AZ91D镁合金表面磁控溅射Al、Ti-Al-N、Al/Ti-Al-N膜及其组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是目前实际应用中最轻的金属结构材料,具有密度小,比强度、比刚度高,另外还具有优良的减震性以及电磁屏蔽能力,因此被广泛应用于汽车工业、航空航天以及电子产品等诸多领域。但由于镁合金耐腐蚀性较差,其应用受到了阻碍。目前主要应用于镁合金防腐蚀的表面处理方法有:化学转化、阳极氧化、化学镀、气相沉积等。磁控溅射技术具有沉积速率较其他气相沉积方法高、工艺简单、薄膜质量好、对环境友好等优点,成为薄膜工业化应用的重要方法之一。
     本文采用磁控溅射镀膜方法,在AZ91D镁合金表面按照预定实验方案分别制备了Al、Ti-Al-N单层膜,并且在制备Al、Ti-Al-N单层膜实验的基础上,选择较优参数制备Al/Ti-Al-N双层膜。本论文主要研究了基材温度、负偏压以及N2/Ar分压比等磁控溅射实验参数对膜层组织和性能的影响。
     研究结果表明:制备Al单层膜时,基材温度和负偏压对Al膜组织和性能有很大影响,基材温度为150℃时,晶粒细小且大小均匀,膜层致密度最好,膜层自腐蚀电流最小,自腐蚀电位较高,负偏压为-60V时,膜层致密度高,且自腐蚀电流最小;制备Ti-Al-N单层膜时,N2/Ar分压比和负偏压对Ti-Al-N膜层组织和性能有很大影响,N2/Ar分压比为1.5:10时,膜层显微硬度、憎水性较高,并具有较高的电化学阻抗,拥有较好的腐蚀防护性能,负偏压为-20V时,膜层具有较高的显微硬度、最高的憎水性以及最大的电化学阻抗,拥有最好的腐蚀防护性能。
     最后利用制备Al、Ti-Al-N单层膜的最优参数,即在AZ91D镁合金基材温度为150℃,负偏压为-60V磁控溅射工艺参数下制备Al膜作为过渡层,过渡层制备完毕后保持Ar气流量10sccm不变,通入N2气流量为1.5sccm,AZ91D镁合金基材温度仍保持为150℃,负偏压为-20V在Al膜基础上沉积Ti-Al-N膜,制备得到Al/Ti-Al-N双层膜。比较了Ti-Al-N单层膜和Al/Ti-Al-N双层膜的组织与性能差异,对比分析了两种膜层的亲水性和电化学性能的不同,得出双层膜具有更好的腐蚀防护性能。
Magnesium alloy is the lightest metal structure material which is practical used, with excellent properties, such as low density, high specific strength and stiffness, good shock absorption ability, electromagnetic shielding ability, etc.. So, the magnesium alloy is widely used in the automotive industry, aerospace industry, microelectronics and many other fields. However, its poor corrosion resistance have hindered the wider use of magnesium alloy. At present, the surface treatment used for magnesium alloy are: chemical conversion, anodicoxidation treatment, chemical plating, vapor deposition and so on. Magnetron sputtering is one of the important methods for industrial application owing to its high deposition rate compared with other vapor deposition methods, simple process, good film quality and environmentally friendly.
     In this thesis, the author deposited Al、Ti-Al-N monolayer films respectively on AZ91D magnesium alloy by magnetron sputtering. On the basis of Al、Ti-Al-N monolayer films preparation experiments, the author selected the optimum parameters to deposite Al/Ti-Al-N bilayer films. This thesis mainly studied the effects of magnetron sputtering parameters, such as substrate temperature, bias voltage and partial pressure ratio of N2/Ar, on the microstructure and properties of the films.
     The results show that, substrate temperature and negative bias voltage had great influence on the microstructure and properties of Al monolayer films, while the substrate temperature was 150℃, the films with small but uniform grain size had high density, relatively high corrosion potential and lowest corrosion current; while the negative bias voltage was -60V, the films with high density had lowest corrosion current. Partial pressure ratio of N2/Ar and negative bias voltage had great influence on the microstructure and properties of Ti-Al-N monolayer films, while the partial pressure ratio of N2/Ar was 1.5:10, the films with high microhardness and hydrophobicity had high electrochemical impedance, and had better performance of anticorrosion; while the negative bias voltage was -20V, the films with relatively high microhardness and highest hydrophobicity had highest electrochemical impedance, and had best performance of anticorrosion
     Last, the author deposited Al monolayer film as buffer layer first, and then deposited Ti-Al-N film using the optimum parameters by magnetron sputtering to prepare Al/Ti-Al-N bilayer film. The author studied the differences of microstructure and properties between Ti-Al-N monolayer films and Al/Ti-Al-N bilayer films, and got the result that the Al/Ti-Al-N bilayer films had more excellent anticorrosion ability by comparing the hydrophilicity and electrochemical property between this two kinds of films.
引文
[1]李瑛,余刚,刘跃龙,等.镁合金的表面处理及其发展趋势[J].表面技术,2003,32(2):1-5.
    [2] M. A. Michael, B. Hugh. ASM Speciality Handbook Magnesium and Magnesium alloys[M]. Ohio: ASM International Materials Park, 1999: 3.
    [3]陈振华,严红革,陈吉华,等.镁合金[M].北京:化学工业出版社,2004:3-4.
    [4]杨重愚.轻金属冶金学[M].北京:冶金工业出版社,2002:217.
    [5] H. M. Karl.非铁合金的结构与性能[M].丁道云,译.北京:科学出版社,1999:537.
    [6]黄晓艳,周宏.21世纪绿色工程材料——Mg合金[J].南方金属,2004,(138):4-9.
    [7]陈振华,严红革,陈吉华,等.镁合金[M].北京:化学工业出版社,2004:28-32.
    [8]陈振华,严红革,陈吉华,等.镁合金[M].北京:化学工业出版社,2004:35-39.
    [9]陈振华,严红革,陈吉华,等.镁合金[M].北京:化学工业出版社,2004:19-20.
    [10]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004:231-239.
    [11]孙景林,郭静.镁合金在汽车轻量化方面的应用[J].轻金属,2008,(7):58-61.
    [12] B. B. Clow. Magnesium industry overview[J]. Advanced Materials and Processes, 1996, 150(4): 33-34.
    [13]王文先,张金山,许并社.镁合金材料的应用及其加工成型技术[J].太原理工大学学报,2001,32(6):599-603.
    [14]刘正,王越,王中光.镁基轻质材料的研究与应用[J].材料研究学报,2000,14(5):449-456.
    [15]左铁镛.21世纪的轻质结构材料——镁及镁合金发展[J].新材料产业,2007,(17):22-26.
    [16]戴长松,吴宜勇,王殿龙,等.镁及镁合金的化学镀镍[J].兵器材料科学与工程,1997, 20(4):35-37.
    [17]余刚,刘跃龙,李瑛,等.Mg合金的腐蚀与防护[J].中国有色金属学报,2002,12(6):1087.
    [18] N.伯克斯,G. H.迈耶.金属高温氧化导论[J].赵公台,赵克清,译.北京:冶金工业出版社,1989:21.
    [19]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004:211-212.
    [20]余钢,刘跃龙,李瑛,等.Mg合金的腐位与防护[J].中国有色金属学报,2002,12(6):1087.
    [21]朱祖芳.有色金属的耐蚀性及其应用[M].北京:化学工业出版社,1995:137.
    [22] N. S. Mcintyre, C. Chen. Role of Impurities on Mg Surfaces under Ambient Exposure Conditions[J]. Corrosion Science, 1998, 40(10): 1697.
    [23] G. Baril, N. Pebere. The Corrosion of Pure Magnesium in Aerated and Deaerated Sodium Sulphate Sulphate Solution[J]. Corrosion Science, 2001, 43: 471.
    [24]曾荣昌,韩恩厚.材料的腐蚀与防护[M].北京:化学工业出版社,2006:152-153.
    [25]惠怀兵,刘晔红,许岩.镁合金的电偶腐蚀及防护[J].电镀与精饰,2008,30(12):31-34.
    [26]刘文辉,张佩芳.金属腐蚀学原理[M].北京:航空工业出版社,1993:72.
    [27]徐乃欣.自身电偶腐蚀[J].腐蚀与防护,2001,22(8):365-366.
    [28]吴振宁,李培杰,刘树勤,等.镁合金腐蚀问题研究现状[J].铸造,2001,50(10):583.
    [29] L. Fairman, J. M. West. Stress corrosion cracking of mamagnesium aluminium alloy[J]. Corrosion Science, 1965, 5(10): 711-716.
    [30]张勇,许越.镁合金应力腐蚀开裂敏感性影响因素及防护措施[J].哈尔滨工业大学学报,41(6):87-89.
    [31]曾荣昌,柯伟,徐永波,等.Mg合金的最新进展及应用前景[J].金属学报,2001,37(7):673.
    [32]黄光胜,范永革,汤爱涛,等.镁及镁合金最新研究进展[J].材料导报,2002,16(4):38.
    [33]刘正,李艳春,王中光,等.载荷频率和热处理对压铸镁合金AZ91HP疾劳裂纹扩展速率的影响[J].航空材料学报,2000,20(1):7.
    [34]黄光胜,范永革,汤爱涛,等.镁及镁合金腐蚀最新研究进展[J].材料导报,2002,16(4):38-40.
    [35] R. C. Zheng, Z. D. Lan, J. Chen, et al. Progress of chemical conversion coatings on magnesium alloys[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(3): 397-404.
    [36]蒋玉思.镁及其合金阳极氧化技术的进展[J].广东有色金属学报,2001,11(2):120-123.
    [37]蒋百零,吴国建,张淑芬,等.镁合金微弧氧化陶瓷层生长过程及微观结构的研究[J].材料热处理学报,2002,23(1):5-7.
    [38]旷亚非,候朝辉,刘建平.阳极氧化过程中电击穿理论的研究进展[J].电镀与精饰,2000,22(3):38-41.
    [39]刘新宽,向阳辉,王渠东,等.镁合金的防蚀处理[J].腐蚀科学与防护技术,2001,13(4):211-213.
    [40]胡文彬,向阳辉,刘新宽,等.镁合金化学镀镍预处理过程表面状态的研究[J].中国腐蚀与防护学报,2001,21(6):340-344.
    [41]贺海丽,郑兴周,王桂香,等.镁合金化学镀镍工艺研究进展[J].电镀与环保,2007,23(3):1-3.
    [42]向国朴.脉冲电镀的理论与应用[M].天津:天津科学出版社,1989:153.
    [43]周婉秋,单大勇,曾荣昌,等.镁合金的腐蚀行为与表面防护方法[J].材料保护.2002,(7):1-3.
    [44]余东海,王成勇,成晓玲.磁控溅射镀膜技术的发展[J].真空,2009,46(2):19-25.
    [45]霍宏伟,王福会,李瑛,等.Al扩散涂层对AZ91D镁合金耐腐蚀性能的影响[J].腐蚀科学与防护技术.2001,13(11):484-486.
    [46]李云奇.真空镀膜技术与设备[M].辽宁:东北工学院出版社,1992:80.
    [47]田民波,刘德令.薄膜科学与技术手册[M] .北京:机械工业出版社,1991,263-321.
    [48]汪泓宏,田民波.离子束表面强化[M].北京:机械工业出版社,1992,17-21.
    [49]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社,2003,55-62.
    [50] D. L. Smith, Thin film deposition[M]. New York: Mc Graw-Hill Inc., 1995, 63-118.
    [51]陈宝洁.离子镀及溅射技术[M].北京:国防工业出版社,1989,47-66.
    [52]王亮.硅氢薄膜RF磁控溅射法制备工艺及结构研究[D].武汉:武汉科技大学,2009:12.
    [53]李云奇.真空镀膜技术与设备[M].辽宁:东北工学院出版社,1992:99-102.
    [54] P. J. Kelly, R. D. Arnell. Magnetron Sputtering: A Review of Recent Developments and Application[J]. Vacuum. 2000, (56): 159-172.
    [55]张继成,吴卫东,许华.磁控溅射技术新进展及应用[J].材料导报,2004,18(4):56-69.
    [56]陈荣发.电子束蒸发与磁控溅射镀铝的性能分析研究[J].真空,2003,(2):11-15.
    [57]黄晓辉,左秀荣,王齐伟,等.铝表面磁控溅射沉积不锈钢薄膜及其性能[J].特种铸造及有色合金,2009,29(8):770-773
    [58] N. Zhang. Study on property of high-speed steel deposited TiN coatings by magnetron sputter ion plating[J]. Material & Heat Treatment, 2009, 38(16): 104-106.
    [59] Q. Liu, Y. Liu, X. R. Zhu, et al. Influence of Ar and N2 flow ratio on TiN thin films prepared bymagnetron sputtering[J]. Materials for Mechanical Engineering, 2009, 33(3): 8-11.
    [60] G. S. Wu, X. Q. Zeng, G. Y. Li, et al. Preparation and characterization of ceramic/metal duplex coatings deposited on AZ31 magnesium alloy by multi-magnetron sputtering[J]. Materials Letters, 2006, (60): 674-678.
    [61] M. H. Lee, I. Y. Bae, K. J. Kim, et al. Formation mechanism of new corrosion resistance magnesium thin films by PVD method[J]. Surface and Coatings Technology, 2003, (169-170): 670-674.
    [62] J. F. Pierson, C. Rousselot. Stability of reactively sputtered silver oxide films[J]. Surface and Coatings Technology, 2005, (1-4): 276-279.
    [63] H. Schafer, H. R. Stock. Improving the corrosion protection of aluminium alloys using reactive magnetron sputtering[J]. Corrosion Science 47, 2005, (4): 953-964.
    [64] Y. W. Choi, J. Kim. Reactive sputtering of magnesium oxide thin film for plasma display panel applications[J]. Thin Solid Films, 2004, (460): 295-299.
    [65] P. Ghekiere, S. Mahieu, G. D. Winter, et al. Influence of the deposition parameters on the biaxial alignment of MgO grown by unbalanced magnetron sputtering[J]. Journal of Crystal Growth, 2004, (271): 462-468.
    [66]徐万劲.磁控溅射技术进展及应用[J].现代仪器,2005,11(5):1-5.
    [67]杨武宝.磁控溅射镀膜技术最新进展及发展趋势预测[J].石油机械,2005,6 (33):73-76.
    [68]唐伟忠.薄膜材料制备原理、技术及应用.第二版[M].北京:冶金工业出版社,2003:100-110.
    [69]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001:118-213.
    [70] T. S. Yang, T. H. Tsai, C. H. Lee, et al. Deposition of carbon-containing cubic boron nitride films by pulsed-D. C. magnetron sputtering[J]. Thin Solid Films, 2001, (398-399): 285-290.
    [71] G. Waldemar, A. Krzysztof, L. Waldemar. Magnetron sputter epitaxy of n-InSb on p-InSb for infrared photodiode applications[J]. Proceedings of SPIE-Internat Soc Opti Eng, 1999, (3725): 281-285.
    [72] W. R. Ohser, F. Hollstein, U. Bayer. Corrosion behaviour of hard coatings on Mg substrates [J]. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 2005, (96): 818-822.
    [73] H. Hoche, C. Rosenkranz, A. Delp, et al. Investigation of the macroscopic and microscopic electrochemical corrosion behaviour of PVD-coated magnesium die cast alloy AZ91[J]. Surface and Coatings Technology, 2005, (1-3): 178-184.
    [74]陈迪春,蒋百灵,吴文文,等.镁合金表面磁控溅射CrAlTiN镀层的制备技术研究[J].表面技术,2008,4:8-10.
    [75]牟宗信,刘升光,王振伟,等.中频脉冲磁控溅射沉积氮化铝薄膜及性能研究[J].材料研究与应用,2009,3(1):9-13.
    [76] Z. X. Mu, A. M. Wu, L. Jia, et al. Investigation of the mechanical and structural properties of AlN thin films prepared by mid-frequency pulsed magnetron sputtering [J]. Material science forum, 2007, 561~565: 1185-1188.
    [77]郝保红,黄俊华.晶体生长机理的研究综述[J].北京石油化工学院学报,2006,14(2):58-64.
    [78]孙大明,孙兆奇.金属陶瓷薄膜及其在光电子技术中的应用[M].北京:科学出版社,2004:171.
    [79]宋诗哲.腐蚀电化学研究方法[M].北京:化学工业出版社,1988:154-165.
    [80] Thornton, A. John. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings[J]. Journal of Vacuum Science and Technology, 1974, 11(4): 666-670.
    [81]霍宏伟,王福会,李瑛. Al扩散涂层对AZ91D Mg合金耐腐蚀性能的影响[J].腐蚀科学与防护技术,2001,13:484-486.
    [82] Georg Reiners, Michael Griepentrog. Hard coatings on magnesiun alloys by sputter deposition using a pulsed d.c. bias voltage[J]. Surface and Coatings Technology, 1995, 76-77: 809-814.
    [83] Hikmet Altun, Sadri Sen. The effect of DC magnetron sputtering AlN coatings on the corrosion behaviour of magnesium alloys[J]. Surface and Coatings Technology, 2005, 197(2-3): 193-200.
    [84] Frank Hollstein, Renate Wiedemann, Jana Scholz. Characteristics of PVD-coatings on AZ31hp magnesium alloys[J]. Surface and Coatings Technology, 2003, 162(2-3): 261-268.
    [85] Guosong Wu, Xiaoqin Zeng, Geyang Li, et al. Preparation and characterization of ceramic/metal duplex coatings deposited on AZ31 magnesium alloy by multi-magnetron sputtering[J]. Materials Letters, 2006, 60(5): 674-678.
    [86] M. H. Lee, I. Y. Bae, K. J. Kim, et al. Formation mechanism of new corrosion resistance magnesium thin films by PVD method[J]. Surface and Coatings Technology, 2003, 169-170(2): 670-674.
    [87]周晓艳,周宏. 21世纪绿色工程材料——Mg合金[J].南方金属,2004,(138):4-9.
    [88]黄海军,韩秋华.镁及镁合金的特性与应用[J].热处理技术与装备,2010,31(3):6-8,13.
    [89]严琦琦,张辉,陈振华.热处理对挤压镁合金AZ91和ZK60组织与性能的影响[J].金属热处理,2006,31(11):71-74.
    [90]杨栋华,超细晶/纳米晶纯Al厚膜的制备及性能研究[D].重庆:重庆工学院,2008,66.
    [91] D. Dudzinski, A. Devillez, A. Moufki, et al. A review of developments towards dry and high speed machining of Inconel 718 alloy[J]. International Journal of Machine Tools & Manufacture, 2004, 4(44): 439-456.
    [92]邵丽娟,非平衡磁控溅射离子镀TiN、TiAlN涂层抗高温氧化行为的研究[J].材料热处理,2009,38(8):93-95.
    [93]喻利花,薛安俊,董松涛,等. Si含量对Ti-Al-Si-N薄膜微结构与力学性能的影响[J].材料热处理学报,2010,31(7):140-145.
    [94]吴国松.镁合金表面PVD膜层的制备与腐蚀破坏[D].上海:上海交通大学,2006,83.
    [95]杨栋华.超细晶/纳米晶纯Al厚膜的制备及性能研究[D].重庆:重庆工学院,2008,77-79.
    [96]张岩,李晓芳,田林海,等.温度对AZ91D镁合金表面渗镀铝涂层组织结构和性能的影响[J].轻合金加工技术,2010,38(10):35-38.
    [97]陈君.镁合金及其Ti/Al涂层在Hank's溶液中的腐蚀研究[D].重庆:重庆理工大学,2009,42.
    [98]杨栋华.超细晶/纳米晶纯Al厚膜的制备及性能研究[D].重庆:重庆工学院,2008,89.
    [99] C. Mitterer, P. H. Mayrhofer, W. Waldhauser, et al. The influence of the ion bombardment on the optical properties of TiNx and ZrNx coatings[J]. Surface and Coatings Technology, 1998, 108-109: 230-235.
    [100]杨栋华.超细晶/纳米晶纯Al厚膜的制备及性能研究[D].重庆:重庆工学院,2008,81-82
    [101]吕学超,汪小琳,鲜晓斌,等.偏压对铀上磁控溅射铝镀层微结构及残余应力的影响[J].原子能科学技术,2003, 37: 121-125.
    [102]王玉江,马欣新,唐光泽,等.偏压对316L不锈钢上磁控溅射镀铝膜结构的影响研究[J].材料保护,2008,41(10):246-248.
    [103]吕学超.金属铀表面Al、Al2O3和Al-Zn三种镀层的防腐蚀性能研究[D].绵阳:中国工程物理研究院,2003,20.
    [104] J. Kohlscheen, H. R. Stock, P. Mayr. Chemical bonding in magnetron sputtered TiNx coatings andits relation to diamond turnability[J]. Surface and Coatings Technology, 2001, 142-144: 992-998.
    [105] R. D. Arnella, J. S. Colligona, K. F. Minnebaev, et al. The effect of nitrogen content on the structure and mechanical properties of TiN films produced by magnetron sputtering[J]. Vacuum, 1996, 47(5): 425-431.
    [106]吴国松.镁合金表面PVD膜层的制备与腐蚀破坏[D].上海:上海交通大学,2006,92.
    [107] A. A. Adjaottor, E. I. Meletis, S. Logothetidis, et al. Effect of substrate bias on sputter-deposited TiCx, TiNy and TiCxNy thin films[J]. Surface and Coatings Technology, 1995, 76-77: 142-148.
    [108]徐成俊.磁控溅射TiN及ZrN薄膜的特性研究[D].重庆:重庆大学,2005,26.
    [109] F. Vaz, P. Machado, L. Rebouta, et al. Physical and morphological characterization of reactively magnetron sputtered TiN films[J]. Thin Solid Films, 2002, 420-421: 421-428.
    [110] Ning Jiang, H. J. Zhang, S. N. Bao, et al. XPS study for reactively sputtered titanium nitride thin films deposited under different substrate bias[J]. Physica B: Condensed Matter, 2004, 352(1-4): 118-126.
    [111]黄美东,林国强,董闯.偏压对电弧离子镀薄膜表面形貌的影响机理[J].金属学报,2003,39(5):510-515.
    [112] C. Mitterer, P. H. Mayrhofer, W. Waldhauser, et al. The influence of the ion bombardment on the optical properties of TiNx and ZrNx coatings[J]. Surface and Coatings Technology, 1998, 108-109: 230-235.
    [113]王玉江,马欣新,唐光泽,等.偏压对316L不锈钢上磁控溅射镀铝膜结构的影响研究[J].材料保护,2008, 41(10):246-248.
    [114]刘昕.反应磁控溅射制备(Ti, Al)N薄膜的研究[D].长沙:中南大学,2004,30-31.
    [115]李学超.磁控溅射Ti-Al-N和W-Ti-N薄膜的制备及摩擦学性能研究[D].镇江:江苏大学,2010,24-26.
    [116] M. A. Meyers, A. Mishra, D. J. Benson. Mechanical properties of nanocrystalline materials[J]. Progress in Materials Science, 2006, 51(4): 427-556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700