Ti_3AlC_2陶瓷与Cu(Mg)合金的电弧焊接研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti_3AlC_2陶瓷是近年来发展起来的一种新型陶瓷材料,因其兼具陶瓷和金属的优异性能,在机械、能源、航空、电子和化工等领域具有广泛的应用前景。本文首次采用无焊料电弧焊接的方法进行了Ti_3AlC_2陶瓷材料与Cu(Mg)合金的焊接研究,证实了焊接方法的可行性,揭示了接头的组织结构和性能与焊接工艺之间的关系,探讨了电弧加热过程中焊接工艺参数对焊接母材内温度场的影响规律,这些研究工作及成果将为大尺寸、复杂形状及多属性Ti_3AlC_2陶瓷材料构件的低成本制造奠定基础,促进Ti_3AlC_2陶瓷材料的工程应用。
     本文采取试验与数值模拟相结合的方法进行研究。采用无焊料电弧焊接方法对Ti_3AlC_2陶瓷和Cu(Mg)合金进行焊接试验,利用扫描电子显微镜(SEM)和能谱分析仪(EDS)观察接头界面的显微结构和元素分布,采用X射线衍(XRD)分析焊接接头的物相组成,通过四点弯曲实验测试焊接试样的强度,并测定焊接接头的电阻率。针对焊接中的电弧加热过程,基于有限元分析建立了二维轴对称简化模型,通过ANSYS数值模拟研究焊接电流、电弧持续时间、试样的尺寸等焊接条件对焊接母材内温度场的影响规律,确定最佳工艺参数。
     研究表明,电弧焊接法可以实现Ti_3AlC_2陶瓷和Cu(Mg)合金的牢固连接,焊接接头的强度超过了Ti_3AlC_2陶瓷材料本身的强度,其焊接机理在于两焊接端面之间的界面反应。电弧加热过程的工艺参数及试样尺寸决定了焊接端面的温度分布,进而决定了Cu(Mg)合金的熔化情况及Ti_3AlC_2陶瓷的组织变化,是影响接头结构和性能的关键因素。在电弧电流密度为4.7A/mm~2~5.7A/mm~2时,拉弧时间为1s~1.5s时,Cu(Mg)合金的熔化量和Ti_3AlC_2陶瓷焊接端温度为最佳,形成TIC_x相和Cu(Al,Mg)相复合的接头结构,且TiC_x颗粒细小、均匀弥散分布,接头具有较高的强度和良好的导电性能。
Ti_3AlC_2 ceramic,as a newly developed ceramic material with both ceramic and metal traits,is to be widely applied in areas such as mechanism,energy,avigation, electronics and chemical industry.For the first time the welding of Ti_3AlC_2 ceramic and Cu(Mg) is studied in this paper by the method of arc welding without solder,which has confirmed the feasibility of the welding method,opened out the relationship between the organization and performance of the joints and the welding technics,and probed into the influence of the welding technics parameter in arc heating process on the temperature field inside the welding material.The study and its result will lay a foundation for the low-cost manufacture of the big-sized,complicatedly shaped and multiattribute Ti_3AlC_2 ceramic component,which can advance the application of Ti_3AlC_2 ceramic material in industry.
     A method which combines experiment and numerical simulation is adopted.A welding experiment on Ti_3AlC_2 ceramic and Cu(Mg) was done with the method of arc welding without solder.By using SEM and EDS the microstructure and the element distribution on the joints interface were observed.Besides by using XRD the substance composition of the joints was analyzed.The bending intensity on the welding sample were measured and the intensity and resistance rate of the joints were tested.As to the arc heating process of the welding,a simplified model of the two-dimensional symmetry was built up.By the ANSYS numerical simulation the influence of the welding qualifications such as the arc current,the arc time,the sample size on the temperature field inside the welding material was studied and the best technics parameter was fixed.
     The study indicates that arc welding can help combine firmly the Ti_3AlC_2 ceramic and Cu(Mg) and the intensity of welding joints exceeds the one of the Ti_3AlC_2 ceramic material itself.Reaction between two welding interface determine it's welding mechanism,temperature distribution of welding face of arc heating process and the melting of Cu(Mg) alloy and the organization of Ti_3AlC_2 Ceramic are decided by technics parameter and the sample size which are the key factors influenced the structure and properties of joints.When the arc current density is between 4.7A/mm~2 and 5.7A/mm~2 and the arc time is between 1s and 1.5s,the melting quantum of Cu(Mg) and the temperature on the welding point of the Ti_3AlC_2 ceramic are the best.Besides the Cu(Mg) and the Ti_3AlC_2 ceramic react and make the joints structure of TiC_x and Cu(Al,Mg),with the TiC_x tiny and dispersed equably,and with the joints having high intensity and good electric characteristics.
引文
[1]杨敏,邹增大,刘秀忠等.陶瓷与金属连接的研究进展.山东冶金,2004,26(1):37-40.
    [2]田锡唐.焊接结构.北京:机械工业出版社,1982.
    [3]增援兴一著.焊接结构分析.北京:机械工业出版社,1983:158-161.
    [4]潘际銮.展望21世纪焊接科研.中国机械工程,2000,11:21-25.
    [5]M.W.Barsoum.The M(N+1)AX_N Phases:A New Class of Solids;Thermodynamically Stable Nanolaminates.Frog.Solid St.Chem,2000,28:201-281.
    [6]M.A.Pietzka,J.C.Schuster.Summary of constitutional data on the Al-C-Ti system.Journal of Phase Equilibria,1994,15(4):392-405.
    [7]N.V.Tzenov,M.W.Barsoum.Synthesis and characterization of Ti_3AlC_2.Journal of The American Ceramic Society,2000,83(4):825-832.
    [8]X.H.Wang,Y.C.Zhou.Microstructure and properties of Ti_3AlC_2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process.Acta Materialia,2002,50:3141-3149.
    [9]M.W.Barsoum,H.I.Yoo,I.k.Polushina,et al.Electrical conductivity,thermopower,and hall effect of Ti_3AlC_2,Ti_4AlN_3 and Ti_3SiC_2.Physical Review B.2000,15:10194-10198.
    [10]徐学文,朱教群,梅炳初等.Ti_3AlC_2的制备与性能研究进展.陶瓷研究与职业教育,2003,4:43-46.
    [11]朱定一等.Al_2O_3陶瓷一钎料反应界面形成的微观机理.焊接学报,1998,12:94-99.
    [12]A.H.Elsawy,M.F.Fahmy.Brazing of Si_3N_4 ceramic to copper,Journal or Materials Processing Technology,1998,77:226-272.
    [13]王洪潇.氧化铝陶瓷与金属活性封接技术研究.硕士学位论文:大连交通大学学位论文,2003.
    [14]C.Q.Peng,Y.Song,et al.A novel simple method to stably synthesize Ti_3AlC_2 powder with high purity.Materials Science and Engineering A,2006,428:54-58.
    [15]K.Suganuma,Y.Miyamoto and M.Koizumi.Joining of ceramics and metals.Annual Review of Materials Science,1988,18:47-73.
    [16]何代华.TiB_2陶瓷与金属的SHS反应焊接.硕士学位论文:武汉理工大学学位论文,2002.
    [17]A.J.Moorhead,H.Keating.Direct brazing of ceramic for advanced heavy-duty diesels.Weld Journal,1986,65(10):17-31.
    [18]李亚江,王娟,刘鹏异种难焊材料的焊接及应用.北京化学工业出版社,2003.
    [19]吴会强,冯吉才.Ti_3Al金属间化合物电子束深熔焊接过程数值模拟.焊接学报,2005.
    [20]刘高典著.温度场的数值模拟.重庆:重庆大学出版社,1990.
    [21]武传松著.焊接热过程数值分析.哈尔滨:哈尔滨工业大学出版社,1990.
    [22]陈楚等.数值分析在焊接中的应用.上海:上海交通大学出版社,1985,1:80-82.
    [23]陈楚,汪建华,杨洪庆.非线性焊接热传导的有限元分析和计算.焊接学报,1983,3:139-148.
    [24]伍义生,吴永礼(译),有限元方法基础教程(第三版).北京:机械工业出版社,2005.
    [25]G.M.Han,J.Zhao,et al.Dynamic simulation of the temperature field of stainless steel laser welding.Materials and Design,2007,28:240-245.
    [26]H.X.Wang,Y.H.Wei,C.L.Yang.Numerical simulation of variable polarity vertical-up plasma arc welding process.Computational Materials Science,2007,38:571-587.
    [27]张朝辉.ANSYS热分析教程与实例解析.北京:中国铁道出版社.2007
    [28]唐兴伦,范群波,张朝辉,李春阳.ANSYST程应用教程—热与电磁学篇.北京:中国铁道出版社,2002.
    [29]M.A.Pietzka and J.C.Schuster.Summary of constitutional data on the Al-C-Ti system.Journal of Phase Equilibria,1994,15:392-405.
    [30]Zhou Aiguo,Wang Chang-an,Ge Zhenbin,et al.Preparation of Ti_3AlC_2 and Ti_2AlC by self-propagating high-temperature synthesis.Journal of Materials Science letters.200120(21):1971-1973.
    [31]Yiwang Bao,Yanchun.Zhou.Bending Creep and Stress Relaxation of Ti_3AlC_2 at High Temperature.Shenyang National Laboratory for Materials Science,institute of Metal Research,2006,8:54-58.
    [32]李小雷,周爱国,汪长安,马小娥,刘豫.自蔓延高温合成Ti_3AlC_2和Ti_2AlC及其反应机理研究.硅酸盐学报,2002,6:409-412.
    [33]艾明星.钛铝碳及铜/钛铝碳复合材料[博士学位论文].北京:北京交通大学,2006.
    [34]张华.TiC_x-Cu(Al)金属陶瓷及Ti_3AlC_2陶瓷的电弧焊接[博士学位论文].北京:北京交通大学,2008.
    [35]包亦望,曹增辰,马眷荣等.GB/T6569-2006精细陶瓷弯曲强度试验方法.北京:中国标准出版社,2006.
    [36]傅永华.有限元分析基础,武汉:武汉大学出版社,2003.
    [37]杨世铭,陶文铨著.传热学,北京:高等教育出版社.1998.
    [38]张文钺,焊接传热学.北京:机械工业出版社,1989.
    [39]Brown S,Song H.Implications of Three—Dimensional Numerical Simulations of Welding of Large Structures.Welding Journal,1992,71:55-62.
    [40]德国D.拉达伊.焊接热效应温度场、残余应力、变形.北京:机械工业出版社,1997.
    [41]John Goldak.A new finite model for welding heat souree.Metallurgual.Transaetions,1984,15(2):299-305.
    [42]赵明,武传松,陈茂爱.焊接热过程数值分析中相变潜热的三种解决方案.焊接学报,2007,27:55-57.
    [43]周建兴,刘瑞祥,陈立亮.凝固过程数值模拟中的潜热处理方法.铸造,2004,50(7):404-407.
    [44]G.M.Han,J.Zhao,et al.Dynamic simulation of the temperature field of stainless steel laser welding.Materials and Design,2007,28:240-245.
    [45]Y.C.Lei,W.X.Yu,el.Simulation on temperature field of TIG welding of copper without preheating.Trans.Nonferrous Met.SOCC.hina 2006,16:838-842.
    [46]李孝康.铜及铜合金知识简介.金属世界,2005,4.
    [47]陈洪莲.45钢轴对称件闪光对焊焊接工艺和接头温度场与组织模拟[硕士学位论文].江苏南京:河海大学,2007.
    [48]王长利.焊接温度场和应力场的数值模拟.硕士学位论文:沈阳工业大学学位论文,2005.
    [49]张文钺,焊接冶金学.北京:机械工业出版社,1989.
    [50]张宏.基于ANSYS平台的管线钢焊接温度场模拟.硕士学位论文:西南交通大学学位论文,2007.
    [51]翟洪祥,艾明星,黄振莺,周洋,张志力,李世波.一种Ti_3C_2/Cu-Al金属陶瓷材料及其制备方法.中国发明专利,专利号:ZL200510012150.5.
    [52]H.X.Zhai,M.X.Ai,Z.Y.Huang et al.Unusual microstructures and strength characteristics of Cu/Ti3AlC2 cermets.Key Engineering Materials,2007,336-338:1394-1396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700