与神经退行性疾病相关的氧化还原活性金属络合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经退行性疾病是一类大脑和脊髓的神经元丧失的疾病。其中阿尔茨海默病(Alzheimer's Disease, AD)和帕金森病(Parkinson's Disease, PD)是全球发病率极高的老年神经退行性疾病,朊病毒病(Prion, PrP)是唯一具有传染性的神经退行性疾病。目前,有关诱导这类神经疾病发生的因素尚不明确。近年来的研究表明,除蛋白聚集之外,氧化应激效应被认为是导致神经退行性疾病的主要原因之一。由氧化还原活性的金属离子(如Cu(Ⅱ)、Fe(Ⅲ))催化产生的活性氧物质可以削弱线粒体的生理功能、破坏细胞膜等。基于上述考虑,本论文重点研究了氧化还原活性的金属离子在神经退行性疾病中所起的作用,探讨了金属离子与神经退行性疾病发病机理的关系,具体工作包括:
     一、β-淀粉样蛋白-Cu(Ⅱ)络合物(Aβ-Cu(Ⅱ))与AD的发生密切相关。本研究测定了Aβ-Cu(Ⅱ)氧化抗坏血酸(AA)的速率,提出了催化氧化的机制。所研究的Aβ包括Aβ(1-16)、Aβ(1-42)和Aβ(1-42)聚集体。催化AA氧化的次序依次为Aβ(1-16)-Cu(Ⅱ)>Aβ(1-42)-Cu(Ⅱ)>Aβ(1-42)聚集体-Cu(Ⅱ)>Aβ(1-42)-Cu(Ⅱ)聚集物。不同于游离的Cu(Ⅱ),Aβ-Cu(Ⅱ)络合物催化AA氧化的最终产物为H2O2。尽管Aβ-Cu(Ⅱ)络合物催化产生的H2O2的破坏能力远低于游离Cu(Ⅱ)催化产生的羟基自由基(OH·),但由于Aβ聚集体可以吸附在细胞膜表面,故Aβ-Cu(Ⅱ)催化产生的活性氧物质可能会对AD病人大脑的细胞膜造成破坏。
     二、多巴胺(DA)神经元的凋亡、铁离子的大量积累以及由α-突触核蛋白(alpha-synuclein,α-syn)聚集物所产生的路易小体是PD的三大病理学特征。α-syn可以与Cu(Ⅱ)形成α-syn-Cu(Ⅱ)络合物。本研究测定了α-syn-Cu(Ⅱ)络合物的氧化还原电位为0.018 V (vs. Ag/AgCl),该络合物可被生物体内常见还原性物种AA还原成α-syn-Cu(Ⅰ),而后者可被O2再氧化成α-syn-Cu(Ⅱ)。催化产生的H2O2可导致SY-HY5Y神经细胞的凋亡。因此,氧化应激效应可能是导致PD的重要原因之一,而α-syn-Cu(Ⅱ)在氧化应激过程中可能扮演了重要角色。
     三、Fe(Ⅲ)可以催化DA氧化生成黑色素。本研究表明三磷酸腺苷(ATP)可以与DA-Fe(Ⅲ)形成DA-Fe(Ⅲ)-ATP三元络合物,阻断Fe(Ⅲ)诱导DA氧化的途径,从而抑制了DA或DA-Fe(Ⅲ)的细胞毒性。正常情况下,ATP在细胞内的含量在1~10 mM之间,因此,DA与Fe(Ⅲ)在人体内完全可能以Ⅰ)A-Fe(Ⅲ)-ATP的形式存在。但在PD病人中,ATP的含量大大降低,因此,ATP的缺损可能是导致PD发病的重要原因之一。
     四、PrP蛋白可以络合Cu(Ⅱ),参与Cu(Ⅱ)的代谢过程。PrP蛋白的聚集是朊病毒的主要病理学特征。PrP的N-端有四个PHGGGWGQ(简称OP)单元,当[PrP]:[Cu(Ⅱ)]>1时,Cu(Ⅱ)与PrP中的四个PHGGGWGQ形成OP4-Cu(Ⅱ)络合物;当[PrP]:[Cu(Ⅱ)]<1时,Cu(Ⅱ)可以与PrP中的每个PHGGGWGQ形成OP4-Cu(Ⅱ)4络合物。本论文系统研究了OP4-Cu(Ⅱ)及OP4-Cu(Ⅱ)4络合物的氧化还原特性,计算了相应的OP4-Cu(Ⅰ)及OP4-Cu(Ⅰ)4络合物的络合系数并测试了其在氧气中的稳定性。结果表明OP4-Cu(Ⅱ)不能够催化AA的氧化,而OP4-Cu(Ⅱ)4可以催化AA氧化产生H2O2。阐述了PrP在铜离子代谢及信号传递等方面的作用原理。
     五、金属硫蛋白(MT)具有重金属解毒、清除自由基等作用。近年来,MT在神经系统中的生理作用引起了人们的广泛重视。我们研究了谷胱甘肽氧化还原电对诱导的MT的金属释放过程。采用超滤膜对谷胱甘肽氧化还原电对和MT的反应液进行分离,利用电化学和紫外可见光谱等手段检测了反应前后MT中金属离子的释放和巯基变化情况。该研究对阐述MT在环境毒理学方面的作用具有重要意义,为研究其它氧化还原电对(如α-syn-Cu(Ⅱ)、Aβ-Cu(Ⅱ))与MT的相互作用过程提供了一种简洁、高效的手段。
Neurodegeneration is termed as the progressive loss of structures or functions of neurons, which eventually results in death of neurons. The main neurodegenerative diseases include Parkinson's disease and Alzheimer's disease. Prion disease is another neurodegenerative form with infectivity. Although many neurodegenerative diseases are manifested by the aggregation of the amyloidogenic proteins (e.g.,β-amyloid or Aβin Alzheimer's disease (AD), alpha-synuclein (α-syn) in Parkinson's disease (PD), and prion protein in Prion disease), oxidative stress has also been implicated in the pathogenesis of neurodegenerative diseases. Consequently, metal-induced oxidative stree processes have been an area under active pursuit. The implication of metal-induced oxidative stress is extremely broad, ranging from acceleration of the formation of reactive oxygen species (ROS) in the presence of redox-active metals such as copper and iron, mitochondria function impairment, and neuronal membrane damage through lipid peroxidation to depletion of vital intracellular species. Based on the above considerations, we have carried out the following studies:
     1. A forefront of the research on Alzheimer's disease is the interaction of amyloid beta (Aβ) peptides with redox-active metal ions and the biological relevance of the Aβ-metal complexes to neuronal cell loss and homeostasis of essential metals and other cellular species. This work is concerned with the kinetic and mechanistic studies of the ascorbic acid (AA) oxidation by molecular oxygen, which is facilitated by Cu(Ⅱ) complexes with Aβ(1-16), Aβ(1-42), and aggregates of Aβ(1-42). The mechanism for the AA oxidation in which the oxidation states of the copper center in the Aβcomplexes alternate between +2 and +1 is proposed. The catalytic activity of Cu(Ⅱ) complex towards AA oxidation was found to decrease in the order of free Cu(Ⅱ)>Aβ(1-16)-Cu(Ⅱ)> Aβ(1-42)-Cu(Ⅱ)> Cu(Ⅱ) complexed by the Aβoligomer/fibril mixture> Cu(Ⅱ) in Aβfibrils. Unlike free Cu(Ⅱ), in the presence of AA, Aβ-Cu(Ⅱ) complexes facilitate the reduction of oxygen by producing H2O2 as a final product. Although Cu(Ⅱ) bound to oligomeric and fibrous Aβaggregates is less effective than free Cu(Ⅱ) and the monomeric Aβ-Cu(Ⅱ) complex in producing ROS, in vivo the Cu(Ⅱ)-containing Apoligomers and fibrils might be more biologically relevant given their strong association with cell membranes and the closer proximity of ROS to cell membranes.
     2. Parkinson's disease, one of the leading neurodegenerative diseases, is characterized by the degeneration of dopaminergic neurons in the substantia nigra (SN), iron overload in SN and the presence of Lewy bodies of abnormal cytoplasmic inclusions that are mainly composed of alpha-synuclein (α-syn) in the dying neurons.α-syn is known to bind Cu(Ⅱ). The redox potential of theα-syn-Cu(Ⅱ) complex was determined to be 0.018 V (vs. Ag/AgCl). Furthermore, the Cu(Ⅱ) center can be readily reduced to Cu(Ⅰ), and possible reactions ofα-syn-Cu(Ⅱ) with cellular species (e.g., O2, ascorbic acid) have been investigated. In addition, the generated H2O2 was demonstrated to reduce the viability of the neuroblastoma SY-HY5Y cells. Our results thus suggest that oxidative stress is at least partially responsible for the loss of dopaminergic cells in PD brain and reveal the multifaceted role of theα-syn-Cu(Ⅱ) complex in oxidative stress associated with PD symptoms.
     3. Iron has been proven, in vitro, to catalyze the oxidation of DA by oxygen to generate neuromelanin. In this work, we investigated the formation of ternary complexes of DA-Fe(Ⅲ) with ATP. The results reveal that the ligation by ATP almost totally shut down the catalytic oxidation of DA via blockage of the oxygen access to the Fe(Ⅲ) center. In addition, ATP could decrease greatly the cell toxicity of DA or DA-Fe(Ⅲ) complex. In particular, ATP is the chemical energy for cell function and is abundant in cells (1~10 mM). It is possible that ATP-DA-Fe(Ⅲ) exists in vivo. In relevance to PD is the significant depletion of ATP in neuronal cell of PD afflicted brain. Therefore, the depletion of ATP might be a crucial cause for PD.
     4. A misfolded form of the prion protein (PrP) leads to the development of the prion diseases. The linkage between PrP and bioavailable Cu(Ⅱ) has been well established. PrP contains four highly conserved repeats of PHGGGWGQ octapeptide (OP) sequence within its N-terminal domain for Cu(Ⅱ) sequestration. In vitro studies have shown that when the concentration ratio between PrP and Cu(Ⅱ) is close to 1:1, three or four histidines in the OP4 domain coordinate the single Cu(Ⅱ) center (OP4-Cu(Ⅱ)). When the Cu(Ⅱ) concentration is four or more equivalents of Cu(Ⅱ), each of the four OPs binds one Cu(Ⅱ), giving rise to OP4-Cu(Ⅱ)4. We report here that the redox activity (cycling) of Cu(Ⅱ) is highly dependent on the mode in which Cu(Ⅱ) is coordinated within the PrP octarepeat domain. It is indicated that PrP possesses the unique ability to quench the copper redox activity in the form of OP4-Cu(Ⅱ) but promote the controlled H2O2 production in the form of OP4-Cu(Ⅱ)4. The results demonstrated herein are helpful for understanding the function of PrP in vivo.
     5. MTs paly an important role in regulation of essential metals, detoxification of heavy metals, and scavenging of free radicals. Recently, MTs have captured the attention of many researchists. In this study, modulation of metal release from MTs by the glutathione redox couple has been investigated. Upon separation of Zn2+ generated from the reaction mixture of MTs and glutathione redox couple (GSH/GSSG) with a centrifugal filter membrane, electrochemical technique was used in tandom with UV-vis spectrophotometry to characterize Zn2+ content and the concomitant conversion between free thiol groups and disulfide bonds. The new approach is demonstrated to be well suited for investigation of redox regulation of MT (e. g. MT/a-syn-Cu(Ⅱ) and MT/Aβ-Cu(Ⅱ)).
引文
[1]Berchtold N.C., Cotman C.W. Evolution in the conceptualization of dementia and Alzheimer's disease:Greco-Roman period to the 1960s. Neurobiol. Aging. 1998,19(3):173-189.
    [2]Huang M., Yuan M., Zhang X.Y.阿尔茨海默病临床治疗药物进展.Clin. J. Med. Offic.2010,38(2):307-309.
    [3]Brookmeyer R., Johnson E., Ziegler-Graham K., Arrighi H.M. Forecasting the global burden of Alzheimer's disease. Alzheimer's & Dementia 2007,3 (3):186-191.
    [4]Molsa P.K., Marttila R.J., Rinne U.K. Survival and cause of death in Alzheimer's disease and multi-infarct dementia. Acta Neurol. Scand.1986, 74(2):103-107.
    [5]Backman L., Jones S., Berger A.K., Laukka E.J., Small B.J. Multiple cognitive deficits during the transition to Alzheimer's disease. J. Intern. Med.2004, 256(3):195-204.
    [6]Arnaiz E., Almkvist O. Neuropsychological features of mild cognitive impairment and preclinical Alzheimer's disease. Acta Neurol. Scand.2003, 179:34-41.
    [7]Francis P.T., Palmer A.M., Snape M., Wilcock G.K. The cholinergic hypothesis of Alzheimer's disease:a review of progress. J. Neurol. Neurosurg. Psychiatr. 1999,66(2):137-147.
    [8]Mudher A., Lovestone S. Alzheimer's disease-do tauists and baptists finally shake hands? Trends Neurosci.2002,25(1):22-26.
    [9]Hardy J., Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol. Sci.1991,12(10):383-388.
    [10]Su B., Wang X., Nunomura A., Moreira P.I., Lee H.G., Perry G., Smith M.A., Zhu X. Oxidative stress signaling in Alzheimer's disease. Current Alzheimer research.2008,5(6):525-532.
    [11]Zotova E., Nicoll J.A.R., Kalaria R., Holmes C., Boche D. Inflammation in Alzheimer's disease:relevance to pathogenesis and therapy. Alzheimer's Research Therapy 2010,2(1):1-9.
    [12]Games D., Adams D., Alessandrini R., Barbour R., Berthelette P., Blackwell C., Carr T., Clemens J., Donaldson T., Gillespie F. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature.1995,373(6514):523-527.
    [13]Lauren J., Gimbel D.A., Nygaard H.B., Gilbert J.W., Strittmatter S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature.2009,457:1128-1132.
    [14]Yankner B.A., Duffy L.K., Kirschner D.A. Neurotrophic and neurotoxic effects of amyloid beta protein:reversal by tachykinin neuropeptides. Science.1990, 250(4978):279-282.
    [15]Nikolaev A., McLaughlin T., O'Leary D., Tessier-Lavigne M. N-APP binds DR6 to cause axon pruning and neuron death via distinct caspases. Nature. 2009,457981-989.
    [16]Lacor P.N., Buniel M.C., Furlow P.W., Clemente A.S., Velasco P.T., Wood M., Viola K.L., Klein W.L. Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's Disease. J. Neurosci.2007,27(4):796-807.
    [17]Bamberger M.E., Harris M.E., McDonald D.R., Husemann J., Landreth G.E. A cell surface receptor complex for fibrillar beta amyloid mediates microglial activation. J. Neurosci.2003,23(7):2665-2674.
    [18]Reddy P.H. Amyloid precursor protein-mediated free radicals and oxidative damage:implications for the development and progression of Alzheimer's disease. J. Neurochem.2006,96(1):1-13.
    [19]Opazo C., Huang X., Cherny R.A., Moir R.D., Roher A.E., White A.R., Cappai R., Masters C.L., Tanzi R.E., Inestrosa N.C., Bush A.I. Metalloenzyme-like activity of Alzheimer's disease beta amyloid-Cu2+ dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2. J. Biol. Chem.2002,277(43):4030-4038.
    [20]Jiang D., Men L., Wang J., Zhang Y., Chickenyen S., Wang Y., Zhou F. Redox reactions of copper complexes formed with different β-Amyloid peptides and their neuropathalogical relevance. Biochemistry.2007,46(32):9270-9282.
    [21]Jiang D., Li X., Williams R., Patel S., Men L., Wang Y., Zhou F. Ternary complexes of iron, Amyloid-β, and nitrilotriacetic acid:binding affinities, redox properties, and relevance to iron-induced oxidative stress in Alzheimer's disease. Biochemistry 2009,48(33):7939-7947.
    [22]Su X.Y., Wu W.H., Huang Z.P., Hu J., Lei P., Yu C.H., Zhao Y.F., Li Y.M. Hydrogen peroxide can be generated by tau in the presence of Cu (Ⅱ) Biochem Biophys. Res. Commun.2007,358(2):661-665.
    [23]Hashimoto M., Rockenstein E., Crews L., Masliah E. Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer's and Parkinson's diseases. Neuromolecular Med.2003,4 (1-2):21-36.
    [24]Birks J. Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database Syst Rev.2006, 1(2):CD005593.
    [25]Memantine. US National Library of Medicine 2004:http://www.nlm.nih.gov/medlineplus/druginfo/meds/a604006.html.
    [26]Sink K.M., Holden K.F., Yaffe K. Pharmacological treatment of neuropsychiatric symptoms of dementia:a review of the evidence. J. Am. Med. Assoc.2005,293(5):596-608.
    [27]Li J., Wu H.M., Zhou R.L., Liu G.J., Dong B.R. Huperzine A for Alzheimer's disease. Cochrane Database of Systematic Reviews.2008,2:CD005592.
    [28]Eubanks L.M., Rogers C.J., Beuscher A.E., Koob G.F., Olson A.J., Dickerson T.J., Janda K.D. A molecular link between the active component of marijuana and Alzheimer's disease pathology. Molecular Pharmaceutics.2006, 3(6):773-777.
    [29]Liu S., Liu M., Zhu B. Study Progress on Active Components of Chinese Herbal Medicine Against Alzheimer's Disease. Medical. Recapitulate.2010, 16(18):2821-2823.
    [30]Katzenschlager R., Head J., Schraq A., Ben-Shlomo Y., Evans A., Lees A.J. Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology.2008,71(7):474-480.
    [31]Lesage S., Brice A. Parkinson's disease:from monogenic forms to genetic susceptibility factors. Hum. Mol. Genet.2009,18 (R1):R48-59.
    [32]Schober A. Classic toxin-induced animalmodels of Parkinson's disease: 6-OHDA and MPTP. Cell Tissue Res.2004,318(1):215-224.
    [33]The national collaborating centre for chronic conditions:symptomatic pharmacological therapy in Parkinson's disease. Parkinson's Disease.2006, London:Royal College of Physicians:59-100.
    [34]Goldenberg M.M. Medical management of Parkinson's disease P&T33;2008.
    [35]Pierri M., Vaudano E., Sager T., Englund U. KW-6002 protects from MPTP induced dopaminergic toxicity in the mouse. Neuropharmacology.2005,48 (4):517-524.
    [36]Savola J.M., Hill M., Engstrom M., Merivuori H., Wurster S., McGuire S.G., Fox S.H., Crossman A.R., Brotchie J.M. Fipamezole (JP-1730) is a potent alpha 2 adrenergic receptor antagonist that reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson's disease. Mov. Disord.2003, 18(8):872-883.
    [37]Kim J.-H., Auerbach J.M., Rodriguez-Gomez J.A., Velasco I., Gavin D., Lumelsky N., Lee S.-H., Nguyen J., Sanchez-Pernaute R., Bankiewicz K., McKay R. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature.2002,418(6893):50-56.
    [38]Lee S.H., Lumelsky N., Studer L. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol.2000, 18(6):675-679.
    [39]Ourednik J., Ourednik V., Lynch W.P., Schachner M., Snyder E.Y. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat. Biotechnol.2002,20(11):1103-1110.
    [40]Wolff J.A., Fisher L.J., Xu L., Jinnah H.A., Langlais P.J., Iuvone P.M., O'Malley K.L., Rosenberg M.B., Shimohama S., Friedmann T. Grafting fibroblasts genetically modified to p roduce L-DOPA in a rat model of Parkinson's disease. Proc. Natl. Acad. Sci. USA.1989,86(22):9011-9014.
    [41]Winklhofer K.F. The parkin protein as a therapeutic target in Parkinson's disease. Expert. Opin. Ther. Targets.2007,11(12):1543-1552.
    [42]Aguzzi A., Polymenidou M. Mammalian prion biology:one century of evolving concepts. Cell.2004,116(2):313-327.
    [43]Singh N., Singh A., Das D., Mohan M.L. Redox control of prion and disease pathogenesis. Antioxid. Redox Signal.2010,12(11):1271-1294.
    [44]Delasnerie-laupretre N., Poser S., Pocchiari M., Wientjens D.P.W.M., Will R. Creutzfeldt-Jakob disease in Europe. Lancet 1995,346(8989):898-899.
    [45]Baker H.F., Ridley R.M. Prion diseases. Totowa, New Jersey:Humana Press; 1996
    [46]Hardy J., Selkoe D.J. Medicine-The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science.2002,297:353-356.
    [47]Selkoe D.J. Alzheimer's Disease:Genotypes, phenotypes, and treatments. Science.1997,275:630-631.
    [48]Varadarajan S., Yatin S., Aksenova M., Butterfield D.A. Review:Alzheimer's amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J Struct. Biol.2000,130:184-208.
    [49]Bush A.I. The metallobiology of Alzheimer's disease. Trends Neurosci.2003, 26(4):207-214.
    [50]Liu G., Huang W., Moir R.D., Vanderburg C.R., Lai B., Peng Z., Tanzi R.E., Rogers J.T., Huang X. Metal exposure and Alzheimer's pathogenesis. J. Struct. Biol.2006,155(1):45-51.
    [51]Lovell M.A., Robertson J.D., Teesdale W.J., Campbell J.L., Mardesbery W.R. Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci.1998, 158:47-52.
    [52]Baruch-Suchodolsky R., Fischer B. Aβ40, either soluble or aggregated, is a remarkably potent antioxidant in cell-free oxidative systems. Biochemistry. 2009,48(20):4354-4370.
    [53]Dong J., Atwood C.S., Anderson V.E., Siedlak S.L., Smith M.A., Perry G., Carey P.R. Metal binding and oxidation of amyloid-β within isolated senile plaque cores:Raman microscopic evidence. Biochemistry.2003, 42(10):2768-2773.
    [54]Faller P., Hureau C. Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-βpeptide. Dalton Trans.2009:1080-1094.
    [55]Guilloreau L., Combalbert S., Sournia-Saquet A., Mazarguil H., Faller P. Redox chemistry of copper-amyloid-beta:The generation of hydroxyl radical in the presence of ascorbate is linked to redox-potentials and aggregation state ChemBioChem.2007,8(11):1317-1325.
    [56]Huang X., Cuajungco M.P., Atwood C.S., Hartshorn M.A., Tyntall J.D.A., Hanson G.R., Stokes K.C., Leopold M., Multhaup G., Goldstein L.E., Scarpa R.C., Saunders A.J., Lim J., Moir R.D., Glabe C., Bowden E.F., Masters C.L., Fairlie D.P., Tanzi R.E., Bush A.I. Cu(Ⅱ) potentiation of Alzheimer's Aβ neurotoxicity. J. Biol. Chem.1999,274(52):37111-37116.
    [57]Jakob-Roetne R., Jacobsen H. Alzheimer's disease:From pathology to therapeutic approaches. Angew. Chem. Int. Ed.2009,48(17):3030-3059.
    [58]Karr W.J., Szalai V.A. Cu(Ⅱ) binding to monomeric, oligomeric, and fibrillar forms of the Alzheimer's disease Amyloid-β peptide. Biochemistry.2008, 47(17):5006-5016.
    [59]Rottkamp C.A., Raina A.K., Zhu X., Bush A.I., Atwood C.S., Chevion M., Perry G., Smith M.A. Redox-active iron mediates amyloid-β toxicity. Free Rad. Biol. Med.2001,30(4):447-450.
    [60]Sayre L.M., Perry G., Harris P.L.R., Liu Y., Schubert K.A., Smith M.A. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer's disease. J. Neurochem.2000,74(1):270-279.
    [61]Shearer J., Szalai V.A. The amyloid-β peptide of Alzheimer's disease binds cu in a linear Bis-His coordination environment:Insight into a possible neuroprotective mechanism for the amyloid-β peptide. J. Am. Chem. Soc.2008, 130(52):17826-17835.
    [62]Smith M.A., Harris P.L.R., Sayre L.M., Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. U S A.1997,94 (18):9866-9868
    [63]Syme C.D., Nadal R.C., Rigby S.E.J., Viles J.H. Copper binding to the amyloid-beta peptide associated with Alzheimer's disease. J. Biol. Chem.2004, 279:18169-18177.
    [64]Huang X., Atwood C.S., Hartshorn M.A., Multhaup G., Goldstein L.E., Scarpa R.C., Cuajungco M.P., Gray D.N., Lim J., Moir R.D., Tanzi R.E., Bush A.I. The a beta peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry.1999,38(24):7609-7614.
    [65]Sigel A., Sigel H., Sigel R.K.O. Metal Ions in Life Sciences. West Sussex:John Wiley & Sons; 2006.
    [66]Atwood C.S., Scarpa R.C., Huang X., Moir R.D., Jones W.D., Fairlie D.P., Tanzi R.E., Bush A.I. Characterization of copper interactions with Alzheimer amyloid-β peptides:identification of an attomolar-affinity copper binding site on amyloid β1-42. J. Neurochem.2000,75(3):1219-1233.
    [67]Hatcher L.Q., Hong L., Bush W.D., Carducci T., Simon J.D. Quantification of the binding constat of copper(II) to the Amyloid-beta peptide. J. Phys. Chem. B. 2008,112(27):8160-8164.
    [68]Maitti N.C., Jiang D., Wain A.J., Patel S., Dinh K.L., Zhou F. Mechanistic studies of Cu(Ⅱ) binding to amyloid-β peptides and fluorescence and redox behaviors of the resulting complexes. J. Phys. Chem. B.2008, 112(28):8406-8411.
    [69]Sarell C.J., Syme C.D., Rigby S.E.J., Viles J.H. Copper(Ⅱ) binding to amyloid-β fibrils of Alzheimer's disease reveals a picomolar affinity: Stoichiometry and coordination geometry are independent of AP oligomeric form. Biochemistry.2009,48(20):4388-4402.
    [70]Ma Q.-F., Hu J., Wu W.-H., Liu H.-D., Du J.-T., Fu Y., Wu Y.-W., Lei P., Zhao Y.-F., Li Y.-M. Characterization of copper binding to the peptide amyloid-beta(1-16) associated with Alzheimer's disease. Biopolymers.2006, 83(1):20-31.
    [71]Tougu V., Karafin A., Palumaa P. Binding of zinc(Ⅱ) and copper(Ⅱ) to the full-length Alzheimer's amyloid-beta peptide. J. Neurochem.2008, 104(5):1249-1259.
    [72]Hewitt N., Rauk A. Mechanism of hydrogen peroxide production by copper-bound amyloid beta peptide:A theoretical study. J. Phys. Chem. B.2009, 113(4):1202-1209.
    [73]Dryhurst G., Kadish K.M., Scheller F., Renneberg R. Biological Electrochemistry. New York, London:Academic Press; 1982.
    [74]Baruch-Suchodolsky R., Fischer B. Soluble amyloid β1-28-copper(Ⅰ)/copper(Ⅱ)/iron(Ⅱ) complexes are potent antioxidants in cell-Free systems. Biochemistry 2008,47 (30):7796-7806.
    [75]da Silva G.F.Z., Ming L.-J. Alzheimer's disease related copper(Ⅱ)-β-amyloid peptide exhibits phenol monooxygenase and catechol oxidase activities. Angew. Chem. Int. Ed.2005,44:5501-5504.
    [76]da Silva G.F.Z., Tay W.M., Ming L.-J. Catechol oxidase-like oxidation chemistry of the 1-20 and 1-16 fragments of alzheimers disease-related beta-amyloid peptide-their structure-activity correlation and the fate of hydrogen peroxide. J. Biol. Chem.2005,280(17):16601-16609.
    [77]Barabfis J.B., Nagy E., Degrell I. Ascorbic acid in cerebrospinal fluid-a possible protection against free radicals in the brain. Arch. Gerontol. Geriat.1995, 21(1):43-48.
    [78]Barron E.S.G., DeMeio R.H., Klemperer F. Studies on biological oxidations. V. Copper and hemochromogens as catalysts for the oxidation of ascorbic acid. The mechanism of the oxidation. J. Biol. Chem.1936,112:625-640.
    [79]Scarpa M., Vianello F., Signor L., Zennaro L., Rigo A. Ascorbate oxidation catalyzed by bis(histidine) copper(Ⅱ). Inorg. Chem.1996,35(18):5201-5206
    [80]Shtamm E.V., Purmal A.P., Skurlatov Y.I. Mechanism of catalytic ascorbic acid oxidation system Cu2+-ascorbic acid-O2. Int. J. Chem. Kinet.1979, Ⅺ:461-494.
    [81]Skurlatov Y.I., Kovner V.Y., Travin S.O., Kirsh Y.E., Purmal A.P., Kabanov V.A. The mechanism of ascorbic acid oxidation by Cu(Ⅱ)-poly-4-vinylpyridine complexes. Eur. Polym. J.1979,15(8):811-815.
    [82]Gorbunova N.V., Purmal A.P., Skurlatov Y.I., Travin S.O. On the mechanism of interaction copper (Ⅰ) and O2. Int. J. Chem. Kinet.1977,9(6):983-1005.
    [83]Pecci L., Montefoschi G., Cavallini D. Some new details of the copper-hydrogen peroxide interaction. Biochem. Biophys. Res. Commun.1997, 235:264-267.
    [84]Barb W.G., Baxendale J.H., George P., Hargrave K.R. Reactions of ferrous and ferric ions with hydrogen peroxide. Ⅰ. Ferrous-ion reaction. Trans Faraday Soc. 1951,47:462-500.
    [85]Morgan C., Colombres M., Nunez M.T., Inestrosa N.C. Structure and function of amyloid in Alzheimer's disease. Prog. Neurobiol.2004,74(6):323-349.
    [86]Kroneck P.M.H., Armstrong F.A., Merkle H., Marchesini A. Advances in chemistry, ascorbic acid:chemistry, metabolism, and uses. Washington, D. C.: American Chemical Society; 1982.
    [87]Murray I.V.J., Sindoni M.E., Axelsen P.H. Promotion of oxidative lipid membrane damage by amyloid β proteins. Biochemistry.2005, 44(37):12606-12613.
    [88]Kheterpal I., Williams A., Murphy C., Bledsoe B., Wetzel R. Structural features of the Aβ amyloid fibril elucidated by limited proteolysis. Biochemistry.2001, 40(39):11757-11767.
    [89]Luhrs T., Ritter C., Adrian M., Riek-Loher D., Bohrmann B., Dobeli H., Schubert D., Riek R.3D structure of Alzheimer's amyloid-β(1-42) fibrils. Proc. Natl. Acad. Sci. U S A.2005,102:17342-17347.
    [90]Paul C., Axelsen P.H. β sheet structure in amyloid β fibrils and vibrational dipolar coupling. J. Am. Chem. Soc.2005,127(16):5754-5755.
    [91]Seubert P., Vigo-Pelfrey C., Esch F., Lee M., Dovey H., Davis D., Sinha S., Schlossmacher M., Whaley J., Swindlehurst C., McCormack R., Wolfert R., Selkoe D.J., Lieberburg I., Schenk D. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature.1992,359:325-327.
    [92]Nadal R.C., Rigby S.E.J., Viles J.H. Amyloid β-complexes in both monomeric and fibrillar forms do not generate H2O2 catalytically but quench hydroxyl radicals. Biochemistry.2008,47:11653-11664.
    [93]Jiang D., Dinh K.L., Ruthenburg T.C., Zhang Y., Su L., Land D.P., Zhou F. A kinetic model for β-Amyloid adsorption at the air/solution interface and its implication to the β-amyloid aggregation process. J. Phys. Chem. B.2009, 113(10):3160-3168.
    [94]Terzi E., Holzemann G, Seelig J. Interaction of alzheimer beta-amyloid peptide (1-40) with lipid membranes. Biochemistry.1997,36(48):14845-14852.
    [95]Gaggelli E., Kozlowski H., Valensin D., Valensin G. Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem. Rev.2006,106(6):1995-2044.
    [96]Aronoff-Spencer E., Burns C.S., Avdievich N.I., Gerfen G.J., Peisach J., Antholine W.E., Ball H.L., Cohen F.E., Prusiner S.B., and Millhauser G.L Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry 2000,39(45):13760-13771.
    [97]Jenner P. Oxidative stress in Parkinson's disease. Ann. Neurol.2003, 53(15):S26-S36.
    [98]Schrock D.S., Baur J.E. Chemical imaging with voltammetry-scanning microscopy. Anal. Chem.2007,79(18):7053-7061.
    [99]Halliwell B. Reactive oxygen species and the central-nervoussystem. J. Neurochem.1992,59:1609-1623.
    [100]Crouch P.J., Barnham K.J., Duce J.A., Blake R.E., Masters C.L., Trounce I.A. Copper-dependent inhibition of cytochrome c oxidase by Aβ(1-42) requires reduced methionine at residue 35 of the Aβ peptide. J. Neurochem.2006, 99(1):226-236.
    [101]Crouch P.J., Blake R., Duce J.A., Ciccotosto G.D., Li Q., Barnham K.J., Curtain C.C., Cherny R.A., Cappai R., Dyrks T., Masters C.L., Trounce I.A. Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-β(1-42). J. Neurosci.2005,25:672-679.
    [102]Zhu M., Qin Z., Hu D., Munishkina L.A., Fink A.L. α-Synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles. Biochemistry 2006,45(26):8135-8142.
    [103]Karr J.W., Kaupp L.J., Szalai V.A. Amyloid-β binds Cu2+ in a mononuclear metal ion binding site. J. Am. Chem. Soc.2004,126(41):13534-13538.
    [104]Barb W.G., Baxendale J.H., George P., Hargrave K.R. Reactions of ferrous and ferric ions with hydrogen peroxide. I. Ferrous-ion reaction. Trans Faraday Soc. 1951,47:462-500.
    [105]Jiang D., Li X., Liu L., Yagnik G.B., Zhou F. Reaction rates and mechanism of the ascorbic acid oxidation by molecular oxygen facilitated by Cu(Ⅱ)-containing amyloid-β complexes and aggregates. J. Phys. Chem. B.2010, 114(14):4896-4903.
    [106]Gibb W.R.G., Lees A.J. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J. Neurol. Neurosurg. Psych.1988,51:745-752.
    [107]Forno L.S. Neuropathology of Parkinson's disease. J. Neuropathol. Exp. Neurol. 1996,55:259-272.
    [108]Spillantini M.G., Crowther R.A., Jakes R., Hasegawa M., Goedert M. a-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. USA 1998, 95:6469-6473.
    [109]Spillantini M.G., Schmidt M.L., Lee V.M.Y., Trojanowski J.Q., Jakes R., Goedert M. α-synuclein in Lewy bodies. Nature.1997,388:839-840.
    [110]Fink A.L. The aggregation and fibrillation of a-synuclein. Acc. Chem. Res. 2006,39(9):628-634.
    [111]Binolfo A., Lamberto G.R., Duran R., Quintanar L., Bertoncini C.W., Souza J.M., Cervenansky C., Zweckstetter M., Griesinger C., Fernandez C.O. Site-specific interactions of Cu(Ⅱ) with alpha and β-synuclein:Bridging the molecular gap between metal binding and aggregation. J. Am. Chem. Soc.2008, 130(35):11801-11812.
    [112]Jackson M.S., Lee J.C. Identification of the minimal copper(Ⅱ)-binding a-synuclein sequence. Inorg. Chem.2009,48 (19):9303-9307.
    [113]Kim K.S., Choi S.Y., Kwon H.Y., Woo M.H., Kang T.C., Kang J.H. Aggregation of a-synuclein induced by the Cu,Zn-superoxide dismutase and hydrogen peroxide system. Free Radical Biol. Med.2002,32:544-540.
    [114]Ceballos I., Lafon M., Javoyagid F., Hirsch E., Nicole A., Sinet P.M., Agid Y. Superoxide dismutase and Parkinson's disease. Lancet.1990, 335(34):1035-1036.
    [115]Dexter D.T., Carayon A., Javoyagid F., Agid Y., Wells F.R., Daniel S.E., Lees A.J., Jenner P., Marsden C.D. Alterations in the levels of iron, ferritin and other trace-metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. Brain.1991,114:1953-1975.
    [116]Pall H.S., Blake D.R., Gutteridge J.M., Williams A.C., Lunec J., Hall M., Taylor A. Raised cerebrospinal-fluid copper concentration in Parkinson's disease. Lancet 1987,2(8553):238-241.
    [117]Riederer P., Sofic E., Rausch W.D., Schmidt B., Reynolds G.P., Jellinger K., Youdim M.B.H. Transition-metals, ferritin, glutathione, and ascorbic-acid in Parkinsonian brains. J. Neurochem.1989,52(2):515-520.
    [118]Brown D.R. Metal binding to alpha-synuclein peptides and its contribution to toxicity. Biochem. Biophys. Res. Commun.2009,380(2):377-381.
    [119]Caughey B., Lansbury P.T. Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci.2003,26:267-298.
    [120]Paik S.R., Shin H.J., Lee J.H., Chang C.S., Kim J. Copper(Ⅱ)-induced self-oligomerization of α-synuclein. Biochem. J.1999,340:821-828.
    [121]Palecek E., Ostatna V., Masarik M., Bertoncini C.W., Jovin T.M. Changes in interfacial properties of alpha-synuclein preceding its aggregation. Analyst 2008, 133:76-84.
    [122]Sian J., Dexter D.T., Lees A.J., Daniel S., Agid Y., Javoyagid F., Jenner P., Marsden C.D. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol.1994, 36(3):348-355.
    [123]Sulzer D., Bogulavsky J., Larsen K.E., Behr G., Karatekin E., Kleinman M.H., Turro N., Krantz, D., Edwards R.H., Greene L.A., Zecca L. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc. Natl. Acad. Sci. USA.2000,97(22):11869-11874.
    [124]Dexter D.T., Sian J., Rose S., Hindmarsh J.G., Mann V.M., Cooper J.M., Wells F.R., Daniel S.E., Lees A.J., Schapira A.H.V., Jenner P., Marsen C.D. Indexes of oxidative stress and Mitochondrial function in individuals with incidental Lewy body disease. Ann. Neurol.1994,35(1):38-44.
    [125]Alam Z.I., Daniel S.E., Lees A.J., Marsden D.C., Jenner P., Halliwell B. A generalised increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease. J. Neurochem.1997,69(3):1326-1329.
    [126]Alam Z.I., Jenner A., Daniel S.E., Lees A.J., Cairns N., Marsden C.D., Jenner P., Halliwell B. Oxidative DNA damage in the parkinsonian brain:An apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem. 1997,69(3):1196-1203.
    [127]Peng Y., Wang C., Xu H., Liu Y., Zhou F. Binding of a-synuclein with Fe3+ and with Fe2+ and biological implications of the resultant complexes. J. Inorg. Biochem.2010,104:365-370.
    [128]Golts N., Snyder H., Frasier M., Theisler C., Choi P., Wolozin B. Magnesium inhibits spontaneous and ironinduced aggregation of a-synuclein. J. Biol. Chem. 2002,277(18):16116-16123.
    [129]Ding T., Lee S.J., Rochet J.C., Lansbury P.T. Annular α-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry.2002,41(32):10209-10217.
    [130]Binolfi A., Rasia R.M., Bertoncini C.W., Ceolin M., Zweckstetter M., Griesinger C., Jovin T.M., Fernandez C.O. Interaction of Ⅱ-synuclein with divalent metal ions reveals key differences:A link between structure, binding specificity and fibrillation enhancement. J. Am. Chem. Soc.2006, 128(30):9893-9901.
    [131]Rasia R.M., Bertoncini C.W., Marsh D., Hoyer W., Cherny D., Zweckstetter M., Griesinger C., Jovin T.M., Fernandez C.O. Structural characterization of copper(II) binding to a-synuclein:Insights into the bioinorganic chemistry of Parkinson's disease. Proc. Natl. Acad. Sci. USA.2005,102(12):4294-4299.
    [132]Bard A.J., Faulkner L.R. Electrochemical Methods. Fundamentals and Applications. New York:John Wiley & Sons;2001.
    [133]Atwooda C.S., Obrenovicha M.E., Liu T., Chan H., Perry G., Smith M.A., Martins R.N. Amyloid-β:A chameleon walking in two worlds:a review of the trophic and toxic properties of amyloid-β.Brain Res. Rev.2003,43(1):1-16.
    [134]Caviedes P., Segura-Aguilar J. The price of development in chile Neuroreport 2001,12:A25.
    [135]Paris I., Perez-Pastene C., Couve「E., Caviedes P., LeDoux S., Segura-Aguilar J. Copper-Dopamine Complex Induces Mitochondrial Autophagy Preceding Caspase-independent Apoptotic Cell Death. J. Biol. Chem.2009, 284(20):13306-13315.
    [136]Malkus K.A., Tsika E., Ischiropoulos H. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease:how neurons are lost in the Bermuda triangle. Mol. Neurodegener. 2009,4:24-40.
    [137]Singleton A.B., Farrer M., Johnson J., Singleton A., Hague S., Kachergus J., Hulihan M., Peuralinna T., Dutra A., Nussbaum R., Lincoln S., Crawley A., Hanson M., Maraganore D., Adler C., Cookson M.R., Muenter M., Baptista M., Miller D., Blancato J., Hardy J., Gwinn-Hardy K. a-Synuclein locus triplication causes Parkinson's disease. Science.2003,302(5646):841.
    [138]Gotz M.E., Double K., Gerlach M., Youdim M.B., Riederer P. The relevance of iron in the pathogenesis of Parkinson's disease. Ann. N. Y. Acad. Sci.2004, 1012:193-208.
    [139]Moore D.J., West A.B., Dawson V.L., Dawson T.M. Molecular pathophysiology of Parkinson's disease Annu. Rev. Neurosci.2005,28:57-87.
    [140]Conway K.A., Rochet J.-C., Bieganski R.M., Lansbury Jr. P.T. Kinetic stabilization of the α-synuclein proto(?)bril by a dopamine-a-synuclein adduct. Science.2001,294(7):1346-1349.
    [141]Follmer C., Romao L., Einsiedler C.M., Porto T.C., Lara F.A., Moncores M., Weissmuller G., Lashuel H.A., Lansbury P., Neto V.M., Silva J.L., Foguel D. Dopamine affects the stability, hydration, and packing of protofibrils and pibrils of the wild type and variants of α-synuclein. Biochemistry 2007,46(2):472-482.
    [142]Cappai R., Leck S.L., Tew D.J., Williamson N.A., Smith D.P., Galatis D., Sharples R.A., Curtain C.C., Ali F.E., Cherny R.A., Culvenor J.G., Bottomley S.P., Masters C.L., Barnham K.J., Hill A.F. Dopamine promotes alpha-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. FASEB J.2005,19:1377-1379.
    [143]Cole N.B., Murphy D.D., Lebowitz J., Di Noto L., Levine R.L., Nussbaum R.L Metal-catalyzed oxidation of a-synuclein:Helping to define the relationship between oligomers protofibrils and filaments. J. Biol. Chem.2005,280 (10):9678-9690.
    [144]Wolozin B., Golts N. Iron and Parkinson's Disease. Neuroscientist.2002 8:22-32
    [145]Hermida-Ameijeiras A., Mendez-Alvarez E., Sanchez-Iglesias S., Sanmartin-Suarez C., Soto-Otero R. Autoxidation and MAO-mediated metabolism of dopamine as a potential cause of oxidative stress:role of ferrous and ferric ions. Neurochem. Int.2004,45:103-116.
    [146]Linert W., Herlinger E., Jameson R.F., Kienzl E., Jellinger K., Youdim M.B.H. Dopamine,6-hydroxydopamine, iron, and dioxygen-their mutual interactions and possible implication in the development of Parkinson's disease. Biochim. Biophys. Acta.1996,1316:160-168.
    [147]Linert W., Jameson G.N.L. Redox reactions of neurotransmitters possibly involved in the progression of Parkinson's Disease. J. Inorg. Biochem.2000,79 319-326.
    [148]Graham D.G. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol.1978,14(4):633-643.
    [149]Irwin I., Langston J.W. Endogenous toxins as potential etiologic agents in Parkinson's disease. New York:Marcel Dekker; 1995.
    [150]Napolitano A., Pezzella A., Prota G. New reaction pathways of dopamine under oxidative stress conditions:Nonenzymatic iron-assisted conversion to norepinephrine and the neurotoxins 6-hydroxydopamine and 6,7-dihydroxytetrahydroisoquinoline. Chem. Res. Toxicol.1999,12 (11):1090-1097.
    [151]Pezzella A., d'Ischia M., Napolitano A., Misuraca G., Prota G. Iron-mediated generation of the neurotoxin 6-hydroxydopamine quinone by reaction of fatty acid hydroperoxides with dopamine:A possible contributory mechanism for neuronal degeneration in Parkinson's disease. J. Med. Chem.1997, 40(14):2211-2216.
    [152]Sulzer D., Zecca L. Intraneuronal dopamine-quinone synthesis:A review. Neurotox. Res.2000,1(3):181-195.
    [153]Zoccarato F., Toscano P., Alexandre A. Dopamine-derived dopaminochrome promotes H2O2 release at mitochondrial complex I:stimulation by rotenone, control by Ca2+, and relevance to Parkinson disease. J. Biol. Chem.2005 280(16):15587-15594.
    [154]McKie A.T., Barrow D., Latunde-Dada GO., Rolfs A., Sager G., Mudaly E., Mudaly M., Richardson C., Barlow D., Bomford A., Peters T.J., Raja K.B., Shirali S., Hediger M.A., Farzaneh F., Simpson R.J. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science.2001, 291:1755-1759.
    [155]Casiday R., Frey R. Iron Use and Storage in the Body:Ferritin and Molecular Representations. Washington University, St. Louis.
    [156]Paris I., Martinez-Alvarado P., Crdenas S., Perez-Pastene C., Graumann R., Fuentes P., Olea-Azar C., Caviedes P., Segura-Aguilar J. Dopamine-dependent iron toxicity in cells derived from rat hypothalamus. Chem. Res. Toxicol.2005, 18(3):415-419.
    [157]Wolozin B., Golts N. Iron and Parkinson's disease. Neuroscientist.2002 8(1):22-32
    [158]Linert W., Jameson G.N.L. Redox reactions of neurotransmitters possibly involved in the progression of Parkinson's Disease. J. Inorg. Biochem.2000,79 (1-4):319-326.
    [159]Ortega R., Cloetens P., Deves G., Carmona A., Bohic S. Iron storage within dopamine neurovesicles revealed by chemical nano-imaging. PLoS ONE.2007, 2(9):e925.
    [160]Arreguin S., Nelson P., Padway S., Shirazi M., Pierpont C. Dopamine complexes of iron in the etiology and pathogenesis of Parkinson's disease. J. Inorg. Biochem.2009,103(1):87-93.
    [161]Kakhlon O., Cabantchik Z.I. The labile iron pool:Characterization, measurement, and participation in cellular processes. Free Radical Biol. Med. 2002,33(8):1037-1046.
    [162]Beis I., Newsholme E.A. The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem. J.1975,152(1):23-32.
    [163]Ebadi M., Pfeiffer R.F. Parkinson's Disease. Florida:CRC Press;2005.
    [164]Zirong D., Bhattacharya S., McCusker J.K., Hagen P.M., Hendrickson D.N., Pierpont C.G. Studies on bis(catecholato)iron(Ⅲ) complexes. Structure and bonding in members of the Fe(bpy)(Cl4,SQ) (Cl4,Cat)/Fe(bpy)(Cl4Cat)2- redox couple. Inorg. Chem.1992,31(5):870-877.
    [165]Charkoudian L.K., Franz K.J. Fe(Ⅲ)-coordination properties of neuromelanin components:5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid. Inorg. Chem.2006,45(9):3657-3664.
    [166]Abu-Omar M.M., Loaiza A., Hontzeas N. Reaction mechanisms of mononuclear non-heme iron oxygenases. Chem. Rev.2005,105:2227-2252.
    [167]Costas M., Mehn M.P., Jensen M.P., Que Jr. L. Dioxygen activation at mononuclear nonheme iron active sites:Enzymes, models, and intermediates. Chem. Rev.2004,104:939-986.
    [168]Du F., Mao X.-A., Li D.-F., Liao Z.-R. Binding site of Fe at purine of ATP as studied by NMR. J. Inorg. Biochem.2001,83:101-105.
    [169]Cox D.D., Que Jr. L. Functional models for catechol 1,2-dioxygenase. The role of the iron(Ⅲ) center. J. Am. Chem. Soc.1988,110:8085-8092.
    [170]Mizuno Y., Suzuki K., Sone N. Inhibition of ATP synthesis by 1-methyl-4-phenylpyridinium ion (MPP+) in mouse brain in vitro and in vivo. Adv. Neurol.1990,53:197-200.
    [171]Nakamura K., Bindokas V.P., Marks J.D., Wright D.A., Frim D.M., Miller R.J., Kang U.J. The selective toxicity of 1-methyl-4-phenylpyridinium to dopaminergic neurons:The role of mitochondrial complex I and reactive oxygen species revisited Mol. Pharmacol.2000,58(2):271-278.
    [172]Prusiner S.B. Prion diseases and the BSE crisis. Science.1997, 278(5336):245-251.
    [173]Brown D.R., Qin K., Herms J.W., Madlung A., Manson J., Strome R., Fraser P.E., Kruck T., von Bohlen A., Schulz-Schaeff W., Giese A., Westaway D., Kretzschmar H. The celluar prion protein binds copper in vivo. Nature.1997, 390(6661):684-687.
    [174]Millhauser G.L. Copper binding in the prion protein Acc. Chem. Res.2004, 37:79-85.
    [175]Millhauser G.L. Copper and the prion protein:methods, structures, function, and disease. Annu. Rev. Phys. Chem.2007,58:299-320.
    [176]Vassallo N., Herms J. Cellular prion protein function in copper homeostasis and redox signalling at the synapse. J. Neurochem.2003 Aug,86(3):538-544.
    [177]Inestrosa N.C., Cerpa W., Varela-Nallar L. Copper brain homeostasis:Role of amyloid precursor protein and prion protein. IUBMB Life.2005,57:645-650.
    [178]Pauly P.C., Harris D.A. Copper stimulates endocytosis of the prion protein. J. Biol. Chem.1998,273(50):33107-33110.
    [179]Chattopadhyay M., Walter E.D., Newell D.J., Jackson P.J., Aronoff-Spencer E., Peisach J., Gerfen G.J., Bennett B., Antholine W.E., Millhauser G.L. The octarepeat domain of the prion protein binds Cu(Ⅱ) with three distinct coordination modes at pH 7.4. J. Am. Chem. Soc.2005,127(36):12647-12656.
    [180]Brown D.R., Wong B.-S., Hafiz F., Clive C., Haswell S.J., Jones I.M. Normal prion protein has an activity like that of superoxide dismutase. Biochem. J.1999, 344(1):1-5.
    [181]Roucou X., Gains M., LeBlanc A.C. Neuroprotective functions of prion protein. JNeurosci. Res.2004,75(2):153-161.
    [182]Walter E.D., Chattopadhyay M., Millhauser G.L. The affinity of copper binding to the prion protein octarepeat domain:evidence for negative cooperativity. Biochemistry.2006,45(43):13083-13092.
    [183]Thompsett A.R., Abdelraheim S.R., Daniels M., Brown D.R. High affinity binding between copper and full-length prion protein identified by two different techniques. J. Biol. Chem.2005,280:42750-42758.
    [184]Jackson G.S., Murray I., Hosszu L.L.P., Gibbs N., Waltho J.P., Clarke A.R., Collinge J. Location and properties of metal-binding sites on the human prion protein. Proc. Natl. Acad. Sci. USA 2001,98(15):8531-8535.
    [185]Shiraishi N., Ohta Y., Nishikimi M. The octapeptide repeat region of prion protein binds Cu(Ⅱ) in the redox-inactive state. Biochem. Biophy. Res. Commun. 2000,267:398-402.
    [186]Requena J.R., Groth D., Legname G., Stadtman E.R., Prusiner S.B., Levine R.L. Copper-catalyzed oxidation of the recombinant SHa(29-231) prion protein. Proc. Natl. Acad. Sci. USA.2001,98(13):7170-7175.
    [187]Srikanth R., Wilson J., Burns C.S., Vachet R.W. Identification of the copper(Ⅱ) coordinating residues in the prion protein by metal-catalyzed oxidation mass spectrometry:Evidence for multiple isomers at low copper(Ⅱ) loadings. Biochemistry.2008 47(35):9258-9268.
    [188]Miura T., Sasaki S., Toyama A., Takeuchi H. Copper reduction by the octapeptide repeat region of prion protein:pH dependence and Implications in cellular copper uptake. Biochemistry.2005,44(24):8712-8720.
    [189]Davies P., Marken F., Salter S., Brown D.R. Thermodynamic and voltammetric characterization of the metal binding to the prion protein:insights into pH dependence and redox chemistry. Biochemistry.2009,48(12):2610-2619.
    [190]Nelson D.L., Cox M.M. Lehninger Principles of Biochemistry. New York:W. H.:Freeman;2004.
    [191]Bard A.J., Parsons R., Jordan J. Standard Potentials in Aqueous Solutions: Marcel Dekker. New York; 1985.
    [192]Conway B.E. Electrochemical Data. New York:Greenwood Press; 1969.
    [193]Chen B.T., Avshalumov M.V., Rice M.E. H2O2 is a novel, endogenous modulator of synaptic dopamine release. J. Neurophysiol.2001 Jun, 85(6):2468-2476.
    [194]Cohen G. Enzymatic/nonenzymatic sources of oxyradical and regulation of antioxidant defenses. Ann. N.Y.Acad. Sci.1994,738:8-15.
    [195]Forman H.J., Maiorino M., F U. Signaling functions of reactive oxygen species. Biochemistry 2010,49(5):835-842.
    [196]Veal E.A., Day A.M., Morgan B.A. Hydrogen peroxide sensing and signaling. Mol Cell.2007,26(1):1-14.
    [197]Rhee S.G. Cell signaling. H2O2, a necessary evil for cell signaling. Science. 2006,312(5782):1882-1883.
    [198]Stone J.R., Yang S. Hydrogen peroxide:a signaling messenger. Antioxid. Redox. Sign.2006,8(3-4):243-270.
    [199]Mouillet-Richard S., Ermonval M., Chebassier C., Laplanche J.L., Lehmann S., Launay J.M., Kellermann O. The role of properly folded prions. Science.2000, 289(50):1925-1928.
    [200]Hamer D.H. Metallothioneins. Annu. Rev. Biochem.1986,55:913-951.
    [201]Masters B.A., Quaife C.J., Erickson J.C., Kelly E.J., Froelick G.J., Zambrowicz B.P., Brinster R.L., Palmiter R.D. Metallothionein Ⅲ is expressed in neurons that sequester zinc in synaptic vesicles. J. Neurosci.1994,14(10):5844-5857.
    [202]Moffatt P., Seguin C. Expression of the gene encoding metallothionein-3 in organs of the reproductive system. DNA Cell Biol.1998,17(6):501-510.
    [203]Quaife C.J., Findley S.D., Erickson J.C., Froelick G.J., Kelly E.J., Zambrowicz B.P., Palmiter R.D. Induction of a new metallothionein isoform (MT-Ⅳ) occurs during differentiation of stratified squamous epithelia. Biochemistry.1994, 33(23):7250-7259.
    [204]Coyle P., Philcox J.C., Carey L.C., Rofe A.M. Mlothionein:the multipurpose protein. Cell Mol Life Sci.2002,59:627-647.
    [205]Otvos J.D., Armitage I.M. Structure of the metal clusters in rabbit liver metallothionein. Proc. Natl. Acad. Sci. USA 1980,77:7094-7098.
    [206]Romero-Isart N., Vasak M. Advances in the structure and chemistry of metallothioneins. J. Inorg. Biochem.2002,88(388-396).
    [207]Alam J., Smith A. Heme-hemopexin-mediated induction of metallothionein gene expression. J. Biol. Chem.1992,267:16379-16384.
    [208]Aschnera M., Westb A.K. The role of MT in neurological disorders. J. Alzheim. Dis.2005,8(2):139-145.
    [209]Zambenedetti P., Giordano R., Zatta P. Metallothioneins are highly expressed in astrocytes and microcapillaries in Alzheimer's disease. J. Chem. Neuroanat. 1998,15(1):21-26.
    [210]Adlard P.A., West A.K., Vickers J.C. Increased density of metallothionein Ⅰ/Ⅱ-immunopositive cortical glial cells in the early stages of Alzheimer's disease. Neurobiol. Dis.1998,5(5):349-356.
    [211]Uchida Y. Growth-inhibitory factor, metallothionein-like protein, and neurodegenerative diseases. Biol. Signals.1994,3(4):211-215.
    [212]Uchida Y., Takio K., Titani K., Ihara Y., Tomonaga M. The growth inhibitory factor that is deficient in the Alzheimer's disease brain is a 68 amino acid metallothionein-like protein. Neuron.1991,7(2):337-347.
    [213]Irie Y, Keung W.M. Anti-amyloid beta activity of metallothionein-Ⅲ is different from its neuronal growth inhibitory activity:structure-activity studies. Brain Res.2003,960(1-2):228-234.
    [214]Irie Y., Keung W.M. Metallothionein-Ⅲ antagonizes the neurotoxic and neurotrophic effects of amyloid beta peptides. Biochem. Biophys. Res. Commun. 2001,282:416-420.
    [215]Meloni G., Sonois V., Delaine T., Guilloreau L., Gillet A., Teissie J., Fallere P., Vasdk M. Metal swap between Zn7-metallothionein-3 and amyloid-β-Cu protects against amyloid-β toxicity. Nat. Chem. Biol.2008,4(6):366-372.
    [216]Jiang L.J., Maret W., Vallee B.L. The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbtol dehydrogenase. Proc. Natl. Acad. Sci. USA.1998,95(7):3483-3488.
    [217]Maret W. Oxidative metal release from metallothionein via zinc-thiol/disulfide interchange. Proc. Natl. Acad. Sci. USA 1994,91(1):237-241.
    [218]Maret W., Larsen K.S., Vallee B.L. Coordination dynamics of biological zinc "clusters" in metallothioneins and in the DNA-binding domain of the transcription factor Gal4 Proc. Natl. Acad. Sci. USA.1997,94(6):2233-2237.
    [219]Maret W., Vallee B.L. Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc. Natl. Acad. Sci. USA.1998,95(7):3478-3482.
    [220]Atli G., Canli M. Responses of metallothionein and reduced glutathione in a freshwater fish oreochromis niloticus following metal exposures. Environ. Toxicol. Pharmacol.2008,25(1):33-38.
    [221]Brower M., Hoexum-Brouwer T., Cashon R.E. A putative glutathione-binding dite in CdZn-metallothionein identified by equilibrium binding and molecular-modelling studies. Biochem. J.1993,294(1):219-225.
    [222]Brower M., Hoexum-Brouwer T., Cashon R.E. Crustaceans as models for metal metabolism:Ⅲ. Interaction of lobster and mammalian metallothionein with glutathione. Mar. Environ. Res.1993,35:13-17.
    [223]Chan H.M., Tabarrok R., Tamura Y., Cherian M.G. The relative importance of glutathione and metallothionein on protection of hepatotoxicity of menadione in rats. Chem. Biol. Interact.1992,84(2):113-124.
    [224]Jiang J., Claudette M.S., Croix N.S., Zhao Q., Bruce R.P., Valerian E.K. Contribution of glutathione and metallothioneins to protection against copper toxicity and redox cycling:Quantitative analysis using MT+/+ and MT-/-mouse lung fibroblast cells. Chem. Res. Toxicol.2002,15(8):1080-1087.
    [225]Jimenez I., Aracena P., Letelier M.E., Navarro P., Speisky H. Chronic exposure of HepG2 cells to excess copper results in depletion of glutathione and induction of metallothionein. Toxicol. in Vitro.2002,16(2):167-175.
    [226]Kido Y., Khokhar A.R., Siddik Z.H. Glutathione-mediated modulation of tetraplatin activity against sensitive and resistant tumor cells. Biochem. Pharmacol.1994,47(9):1635-1642.
    [227]Mueller L., Abel J., Ohnesorge F.K. Absorption and distribution of cadmium (Cd), copper and zinc following oral subchronic low level administration to rats of different binding forms of cadmium (Cd-acetate, Cd-metallothionein Cd-glutathione). Toxicology.1986,39(2):187-195.
    [228]Schlenk D., Rice C.D. Effect of zinc and cadium treatment on hydrogen perxxide-induced mortality and expression of glutathione and metallothionein in a teleost hepatoma cell line. Aquat. Toxicol.1998,43(2-3):121-129.
    [229]Shen H.M., F.Yang C., Liu J., Ong C.N. Dual role of glutathione in selenite-induced oxidative stress and apoptosis in human hepatoma cells. Free Radical Biol. Med.2000,28(7):1115-1124.
    [230]Tang W., Sadovic S., Shaikh Z.A. Nephtrotoxicity of cadmium-metallothionein: Protect by zinc and role of glutathione. Toxicol. Appl. Pharmacol.1998, 151(2):276-282.
    [231]Kizek R., Vacek J., Trnkova L., Jelen F. Cyclic voltammetric study of the redox system of glutathione using the disulfide bond reductant tris(2-carboxyethyl)phosphine. Bioelectrochemistry.2004,13(1-2):19-24.
    [232]Brohawn S.G., Miksa I.R., Thorpe C. Avian sulfhydryl oxidase is not a metalloenzyme:adventitious binding of divalent metal ions to the enzyme. Biochemistry.2003,42(37):11074-11082.
    [233]Skoog D.A., Holler F.J., Crouch S.R. Principles of Instrumental Analysis,6th ed.:Thomson Higher Education; 2007.
    [234]Xing B., Shi Y., Tang W. kinetic studies of the reactions of some metal reconstituted metallothioneins with the electrophilic disulfide 5-5'dithiobis(2-nitrobenzoic acid) (DTNB). Biometals.2000,13(4):295-300.
    [235]Adam V., Hanustiak P., Krizkova S., Beklova M., Zehnalek J., Trnkova L., A. Horna, Sures B., Kizek R. Palladium biosensor. Electroanalysis.2007, 19:1909-1914.
    [236]Adam V., Krizkova S., Zitka O., Trnkova L., Petrlova J., Beklova M., Kizek R. Determination of apo-metallothionein using adsorptive transfer stripping technique in connection with differential pulse voltammetry. Electroanalysis. 2007,19:339-347.
    [237]Adam V., Petrlova J., Potesil D., Zehnalek J., Sures B., Trnkova L., Jelen F., Kizek R. Study of metallothionein modified electrode surface behavior in the presence of heavy metal ions-biosensor. Electroanalysis.2005,17:1649-1657.
    [238]Petrlova J., Potesil D., Zehnalek J., Sures B., Adam V., Trnkova L., Kizek R. Cisplatin electrochemical biosensor. Electrochimica Acta.2006,51:5169-5173.
    [239]Folk D.S., Franz K.J. A prochelator activated by beta-secretase inhibits beta-amyloid aggregation and suppresses copper-induced reactive oxygen species formation. J. Am. Chem. Soc.2010,132:4994-4995.
    [240]Gibson T.J., Murphy R.M. Design of peptidyl compounds that affect beta-amyloid aggregation:importance of surface tension and context. Biochemistry 2005,44:8898-8907.
    [241]Tjernberg L.O., Naslund J., Lindqvist F., Johansson J., Karlstrom A.R., Thyberg J., Terenius L., Nordstedt C. Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem.1996,271:8545-8548.
    [242]Zhang L., Peng Y., Yajnik G., Zhou F. A ferrocene-tagged β-Sheet breaker peptide for kinetic studies of disaggregation of Aβ(1-42) fibrils and attenuation of cellular toxicity. Biochemistry.2011, submitted.
    [243]Bonomo R.P., Impellizzeri G., Pappalardo G., Purrello R., Rizzarelli E., Tabbi G. Coordinating properties of cyclopeptides. Thermodynamic and spectroscopic study on the formation of copper(Ⅱ) complexes with cyclo(Gly-His)4 and cyclo-(Gly-His-Gly)2 and their superoxide dismutase-like activity. J. Chem. Soc., Dalton Trans.1998:3851-3857.
    [244]Bonomo R.P., Conte E., Impellizzeri G., Pappalardo G., Purrello R., Rizzarelli E. Copper(Ⅱ) complexes with cyclo(L-aspartyl) and cyclo(L-glutamyl-L-glutamyl) derivatives and their antioxidant properties. J. Chem. Soc, Dalton Trans. 1996:3093-3099.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700