft. http://www.trw.com.(April 15, 2007)
    [126] Kwan A S K, Pellegrino S. Design and performance of the octahedral deployable space antenna (ODESA) International Journal of Space Structures,1994, 9(3):163.
    [127] Gunnar T. Deployable tensegrity structures for space application. PHD dissertation. Stockholm, Sweden: Royal Institute of Technology, Department of Mechanics, April 2002.
    [128] Hedgepeth J M, Miller, R K. STRUCTURAL CONCEPTS FOR LARGE SOLAR CONCENTRATORS. NASA Contractor Reports, 1987, 57.
    [129] Hedgepeth J M, Miller, R K. STRUCTURAL CONCEPTS FOR LARGE SOLAR CONCENTRATORS. Acta Astronautica, 1988, 17(1):79-89.
    [130] Mikulas M M, Thomson M. State of the art and technology needs for large space structures. Flight-Vehicle Materials, Structures, and Dynamics - Assessment and Future Directions, 1994, 1:173-238.
    [131] Freeland R E, SURVEY OF DEPLOYABLE ANTENNA CONCEPTS. NASA Conference Publication, 1983, 381-421
    [132] Swanson P N, Breckinridge J B, Diner A. SYSTEM CONCEPT FOR A MODERATE COST LARGE DEPLOYABLE REFLECTOR (LDR). Proceedings of SPIE - The International Society for Optical Engineering, 1986, 571:233-244.
    [133] Wada Ben K, Freeland R E. DEVELOPMENT OF THE STRUCTURAL TECHNOLOGY OF A LARGE DEPLOYABLE ANTENNA. AGNE Pub Co, 1982, 395-400.
    [134] Swanson P N, Breckinridge J B, Diner A. SYSTEM CONCEPT FOR A MODERATE COST LARGE DEPLOYABLE REFLECTOR (LDR). Optical Engineering, 1986, 25(9): 1045-1054.
    [135] Reibaldi G G, Bernasconi M C. QUASAT PROGRAM: THE ESA REFLECTOR. Acta Astronautica, 1987, 15(3):181-187.
    [136] Guest S D, Pellegrino S. New concept for solid surface deployable antennas. Acta Astronautica, 1996, 38(2):103-113.
    [137] Tibbalds B, Guest S D, Pellegrino S. Folding concept for flexible surface reflectors. Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 1998, 2:1193-1201.
    [138] Anon. Survey of deployment antenna concepts, Satellite communication antenna technology. 1983, 613-620.
    [139] Vu K K, Richard L J Y, Anandasivam K. Deployable tension-strut structures: From concept to implementation. Journal of Constructional Steel Research, 2006, 62(3):195-209.
    [140] Kailath T. Linear systems, Prentice Hall, Englewood Cliffs, NJ, 1980.
    [141] 周克敏, Doyle J C, Glover K. 鲁棒和最优控制, 北京: 国防工业出版社, 2002:59-65.
    [142] Banerjee A K, Pedreiro N, Singhose W E. Vibration Reduction for Flexible Spacecraft Following Momentum Dumping with/without Slewing, Journal of Guidance, Control, and Dynamics, 2001, .24(3): 417-427.
    [143] Singh G, Kabamba P T, McClamroch N H. Bang-bang Control of Flexible Spacecraft Slewing Maneuvers Guaranteed Terminal Pointing Accuracy. Journal of Guidance, Control, and Dynamics, 1990, 13(2): 376-379.
    [144] Ben-Asher J, Burns J A, Cliff E M. Time-optimal Slewing of Flexible Spacecraft. Journal of Guidance, Control, and Dynamics, 1992, 15(2):360-367.
    [145] Kabganian M, Shahravi M. Adaptive Sliding Mode Attitude and Vibration Control of An Elastic Spacecraft. Proceedings of the 5th International Conference on Control and Automation, 2005, 305-310.
    [146] Azam M, Singh S N, Iyer A. Feedback Linearization and Control of NASASCOLE System by Output Feedback. Proceedings of the American Control Conference, 1991, 1: 1038-1043.
    [147] Bang H, Cho Y, Lee H. Slewing Maneuver Control of Flexible Spacecraft by Output Feedback. Acta Astronautica, 2004, 55(11): 903-916.
    [148] Hablani H B. Zero-Residual-Energy, Single-axis Slew of Flexible Spacecraft Using Thrusters. Dynamics approach, Journal of Guidance, Control, and Dynamics, 1992, 15(1): 104-113.
    [149] Michael R H. Vibration Simulation using MATLAB and ANSYS. New York: Chapman & Hall/CRC, 2001.
    [150] Juang J N, Pappa R S. Effects of Noise on Modal Parameters Identified by the Eigensystem Realization Algorithm. Journal of Guidance, Control, and Dynamics, 1986 9(3): 294-303
    [151] Juang J N, Cooper J E, Wright J R. An Eigensystem Realization Algorithm Using Data Correlation (ERA/DC) for Modal Parameter identification. Journal of Control Theory and Advanced Technology. 1988, 4(1): 5-14
    [152] Juang J N. Mathematical Correlation of Modal Parameter Identification Methods via System Realization Theory. the International Journal of Analytical and Experimental Modal Analysis, 1987, 2(1): 1-18
    [153] Karl J A, Bjorn W. Computer-Controlled Systems: Theory and Design 3nd ed, Prentice Hall, 1997, 32-37.
    [154] Bernstein D S. Nonquadratic cost and nonlinear feedback control. International Journal of Robust and Nonlinear Control, 1993. 3(3):211-229.
    [155] Bernstein D S. Optimal nonlinear, but continuous, feedbacks control of systems with saturating actuators. Proceedings of the 32nd IEEE Conference on Decision and Control, 1993, 3:15-17.
    [156] Tyan F, Bernstein D S. Anti-windup compensator synthesis for systems with saturation actuators. International Journal of Robust and Nonlinear Control, 1995. 5(5):521-537.
    [157] Ryan E P. OPTIMAL FEEDBACK CONTROL OF SATURATING SYSTEMS. International Journal of Control, 1982. 35(3): 521-534.
    [158] Bakule L. Paulet-Crainiceanu F., Rodellar J. et al. Overlapping reliable control for a cable-stayed bridge benchmark. IEEE Transactions on Control Systems Technology, 2005, 13(4): 663-669.
    [159] Schemmann A G. Smith H A. Vibration control of cable-stayed bridges - Part 2: control analyses. Earthquake Engineering & Structural Dynamics, 1998, 27(8):825-843.
    [160] Fang, Y., Yan, G., Huang and Y., Liu, L. 2002 “Active seismic response robustness control of cable-stayed- suspension bridges,” Process in Safety Science and Technology Part A, 3:513-518.
    [161] Lopez-Almansa F. Rodellar J. Feasibility and robustness of predictive control of building structures by active cables. Earthquake Engineering & Structural Dynamics, 1990, 19(2): 157-171.
    [162] Magana M E. Volz P. Miller T. Nonlinear decentralized control of a flexible cable-stayed beam structure. Journal of Vibration and Acoustics, Transactions of the ASME, 1997, 119(4):523-526.
    [163] Luo N. Rodellar J. De La Sen M. and Vehi J. Decentralized active control of a class of uncertain cable-stayed flexible structures. International Journal of Control, 2002, 75(4): 285-296.
    [164] Xu B. Wu Z S. Neural networks for decentralized control of cable-stayed bridge. Journal of Bridge Engineering, 2003, 8(4):229-236.
    [165] Hines, B E. Optical design issues for the Micro-Precision Interferometer Testbed for space-based interferometry. Proc. SPIE 1947:114-125.
    [166] Neat G W, Abramovici A, Melody R J. Control technology readiness for spaceborne optical interferometer missions. Proceeding SMACS-2, Toulouse, 1997, 13-32.
    [167] Shabana A A. Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dynamics, 1998, 16(3):293-306.
    [168] Shabana A A. Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody System Dynamics, 1997, 1(3):339-348.
    [169] Shabana A A, Hussien H A, Escalona J L. Application of the absolute nodal coordinate formulation to large rotation and large deformation problems, Journal of Mechanical Design, Transactions of the ASME, 1998, 120(2):188-195.
    [170] Sugiyama H, Shabana A A. Application of plasticity theory and absolute nodal coordinate formulation to flexible multibody system dynamics. Journal of Mechanical Design, Transactions of the ASME, 2004, 126(3): 478-487.
    [171] Berzeri M, Shabana A A. Study of the centrifugal stiffening effect using the finite element absolute nodal coordinate formulation. Multibody System Dynamics, 2002, 7(4):357-387.
    [172] Sugiyama H, Gerstmayr J, Shabana A A. Deformation modes in the finite element absolute nodal coordinate formulation. Journal of Sound and Vibration, 2006, 298(4-5):1129-1149.
    [173] Seo J H, Jung I H, Han H S, et al. Computation of dynamic stress in flexible multi-body dynamics using absolute nodal coordinate formulation. KeyEngineering Materials, Advances in Nondestructive Evaluation, 2004, 270-273(II):1427-1433.
    [174] Garcia-Vallejo D, Mayo J, Escalona J L. Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation. Nonlinear Dynamics, 2004, 35(4):313-329.
    [175] Yoo W S, Park S J, Park J Y, et al. Physical experiments and computer simulations of a stepped cantilever beam with a hybrid coordinate formulation. Mechanics Based Design of Structures and Machines, 2004, 32(4):515-532.
    [176] Yoo W S, Lee J H, Park S J, et al. Large deflection analysis of a thin plate: Computer simulations and experiments. Multibody System Dynamics, 2004, 11(2):185-208.
    [177] Yoo W S, Kim M S, Mun S H, et al. Large displacement of beam with base motion: Flexible multibody simulations and experiments. Computer Methods in Applied Mechanics and Engineering, Multibody Dynamics Analysis, 2006, 195(50-51):7036-7051.
    [178] Yoo W S, Park S J, Dmitrochenko O N, et al. Verification of absolute nodal coordinate formulation in flexible multibody dynamics via physical experiments of large deformation problems. Journal of Computational and Nonlinear Dynamics, 2006, 1(1):81-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700