山羊血清中CD58含量的检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用酶消化法结合柱层析法制备了绵羊红细胞表面活性蛋白CD58;用弗氏佐剂法和淋巴细胞吸附法免疫家兔;用方阵滴定法确定包被抗原最适工作浓度,检测抗血清,建立间接酶联免疫吸附法(ELISA),用间接ELISA测定所制备的抗体效价,并建立了检测山羊血清中CD58的间接竞争抑制性ELISA方法,检测了乏情期与发情期山羊血清中CD58的含量。获得以下结果:
     1.酶消化法结合柱层析法制备的绵羊红细胞表面活性蛋白CD58,玫瑰花环抑制试验检测结果抑制率为62.01±2.06%。SDS–PAGE显示制备的CD58提取物中,存在3种分子量大小的蛋白质。
     2.比较弗氏佐剂法和淋巴细胞吸附法2种免疫方法,淋巴细胞吸附法获得了针对CD58的特异性抗体,抗体效价达到11×105,说明利用细胞表面受体与配体作用免疫动物,获取抗体的方式是可行的。
     3.建立了抗CD58抗体测定的间接ELISA方法。方阵滴定法确定包被原最适工作浓度为10.0μg/mL,最适包被液为pH 9.6,0.05 mol/L的CBS;辣根过氧化物酶标记羊抗兔IgG(酶标二抗)最适稀释倍数为l∶2 000,1.0%明胶封闭。重复性好,批间重复的变异系数(CV)2.48 % ~7.78 %。
     4.建立了测定山羊血清中CD58的间接竞争抑制性ELISA,线性范围20.0 ~ 500 000.0 ng/mL,回归方程Y = -0.207X + 1.159 (R2 = 0.988),该方法灵敏度为1.76 ng/mL。统计分析显示乏情期与发情期山羊血清中CD58含量差异显著(P﹤0.05)。
     试验证明,淋巴细胞吸附法与间接ELISA方法,制备CD58的特异性抗体和测定山羊血清中CD58含量是可行的,并利用间接ELISA方法测定了乏情期与发情期山羊血清中CD58含量,为进一步研究CD58在山羊不同生理时期的作用提供了理论依据。
In this study, the surfactant protein CD58 of sheep red blood cells (SRBC) was prepared with enzymatic digestion and column chromatography. Rabbits were immunised with the methods of Freund's adjuvant and lymphocyte adsorption. The titer of anti-CD58 serum was tested with the establishment indirectly enzyme linked immnosorbent assay (ELISA). The optimised working concentrations of coated antigen and antibody were performed with phalanx titration. The inhibition of indirect competitive ELISA methods was established to detect the level of CD58 in goat serum, and used to detect the goat serum levels of CD58 estrous cycle and anestrus period. The results were as follows:
     1. The preparation of CD58 was tested with Rosette Inhibition Test, its inhibition rate was the percentage of 62.01±2.06. There were three kinds of proteins in the CD58 preparation from SDS-PAGE.
     2. Compared to Freund's adjuvant, the method of lymphocyte adsorption was obtained specific antibodies anti-CD58, antibody level was 11×105, the method of using cell surface receptor and ligand to immune animals to prepare antibody is feasible.
     3. The indirect ELISA method, coated antigen 10.0μg·mL-1 CD58 dissolved in carbonate buffer solution (CBS, pH9.6, 0.05 mol·L-1), with HRP-labelled goat anti-rabbit IgG diluted by PBS (pH7.4, 0.1 mol·L-1) in l∶2 000 as a secondary antibody, 1.0% gelatinum as a blocking agent, was developed to detect antibody against CD58. The method’s reproducibility was good results and its coefficient of variability (CV) was 2.48% ~ 7.78%.
     4. Establishment the indirect competitive ELISA to test the level of CD58 in goat serum, the linear range 20.0~500 000.0 ng·mL-1, regression equation Y = 0.207X-1.159 (R2 = 0.988), the lowest concentration of CD58 is 1.76 ng·mL-1, which can be detected theoretically. Statistical analysis indicated that the anestrus and the estrus period goat serum CD58 content is significant differences (P <0.05).
     In a word, the method of lymphocyte adsorption and indirect ELISA could be used to prepared specific antibodies anti-CD58 and test the content of CD58 in goat serum. The anestrus and the estrus period goat serum CD58 content was detected with indirect ELISA. It would be provided theoretical basis to study the different physiological goats in the further study.
引文
[1] Nelson R A. The immune phenomenon: An immunologically specific reaction between microorganisms and erythrocyte leading to enhanced phagocytosis [J]. Science, 1953, 118-127.
    [2] Nishioka K. Measurement of complement by agglutination of human erythrocyte reacting in immune-adherence [ J ]. J Immunol, 1963, 86-90.
    [3] Siegel I, Liu T, Gieicheer N. The red-cell immune system [J]. Lancet, 1981, 8246 (2) : 556.
    [4] 郭 峰, 姚广金, 孟祥英. 血清中红细胞免疫促进因子的测定[J]. 上海免疫学杂志, 1988, 8 (6) : 440.
    [5] 郭 峰. 红细胞免疫功能初步研究[J ]. 中华医学杂志, 1982, 629(12) : 715.
    [6] 刘景田, 张 洁, 党小军. 血清对粒细胞免疫调节作用的研究[J]. 中国免疫学杂志, 1995, 11 (增刊) : 209.
    [7] 刘景田, 张 洁. 红细胞免疫学[M ]. 西安: 陕西科技出版社: 1995, 15-19, 32-34.
    [8] 刘景田, 党小军. 红细胞作为免疫细胞的事实及意义[J]. 深圳中西医结合杂志, 2002, 12 (1) : 11.
    [9] 李 波. 红细胞免疫功能相关影响因素研究进展[A]. 血液免疫学研究[M]. 上海: 第二军医大学出版社, 1998: 29-36.
    [10] 王淑娟, 牛钟相. 红细胞免疫研究进展[J]. 动物医学进展[J], 2003, 24 (4) : 55-58.
    [11] 郭 峰. 红细胞调控细胞免疫的事实及意义[J ]. 上海免疫学杂志, 1991, 11 (1) : 63.
    [12] 王海滨, 郭 峰. 红细胞参与细胞因子调控的研究进展[J]. 国外医学-免疫学分册. 1999, 5 (22) : 263-266.
    [13] 林 森. 国外有关红细胞研究的几种测定方法[A]. 红细胞免疫学新探(上卷) [M ]. 南京: 南京大学出版社, 1993: 91-93.
    [14] Telen MJ, Nicholson W, Wang CE. Red blood cell surface adhesion molecules : their possible roles in normal human physiology and disease[J]. Semin Hematol, 2000, 37 (2) :130-142.
    [15] Goerg S, Dengler TJ, Hoffmann P. The association between systemic lupus erythematosus and deficiencies of the complement system[J]. Cell Mol Boil, 2002, 48 (3) :237-245.
    [16] Sadallah S, Hess C, Trendelenburg M, et al. Autoantibodies against complement receptor 1 (CD35) in SLE, liver cirrhosis and HIV-infected patients[J]. Clin Exp Immunol, 2003, 131 (1) :174-181.
    [17] Winter RJ, Manten A, Ype P, et al. Interleukin-8 released after acute myocardial infarction is mainly bound to erythrocytes [J]. Heart, 1997, 78 (6) :598-602.
    [18] Reilly BD, Mold C. Quantitative analysis of C4Ab and C4Bb binding to the C3b/C4b receptor (CR1, CD35) [J]. Clin Exp Immunol, 1997, 110 : 310-316.
    [19] Craig ML, Bankovich AJ, Taylor RP. Visualization of the transfer reaction : tracking immune complexes from erythrocyte complement receptor 1 to macrophages [J]. Clin Immunol, 2002, 105 (1) :36-47.
    [20] Miyaike J, Iwasaki Y, Takahashi A, et al. Regulation of circulating immune complexes by complementreceptor type 1 on erythrocytes in chronic viral liver diseases[J]. Gut, 2002, 54 (4) :591-596.
    [21] Stoute JA, Odindo AO, Owuor BO, et al. Loss of red cell-complement regulatory proteins and increased levels of circulating immune complexes are associated with severe malarial anemia[J]. J Infect Dis, 2003, 187 (3) :522-525.
    [22] Rasia RJ, de Isla N, Attube L, et al. Characterization of monoclonal antibodies against human red blood group antigens by laser backscattering[J]. Biorheology. 2003, 40 (1-3) :197-203.
    [23] Ulger AF, Keklik T, Kumbasar UO, et al. Prognostic significance of blood group antigens expression of tumor tissue in lung cancer patients[J]. Tumori, 2002, 88 (5) :395-399.
    [24] Nishiguchi S, Tamori A, Koh N, et al. Erythrocyte-binding ployamine as a tumor growth marker for human hepatocellular carcinoma [J]. Hepatogastroenterology, 2002, 49 (44) :504-507.
    [25] Fonseca AM, Pereira CF, Porto G, et al. Red blood cells promote survival and cell cycle progression of human peripheral blood T cells independently of CD58/LFA-3 and heme compounds [J]. Cell Immunol, 2003, 224 (1) :17-28.
    [26] Richaud-Patin Y, Perez-Romano B, Carrillo-Maravilla E, et al. Deficiency of red cell bound CD55 and CD59 in patients with systemic lupus erythematosus[J]. Immunol Lett, 2003, 88 (2) :95-99.
    [27] 郭 峰. 国内主要的红细胞免疫及其调节功能测定方法[A]. 红细胞免疫学新探(上卷) [M ]. 南京: 南京大学出版社, 1993: 93-99.
    [28] Mouro-Chanteloup I, Delaunay J, Gane P, et al. Evidence that the red cell skeleton protein 4.2 interacts with the Rh membrane complex member CD47[J]. Blood, 2003, 101 (1) :338-344.
    [29] 刘 辉, 顾 军, 郭 峰. 系统性红斑狼疮红细胞免疫研究概况[J]. 深圳中西医结合杂志, 2001, 6 (11) : 326-327.
    [30] 邬伟秀, 颜式可, 郭 峰. 血液病红细胞免疫功能比较研究[A]. 红细胞免疫学新探(上卷) [M ]. 南京: 南京大学出版社, 1993: 237-239.
    [31] 郭 峰, 黄盛东. 红细胞在肿瘤免疫反应中的作用[J]. 中华微生物和免疫学杂志, 1995, 15 (3) : 183.
    [32] Smith J A. Guidelines, Standards and perspectives in exercise immunlolgy[J]. Med Sci Sports Exerc, 1995, 27 (4) : 297.
    [33] 刘险峰. 红细胞膜表面分子与红细胞免疫[J]. 国外医学-免疫学分册, 2004, 27(4) : 221-224.
    [34] Jothy S, Azeredo S, Moll T, et al. CD44 and its partners in metastasis[J]. Clin Exp Metastasis, 2003, 20 (3) :195-201.
    [35] Oldenborg PA, Gresham HD, Chen Y, et al. Lethal autoimmune hemolytic anemia in CD47 deficient non-obese diabetic (NOD) mice [J]. Blood, 2002, 99 (10) :3500-3504.
    [36] Molina H, Miwa T, Zhou L, et al. Complement-mediated clearance of erythrocytes : mechanism and delineation of the regulatory roles of Crry and DAF[J]. Blood, 2002, 100 (13) :4544-4549.
    [37] Morgan J, Spendlove I, Durrant LG. The role of CD55 in protecting the tumour environment fromcomplement attack[J]. Tissue Antigen , 2002, 60(3) :213-223.
    [38] Coste I, Gauchat JF, Wilson A. Unavailability of CD147 leads to selective erythrocyte trapping in the spleen[J]. Blood, 2001, 97 (12) :3984-3988.
    [39] 朱荣, 张缨, 蔡爱洁. 高住高练低训对足球运动员红细胞CD58、CD59和T淋巴细胞CD2表达的影响[J]. 中国运动医学杂志, 2006, 25(3): 320-323.
    [40] 张延华, 袁必文. 智能气功对人体红细胞免疫功能的影响[A]. 红细胞免疫学新探(下卷) [M ]. 南京: 南京大学出版社, 1993: 104-107.
    [41] 熊一平, 段鸿俊. 中医药红细胞免疫强化作用的研究进展[J]. 微生物学免疫学进展, 2000, 1 (28) : 95.
    [42] 张德成, 陈思义. 动物红细胞免疫功能的研究[J]. 畜牧兽医学报, 1992, 23 (3) : 285-288.
    [43] 景志忠, 窦永喜, 罗启慧, 等. 猪白介素家族重要基因的克隆、表达及其结构与功能预测分析[J]. 中国农业科学, 2006, 39 (3):612-619.
    [44] 谢 明, 王香玲, 纪玉强, 等. 外周血单核细胞CD58和CD58 mRNA表达与HBV感染关系的研究[J]. 微生物学免疫学进展, 2005, 33 (2):36-40.
    [45] 郑德先 刘士廉. 猪外周血淋巴细胞E受体的分离纯化及其生物化学性质的研究[J]. 中国科学(B辑), 1983, 4:329-331.
    [46] 黄 眉, 张 云, 石 镜. E受体配体的提取和鉴定[J]. 中国免疫学杂志, 1989, 5 (3):186-187.
    [47] Albert-Wolf, M., Meuer, S.C., Wallich, R. Dual function of recombinant human CD58: inhibition of T cell adhesion and activation via the CD2 pathway[J]. Int Immunol, 1991, 3(12):1335-1347.
    [48] Albert-Wolf, M., Meuer, S.C., Wallich, R. Immunomodulatory properties of solublerecombinant human CD58(LFA-3)molecules[J]. Dev Biol Stand, 1992, 77:87-92.
    [49] Altomonte, M., Gloghini, A., Bertola, G. et al. Differential expression of cell adhesion molecules CD54/CD11a and CD58/CD2 by human melanoma cells and functional role in their interaction with cytotoxic cells[J]. Cancer Res, 1993, 53(14):3343-3348.
    [50] Anstee, D.J., Gardner, B., Spring, F.A. et al. New monoclonal antibodies in CD44and CD58:their use to quantify CD44 and CD58 on normal human erythrocytes and to compare the distribution of CD44 and CD58 in human tissues[J]. Immunology, 1991, 74(2):197-205.
    [51] Archimbaud, E., Thomas, X., Campos, L. et al. Expression of surface adhesion molecules CD54(ICAM-1)and CD58(LFA-3)in adult acute leukemia : relationship with initial characteristics and prognosis[J]. Leukemia, 1992, 6(4):265-271.
    [52] Ariel, O., Kukulansky, T., Raz, N. et al. Distinct membrane localization and kinase association of the two isoforms of CD58[J]. Cell Signal, 2004, 16(6):667-673.
    [53] Arulanandam, A.R., Kister, A., McGregor, M.J. et al. Interaction between humanCD2 and CD58 involves the major beta sheet surface of each of their respective adhesion domains[J]. J Exp Med, 1994, 180(5):1861-1871.
    [54] Arulanandam, A.R., Withka, J.M., Wyss, D.F. et al. The CD58(LFA-3)binding site is a localized and highly charged surface area on the AGFCC'C" face of the human CD2 adhesion domain[J]. Proc Natl Acad Sci U S A, 1993, 90(24):11613-11617.
    [55] Barber, D.F., Long, E.O. Coexpression of CD58 or CD48 with intercellular adhesion molecule 1 on target cells enhances adhesion of resting NK cells[J]. J Immunol, 2003, 170(1):294-299.
    [56] Bayas, M.V., Schulten, K., Leckband, D. Forced detachment of the CD2-CD58 complex[J]. Biophys J, 2003, 84(4):2223-2233.
    [57] Becker, N., Abel, U., Stiepak, C. et al. Frequency of common colds and serum levels of sICAM-1(CD54), sLFA-3(CD58)and sIL-2R(CD25)[J]. Eur Cytokine Netw, 1992, 3(6):545-551.
    [58] Becker, N., Krause, G., Rensch, K. et al. Epidemiologic investigation of serum levels of the soluble forms of CD25, CD54 and CD58, and T cell responsiveness after stimulation via the CD2-dependent pathway in a random sample of the general population[J]. Immunobiology, 1996, 195(1):47-60.
    [59] Brossay, A., Hube, F., Moreau, T. et al. Porcine CD58:cDNA cloning and molecular dissection of the porcine CD58-human CD2 interface[J]. Biochem Biophys Res Commun, 2003, 309(4):992-998.
    [60] Busson, P., Zhang, Q., Guillon, J.M. et al. Elevated expression of ICAM1(CD54)and minimal expression of LFA3(CD58)in Epstein-Barr-virus-positive nasopharyngeal carcinoma cells[J]. Int J Cancer, 1992, 50(6):863-867.
    [61] Cahen, P., Kirby, A.C., Porter, S.R. et al. Regulation of LFA-3(CD58)by dexamethasone and retinoic acids in vitro[J]. Inflamm Res, 2000, 49(7):338-344.
    [62] Crosby, K., Yatko, C., Dersimonian, H. et al. A novel monoclonal antibody inhibits the immune response of human cells against porcine cells:identification of a porcine antigen homologous to CD58[J]. Transplantation, 2004, 77(8):1288-1294.
    [63] Daniel, P.T., Scholz, C., Essmann, F. et al. CD95/Fas-triggered apoptosis of activated T lymphocytes is prevented by dendritic cells through a CD58-dependent mechanism[J]. Exp Hematol, 1999, 27(9):1402-1408.
    [64] Deckert, M., Kubar, J., Bernard, A. CD58 and CD59 molecules exhibit potentializing effects in T cell adhesion and activation[J]. J Immunol, 1992, 148(3):672-677.
    [65] Del Prete, G., De Carli, M., D'Elios, M.M. et al. Polyclonal B cell activation induced by herpesvirus saimiri-transformed human CD4+T cell clones. Role for membrane TNF-alpha/TNF-alpha receptors and CD2/CD58 interactions[J]. J Immunol, 1994, 153(11): 4872-4879.
    [66] Dengler, T.J., Hoffmann, J.C., Knolle, P. et al. Structural and functional epitopes oft he human adhesion receptor CD58(LFA-3)[J]. Eur J Immunol, 1992, 22(11):2809-2817.
    [67] Dustin, M.L. Adhesive bond dynamics in contacts between T lymphocytes and glass-supported planar bilayers reconstituted with the immunoglobulin-related adhesion molecule CD58[J]. J Biol Chem, 1997, 272(25):15782-15788.
    [68] Fonseca, A.M., Pereira, C.F., Porto, G. et al. Red blood cells promote survival and cell cycle progression of human peripheral blood T cells independently ofCD58/LFA-3 and heme compounds[J]. Cellular Immunology, 2003, 224(1):17-28.
    [69] Framson, P.E., Cho, D.H., Lee, L.Y. et al. Polarized expression and function of the costimulatory molecule CD58 on human intestinal epithelial cells[J]. Gastroenterology, 1999, 116(5):1054-1062.
    [70] Gollob, J.A., Li, J., Kawasaki, H. et al. Molecular interaction between CD58 and CD2 counter-receptors mediates the ability of monocytes to augment T cell activation byIL-12[J]. J Immunol, 1996, 157(5):1886-1893.
    [71] Gollob, J.A., Ritz, J. CD2-CD58 interaction and the control of T-cell interleukin-12 responsiveness. Adhesion molecules link innate and acquired immunity[J]. Ann N Y Acad Sci, 1996, 795:71-81.
    [72] Guex, N., Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer:An environment for comparative protein modelling[J]. Electrophoresis, 1997, 18: 2714-2723.
    [73] Hahn, W.C., Burakoff, S.J., Bierer, B.E. Signal transduction pathways involved in T cell receptor-induced regulation of CD2 avidity for CD58[J]. J Immunol, 1993, 150(7): 2607-2619.
    [74] Hahn, W.C., Menu, E., Bothwell, A.L. et al. Overlapping but nonidentical binding sites on CD2 for CD58 and a second ligand CD59[J]. Science, 1992, 256(5065): 321805-1807.
    [75] Hoffmann, J.C., Dengler, T.J., Knolle, P.A. et al. A soluble form of the adhesion receptor CD58(LFA-3)is present in human body fluids[J]. Eur J Immunol, 1993, 23(11): 3003-3010.
    [76] Hoffmann, J.C., Goke, M.N., Evers, J. et al. Reduced serum levels of a soluble form of the human adhesion receptor CD58(LFA-3)in patients with inflammatory bowel disease[J]. Z Gastroenterol, 1996, 34(9): 522-527.
    [77] Jorgensen, A., Junker, N., Kaestel, C.G. et al. Superantigen presentation by human retinal pigment epithelial cells to T cells is dependent on CD2-CD58 and CD18-CD54 molecule interactions[J]. Exp Eye Res, 2001, 73(5): 723-733.
    [78] Kimata, H., Fujimoto, M., Ishioka, C. et al. Histamine selectively enhances human immunoglobulin E (IgE)and IgG4 production induced by anti-CD58 monoclonal antibody[J]. J Exp Med, 1996, 184(2): 357-364.
    [79] Kirby, A.C., Cahen, P., Porter, S.R. et al. Soluble and cell-associated forms of the adhesion molecule LFA-3(CD58)are differentially regulated by inflammatory cytokines[J]. Cell Adhes Commun, 2000, 7(6): 453-464.
    [80] Kitao, A., Wagner, G. A space-time structure determination of human CD2 reveals the CD58-binding mode[J]. Proc Natl Acad Sci U S A, 2000, 97(5):2064-2068.
    [81] Komatsu, F., Kajiwara, M. CD18/CD54(+CD102), CD2/CD58 pathway-independent killing of lymphokine-activated killer(LAK)cells against glioblastoma cell linesT98G and U373MG[J]. Oncol Res, 2000, 12(1):17-24.
    [82] Lee, R.V., Braylan, R.C., Rimsza, L.M.CD58 expression decreases as nonmalignant B cells mature in bone marrow and is frequently over expressed in adult and pediatric precursor B-cell acute lymphoblastic leukemia[J]. Am J Clin Pathol, 2005, 123(1):119-124.
    [83] Liu, J., Chow, V.T., Jois, S.D.A novel, rapid and sensitive heterotypic cell adhesion assay for CD2-CD58 interaction, and its application for testing inhibitory peptides[J]. J Immunol Methods, 2004, 291(1-2):39-49.
    [84] Lopez, R.D., Waller, E.K., Lu, P.H.et al.CD58/LFA-3 and IL-12 provided by activated monocytes are critical in the in vitro expansion of CD56+T cells[J]. Cancer Immunol Immunother, 2001, 49(12):629-640.
    [85] Lydyard, P.M., Whelan, A., Fanger, M.W. Instant Notes in Immunology[M]. Abingdon UK: BIOS Scientific Publishers Ltd, 2000.
    [86] Moller, P., Koretz, K., Schlag, P.et al. Frequency of abnormal expression of HLA-A, B, C and HLA-DR molecules, invariant chain, and LFA-3(CD58)in colorectal carcinoma and its impact on tumor recurrence[J]. Int J Cancer Suppl, 1991, 6:155-162.
    [87] Nakayama, J., Terao, H., Koga, T.et al. Induction of CD54 and CD58 expression in cultured human endothelial cells by beta-interferon with or without hyperthermia invitro[J]. J Dermatol Sci, 2001, 26(1):19-24.
    [88] Navenot, J.M., Bernard, D., Harousseau, J.L. et al. Expression of glycosyl-phosphatidy linositol-linked glycoproteins in blood cells from paroxysmal nocturnal haemoglobinuria patients: a flow cytometry study using CD55, CD58 andCD59 monoclonal antibodies[J]. Leuk Lymphoma, 1996, 21(1-2):143-151.
    [89] Osborn, L., Day, E.S., Miller, G.T. et al. Amino acid residues required for binding of lymphocyte function-associated antigen 3(CD58) to its counter-receptor CD2[J]. J Exp Med, 1995, 181(1): 429-434.
    [90] Sampaziotis, F., Kokotas, S., Gorgoulis, V.G. P53 possibly up regulates the expression of CD58(LFA-3)and CD59(MIRL)[J]. Med Hypotheses, 2002, 58(2):136-140.
    [91] Schirren, C.A., Hoffmann, J.C. et al. Biological response modifiers render tumor cells susceptible to autologous effector mechanisms by influencing adhesion receptors[J]. Leuk Lymphoma 1993, 10:25-30.
    [92] Seed, B. An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2[J]. Nature, 1987, 329(6142):840-842.
    [93] Seed, B., Aruffo, A. Molecular Cloning of the CD2 Antigen, the T-Cell Erythrocyte Receptor, by a Rapid Immunoselection Procedure[J]. PNAS, 1987, 84(10):3365-3369.
    [94] Shao, J.Y., Yu, Y., Dustin, M.L. A model for CD2/CD58-mediated adhesion strengthening[J]. Ann Biomed Eng, 2005, 33(4):483-493.
    [95] Shattock, R.J., Rizzardi, G.P., Hayes, P. et al. Engagement of adhesion molecules(CD18, CD11a, CD45, CD44, and CD58)enhances human immunodeficiency virus type 1 replication in monocytic cells through a tumor necrosis factor-modulated pathway[J]. J Infect Dis, 1996, 174(1):54-62.
    [96] Sin, J.-I., Kim, J., Dang, K. et al. LFA-3 Plasmid DNA Enhances Ag-Specific Humoral-and Cellular Mediated Protective Immunity against Herpes Simplex Virus-2in Vivo: nvolvement of CD41 T Cells in Protection[J]. Cellular Immunology 2000, 203:19-28.
    [97] Somoza, C., Driscoll, P.C., Cyster, J.G. et al. Mutational analysis of the CD2/CD58 interaction: the binding site for CD58 lies on one face of the first domain of humanCD2[J]. J Exp Med, 1993, 178(2):549-558.
    [98] Sparrow, R.L., Healey, G., Patton, K.A. et al. Red blood cell age determines the impact of storage and leukocyte burden on cell adhesion molecules, glycophorin A and the release of annexin V[J]. Transfusion and Apheresis Science, 2006, 34(1):15-23.
    [99] Veltroni, M., De Zen, L., Sanzari, M.C. et al. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia[J]. Haematologica, 2003, 88(11):1245-1252.
    [100] 马勇江, 靳亚平, 曹斌云, 等. CD58 对妊娠早期山羊子宫局部细胞因子的调节[J]. 中国兽医学报, 2003, 23(1) : 90-93.
    [101] 靳亚平, 王爱华, 肖俊杰, 等. CD58对猪PBMC活化的作用[J]. 西北农业大学学报, 1998, 26(2): 62-67.
    [102] 靳亚平, 王爱华, 武 浩, 等. CD58 对山羊妊娠早期子宫IEL的活化作用[J]. 细胞与分子免疫学杂志, 2001, 17(4): 392-393.
    [103] 马歇尔, 门 永, 布格斯, 等. 蛋白质纯化与鉴定实验指南[M]. 北京:科学出版社, 2002.
    [104] 沈关心, 周汝麟. 现代免疫学实验技术[M]. 武汉:湖北科学技术出版社, 2002:149~165.
    [105] Richard J Simpson. 蛋白质与蛋白质组学实验指南[M]. 何大澄, 译. 化学工业出版社, 2006, 776-786.
    [106] 马勇江, 靳亚平, 王爱华, 等. CD58与山羊早孕因子之间关系的研究[J]. 畜牧兽医学报, 2003, 34(2) : 152-156.
    [107] 崔贞亮, 李红飞, 吴庆侠, 等. LH抗体间接ELISA 检测方法的建立[J]. 西北农业学报, 2007, 16 (3) : 26-28.
    [108] 焦 奎, 张书圣, 孙 伟, 等. 酶联免疫分析技术及应用[M]. 北京: 化学工业出版社, 2004, 96-107.
    [109] 周光炎. 免疫学原理[M]. 上海: 科学技术文献出版社, 2000.
    [110] 肖俊杰, 陈德坤. 猪血清中天然 LAF-3 存在的探讨[J].畜牧兽医学报, 1994, 25(2):180-185.
    [111] 范国英, 王建华, 朱金凤, 等. 抗链霉素杂交瘤细胞株的建立与竞争 ELISA 试剂盒的研制[J]. 西北农林科技大学学报: 自然科学版, 2007, 35(4): 46-50.
    [112] 沈建忠, 何方洋, 何继红, 等. 动物组织中磺胺二甲嘧啶残留检测 ELISA 试剂盒的研制[J]. 中国兽医杂志, 2003, 39(6): 6-8.
    [113] 宫慧芝, 计 融, 杨 军, 等. 伏马菌素 B1 免疫学检测方法的建立[J]. 中国公共卫生, 2006, 22(7): 840-842 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700